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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Visual tracking and holographic information representation techniques have become robust enough to support operators in complex tasks on the 
shop floor. This paper presents an approach for coupling AR-supported assembly task instructions with image-based state tracking, so as to assist 
the operators in product assembly operations. The developed system consists of a visualization platform for AR-supported assembly instructions, 
a state tracker that includes object recognition, localization and hand tracking, using deep neural networks, and a server that handles the data 
exchange between the two. The developed framework is applied and validated in an industrial use case.  
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1. Introduction 

As manufacturing is characterized by large production rates 
as well as high number of product variants and personalization 
features, product quality monitoring becomes increasingly 
challenging in modern production [1]. Especially, as flexible 
manufacturing requires human operators in the loop, the 
development of digital systems that track the state of the task 
are required. 

Non-destructive testing has been the most used method to 
track product quality in the production, without creating 
disruptions, especially useful in the case of customized 
production where the product batches are divergent. More 
specifically, computer vision techniques have arisen in the 
industry and are nowadays commonly used for detecting, 
tracking products in the product line as well as monitoring their 
quality. 

Computer vision and more specifically environment 
tracking has been the one of the core components for another 

prominent technology which has proven to be useful in 
manufacturing; Augmented Reality (AR). AR allows the 
projection of task-related information in the field of view of the 
operator. As tracking algorithms has increased the precision in 
the tracked environment, and new methods that maximize the 
utilization of digital content generated in parts of manufacturing 
process, such as product design, an increasing number of AR 
applications are reaching the shopfloor. 
Summarizing, this study presents an approach for combining 
image-based stare tracking in AR supported assembly tasks. 
The state tracker combines hand, part and tool detection and 
tracking so as to maximize the accuracy of tracking task 
progress. It is capable of providing real-time updates to the AR 
instructions application, together with dynamic information 
from the environment of the operator, such as part and tool 
position. To validate the applicability of the developed system 
in an industrial scenario, it is applied in a compressor assembly, 
while the operator is supported by the developed state tracking 
system. 
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2. State of the art 

As product variants are rapidly increasing, and the 
manufacturing era is characterized by mass customization, it is 
important to deploy mechanisms in the shop floor that will 
contribute to increased flexibility [2]. Human operators are a 
factor that offers this desired level of flexibility (compared to 
automated systems). Though, their role has drastically shifted 
from doing repetitive task towards continuously altering 
instructions and collaboration with robots [3]. As 
reconfigurability has become a significant aspect of modern 
manufacturing, it is important to provide operators with 
information on the right time and in a perceivable way so that 
they can make the right decisions and be more efficient [4]. 
Many recent studies have explored new human-centered 
approaches that integrate Industry 4.0 technologies so as to 
facilitate the operators [5].  

One of the potential shapes of the operator in the Industry 
4.0 era is the Augmented operator, where the operator’s 
capabilities are empowered by an Augmented Reality (AR) 
system [6]. AR provides assistive solutions in different 
industrial fields making information quickly available in a 
perceivable and immersive way. The introduction of this 
technology in manufacturing has shown merit in reducing the 
human error, enabling a new way of educating people and 
increasing the collaboration [7]. For this purpose, plenty of AR 
applications have been developed to support the operators in 
assembly tasks [8], maintenance [9] as well as in processes that 
require machine operation [10]. As this technology is 
empowered from information already available in other digital 
systems in the manufacturing system, integrated frameworks 
that connect multiple components have emerged in the 
literature, highlighting its potential in modern manufacturing 
[11]. 

Another technology based on visual tracking that is trending 
in manufacturing is operator tracking, either the full body or 
specific parts (e.g. hand tracking). Image-based skin detecting 
is a critical processing step for many applications, including 
hand detection and gesture recognition. In our context of state 
detection, gives the hand-tip and -joint location valuable 
information about the actions of the operator. Chyad, Alsattar 
and al. [12] give an overview of the various techniques to 

recognize skin. They categorize different techniques based on 
the used color space, technique and method. The skin tone can 
be identified in different color spaces, where HSV and YCBCr 
are the most popular ones. Common techniques for skin 
detection, or in extension hand-joint or gesture recognition 
(Gurav and Kadbe [13]), are neural networks, Gaussian mixture 
models, Support Vector Machines and Adaptive Boosting. As 
methods, Chuad and Alsattar distinguish four categories: pixel-
based, region-based, hybrid and other methods [12]. 

Based on the increased need for systems that support the 
operators in the production line, this paper proposes a system 
that combines AR assembly instructions with image-based state 
tracking. State tracking is enabled via object and hand tracking 
on different levels of the assembly task. Moreover, data 
exchange between the state tracker and the AR visualization 
application dynamically provide the operators with information 
about the parts in their environment and also automatically 
detects correct assembly step completion. 
 

3. System description 

The overview of the proposed system is depicted in Fig. 1 
below. Image feed from the available sources is fed to the state 
tracker where the current status of the process is evaluated with 
a certainty value. The estimated score is then pushed to the flow 
manager, where task completion confidence is calculated. The 
flow manager also knows which parts of the assembly are 
associated to which task, and keeps track of the tasks that are 
already finished or still need to be executed. Each sub-
component and its role in understanding the current situation is 
described in detail in the following sections. 

3.1. State tracker 

The state tracker consists of two parts: the first is the low 
level block that process the data coming from sensors (e.g. top 
view cameras 2D or 3D, body or head worn cameras) and 
extract the needed information from the acquired data, 
information like object location, hands and parts position. The 

Fig. 1. An overview of the state tracker sub-blocks and the data exchanged between the sensors and the flow manager layer. 
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second part of the state tracker is the higher level block that uses  
the information extracted in the low level to evaluate the state 
of the assembly and to compute a confidence score (between 0 
and 1) that reflect the completion of the ongoing step. This 
score is a combination between the estimation that the part 
and/or tool is picked (Section 3.2 and 3.3) and that it is 
positioned in the final position (analyzed in Section 3.4). The 
state tracker feeds those two scores to the “Flow Manager” 
continuously, where if the score surpasses the pre-set threshold, 
the step is marked completed. 

In Fig. 1, an overview of the state tracker is presented. The 
lower level part of the state tracker is composed of several sub 
blocks used to detect/track the hand of the operator, detect/track 
the object that will be manipulated, confirm picking and 
placement operations, tool detections, path tracking and surface 
treatment (described in the following Sections). Note that 
depending on the use case and the assembly steps requirements 
some of the sub modules will not be active. Each image tracking 
system (described in Sections 3.2-3.5) gives a confidence (from 
0 to 1) that each movement is performed correctly. Confidence 
may sometimes not be 1, despite the fact that the step is 
completed, because of occlusions (e.g. the hand covers the 
camera’s view to the part and the part detection gives a lower 
score). The higher level part of the state tracker uses the 
information extracted from the received data, which is the 
output of the sub-blocks of the lower level together with the 
historical data. Ultimately, the state tracker uses the information 
received so as to keep track of the state of the assembly action, 
the position of the parts in the workspace and to estimate if the 
task has been completed. 

3.2. Object detection & tracking 

At first, the workstation layout corresponding to the camera 
used needs to initialize. In this sub-block, a marker-based 
algorithm (e.g. arUco marker [14]) is implemented for the 
initialization phase to load the layout of the work station,  the 
assembly steps (i.e. work instruction), the components, tools 
and their location relatively to the marker.  During the assembly 
process an important information to provide to the operator 
with, is which object to pick and where to pick it. This sub-
block of the state tracker is used with two different modes to 
indicate what and where is the object of interest during each 
assembly step.  

The first mode to recognize the object of interest is based on 
a deep learning neural network trained on a synthetic database 
generated using the CAD file(s) of the object(s). The process 
of training is done upfront for each geometry in each step (i.e. 
offline which allows to generate a large dataset and finetune the 
object detector further). The training of the object detector is 
done by “Transfer Learning” using the YOLOv3 architecture 
[15]. The second mode is based on picking from a storage bin 
from a fixed and known location. This mode is used when no 
CAD file of the object is available, or if it is difficult to design 
an accurate object detector for it, due to size, shape, texture or 
reflectivity (e.g. washers, bolts and screws).  

Next to the object detector, an object tracker module is used 
to track the location of the object of interest over time. The 

tracking of the object is done based on its visual appearance, 
movements and the hand of the operator.  

3.3. Hand tracking 

Additionally, the operator’s hands are being continuously 
monitored. Even if object picking, tracking and placement 
recognition fails, the operator action can be supervised by the 
movement of his hands. For this, we devised an adaptive 
intensity modeling algorithm to track the hands. Based on the 
hands’ previous movements, a rough estimation of the current 
hand position is made. Whereafter, the hand contour is 
delineated within that estimated region using an intensity 
model for the skin tone. This model is updated each frame using 
the distribution of a RGB-derived intensity measurement 
within the detected hand contour. By tracking the hands we can 
monitor if the operator went to the step-specified pick and place 
region, which gives an indication whether a object picking and 
placing could have occurred. 

3.4. Object Placement Detection 

To detect whether a part of the assembly has been put in 
place, the camera image is compared with a render from the 
CAD model, generated at the same position as the camera. The 
rendered image contains all the steps that have been completed, 
as well as the parts that need to be placed in the current step. 
Lists of completed steps and steps that are currently being 
processed are provided by the flow manager. The pose of the 
camera, used to render the image from the same viewpoint, can 
be obtained in several ways: by using a predefined marker, by 
Simultaneously Localization and Mapping (SLAM) or by 
values reported by the camera device’s sensors (e.g. in case of 
a head mounted display). The object has been placed if the 
camera image matches with the rendered image. Since we don’t 
want to compare the full scene, we only compare the regions in 
the images that should contain the objects. This region can be 
obtained by taking the bounding box of the projection of the 
parts that need to be placed.  

Due to limitations of the CAD model and due to differences 
between the real world and the virtual scene, one cannot directly 
compare the images. Instead, we first apply a canny edge 
detector on both images. This detector creates an edge-map in 
which most of the shading effects as well as any color 
differences in the images are removed. Next, a Histogram of 
Oriented Gradients (HOG) Descriptor is calculated for both 
edge-maps. A HOG descriptor divides the image in cells and 
calculates a histogram of the image gradient observed in each 
cell. As such it contains a rough description of the object’s 
structure. Finally, the Normalized Cross-Correlation (NCC) of 
both descriptors is calculated. We assume that the parts are in 
place if the NCC is higher than a given threshold value. This 
process is shown in Fig. 2. 

To increase stability of this method, the camera image is 
compared not only to a CAD render that contains all previous 
steps and the current step, but also to the image to a CAD render 
that only contains all previously completed steps.  
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second part of the state tracker is the higher level block that uses  
the information extracted in the low level to evaluate the state 
of the assembly and to compute a confidence score (between 0 
and 1) that reflect the completion of the ongoing step. This 
score is a combination between the estimation that the part 
and/or tool is picked (Section 3.2 and 3.3) and that it is 
positioned in the final position (analyzed in Section 3.4). The 
state tracker feeds those two scores to the “Flow Manager” 
continuously, where if the score surpasses the pre-set threshold, 
the step is marked completed. 

In Fig. 1, an overview of the state tracker is presented. The 
lower level part of the state tracker is composed of several sub 
blocks used to detect/track the hand of the operator, detect/track 
the object that will be manipulated, confirm picking and 
placement operations, tool detections, path tracking and surface 
treatment (described in the following Sections). Note that 
depending on the use case and the assembly steps requirements 
some of the sub modules will not be active. Each image tracking 
system (described in Sections 3.2-3.5) gives a confidence (from 
0 to 1) that each movement is performed correctly. Confidence 
may sometimes not be 1, despite the fact that the step is 
completed, because of occlusions (e.g. the hand covers the 
camera’s view to the part and the part detection gives a lower 
score). The higher level part of the state tracker uses the 
information extracted from the received data, which is the 
output of the sub-blocks of the lower level together with the 
historical data. Ultimately, the state tracker uses the information 
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[15]. The second mode is based on picking from a storage bin 
from a fixed and known location. This mode is used when no 
CAD file of the object is available, or if it is difficult to design 
an accurate object detector for it, due to size, shape, texture or 
reflectivity (e.g. washers, bolts and screws).  
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to track the location of the object of interest over time. The 
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placing could have occurred. 
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the images that should contain the objects. This region can be 
obtained by taking the bounding box of the projection of the 
parts that need to be placed.  

Due to limitations of the CAD model and due to differences 
between the real world and the virtual scene, one cannot directly 
compare the images. Instead, we first apply a canny edge 
detector on both images. This detector creates an edge-map in 
which most of the shading effects as well as any color 
differences in the images are removed. Next, a Histogram of 
Oriented Gradients (HOG) Descriptor is calculated for both 
edge-maps. A HOG descriptor divides the image in cells and 
calculates a histogram of the image gradient observed in each 
cell. As such it contains a rough description of the object’s 
structure. Finally, the Normalized Cross-Correlation (NCC) of 
both descriptors is calculated. We assume that the parts are in 
place if the NCC is higher than a given threshold value. This 
process is shown in Fig. 2. 

To increase stability of this method, the camera image is 
compared not only to a CAD render that contains all previous 
steps and the current step, but also to the image to a CAD render 
that only contains all previously completed steps.  
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Fig. 2. Detecting whether an object is in place. A reference image is rendered 
from the same position as where the real camera is positioned. Edge maps are 

calculated for both images and a HOG descriptor is calculated for both 
approaches. The resulting descriptors are compared to each other using 

Normalized Cross-Correlation. 

By comparing the corresponding NCC’s, an additional 
measure is taken to see whether the parts have been placed: the 
NCC of the former comparison should be larger than the one of 
the latter, since this means that the current state of assembly is 
more similar to the render with the step completed than to the 
one without. This is useful in cases where the scene containing 
the part is similar to the scene without it. An example of this is 
a bearing that needs to be placed in a matching hole. 

Stability can be further increased by checking whether the 
correct tools (e.g. screwdriver or wrench, but also the fingertips 
of the operator), have been used on the area where the objects 
need to be placed. This can be done using the tool landmark 
detection (described in Section 3.5). To detect the landmarks of 
the user’s hands we utilize the joint detection network from 
Zhou et al. [16]. In the case that these tools are the hands of the 
operator, we take the average of the landmarks at the tips of the 
thumb and index fingers to check interaction with the parts, 
since objects are usually picked up using those two fingers. 

The explained approach has the advantage that it requires no 
extensive training to detect the required objects. It works well 
on distinctive objects, and can be made to work for less 
distinctive objects, as explained above. However, it requires 
that the poses of the assembly station and the camera are known 
at all times. 

3.5. Path Tracking and Surface Treatment 

Some steps require that a tool follows a predefined path or 
that it is used to treat a surface. Examples include applying glue 
or primer on a surface or cleaning the surface. To check if such 
a procedure has been completed, we define 3D points on the 
object. These points make up the path or surface that needs to 
be treated. Every point is given a radius in which the tool is 
allowed to operate. Since the landmarks that we calculate for 
the tools only give us 2D locations in the camera image, we 
project the 3D points and their radius onto the image plane. 
Interaction between a path point and a landmark point of a tool 
can be checked by calculating the distance between them and 
comparing it to the projected radius. 

Depending on the kind of treatment, the order in which one 
is allowed to handle the points may be different. For a surface 
treatment for which no specific order is required, for example 
cleaning a surface, the system marks every point with which the 

tool has interacted as “treated”. When a specific order is 
required or expected, for example when applying glue on a 
specific path, the 3D points should be defined in the correct 
order. For every frame interaction, only the first “untreated” 
point in the list should be checked. This point should be marked 
as “treated” if there is interaction. This procedure returns a 
score indicating the percentage of points that have been treated. 

Additional information, such as a timestamp or an indication 
of velocity, may be provided with the points to give additional 
details to the operator. 

3.6. Tool detection 

There are certain actions in the assembly sequence that 
require the use of a tool to be completed: placement steps where 
for which a tool is used (e.g. tightening a bolt after placing it) 
or surface treatment steps (e.g. apply glue to a surface using a 
glue gun). To verify the completement of these steps we need 
to know the location of certain keypoints of the tool in question 
in the input image. These 2D locations can then be used to 
approximate whether there has been contact with the target part 
or surface region by checking for overlap on the image. 

Since it is known what tool will be used for each step and 
approximately in which part of the image, no object detection 
is used to identify tools. Instead, the region around the target 
part or surface is directly used as input for a keypoint detection 
algorithm. Keypoint detection is achieved by a neural network 
that, given an image, outputs a set of heatmaps. A heatmap is 
generated for each type of keypoint. Such a heatmap indicates, 
for each pixel, the probability that the keypoint is at location. 

The neural network used is a Fully Convolutional U-Net [17] 
that uses MobileNetV2 [18] as a feature detector. Training 
images are generated using Unity’s High Definition Rendering 
Pipeline. From the ground truth keypoint locations of these 
images, heatmaps are created by evaluating a Gaussian around 
the location. The feature detection network is initialized on 
weights trained on ImageNet, the weights are then frozen to be 
able to detect features from real life images [19]. Keypoint 
locations are retrieved from the network output by finding local 
maxima above a certain threshold, as shown in Fig. 3. A new 
network is trained for each tool that is used in the process. 

 

Fig. 3. Detecting the 2D locations of the keypoints on an image of a tool. On 
the left side the raw input image is shown. The heatmap generated by the 

neural network is shown on the right. 
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3.7. AR assembly instructions 

The state tracker is connected with an application that 
provides assembly instructions to the operator. The instructions 
are generated based on the product’s CAD file and broken 
down to assembly steps using an algorithm that evaluates the 
capability of each of the remaining parts to move along one of 
its six principal directions [20]. In each step of the assembly, 
the application loads the corresponding part and if the part is a 
fastener, a tool (e.g. a wrench in the case of a bolt) and a 
rotational arrow are also visualized, giving the operator a more 
immersive feeling. The application, apart from the instructions 
on what to assemble where, is also exchanging information 
with the state tracker. When the assembly moves to a new step, 
the position of the part to be picked is highlighted. If the part is 
on the worktable a green plane is visualized below it; if it is in 
a toolbox the box is highlighted in green color. Moreover, when 
the state tracker detects that the part is in its final position, it 
sends a trigger to the application to move to the next step.  
 

4. System implementation 

At the core of the state tracking system is a ROS network of 
nodes that communicate by publishing on and listening to ROS 
topics. Thanks to the use of the ROS framework, the system is 
modular: when a new node is introduced, it can simply 
subscribe to the topics it needs to obtain information from, and 
publish its outputs on topics that other nodes have subscribed 
to. The broader goal of the system is to estimate the context in 
which the operator is located. More specifically, the goal is to 
estimate the state of the assembly the operator is performing. 
To that end, input data is processed from one or several imaging 
sources; in the simplest case, an overhead camera. The images 
produced by this source are published on a ROS topic that any 
other ROS node can subscribe to. 

Subscribers of the image topic include an object detection 
node and an object and hand tracking node. The former detects 
where the relevant parts are, the latter tracks them as they move 
across the 2D image. Their 2D image space coordinates are 
published. Image processing nodes are mostly unaware of the 
state of the assembly. They merely process images in order to 
provide information to a node that keeps track of the state, 
conveniently called the “state tracker” node. This node is 
configured to keep track of the steps pre-defined in an 
automatically generated instruction document. It makes an 
estimate for the likelihood that a step has been completed, based 
on the information of the image processing nodes. For example, 
when the no hand has been detected to be in the neighborhood 
of the part relevant for this step, the likelihood will remain low. 

Outside of this core network of ROS nodes are some other 
software blocks or systems that interact with the ROS network 
through simple web requests or through a bridge: both a TCP 
bridge and a WebSocket bridge have been implemented to 
enable communication with outside systems. Examples of such 
outside systems include a graphical user interface implemented 
in the Qt framework, a web based graphical user interface 
implemented in React, and an AR application for HoloLens (2).  

Another one of those outside systems is a database called 
“content repository”, which enables the centralized storage of 
instruction documents, visualization assets and configuration 
parameters. By centralizing all data, the software systems 
remain highly configurable and are guaranteed to remain 
synchronized. The communication to this content repository is 
implemented by standard HTTP requests to a REST API, and 
the data is structured according to the ISA-95 standard. As a 
result, other systems that adhere to those standards are able to 
communicate to the same content repository. 

5. Validation 

The developed system is applied in an industrial use case that 
revolves around the assembly of a compressor. As human 
operators are an important part of the assembly sequence, 
introducing new ways to integrate digital instructions will 
facilitate and accelerate the instructions generation stream, 
while also the automated state tracking will reduce the errors of 
the operators and boost their confidence in cases with limited 
experience. Especially since the operators are called to deal 
with different product variants that require high attention to 
detail, the AR instruction, together with the state tracker aim to 
provide accurate and constantly updated instructions.  

Based on the CAD files, the assembly sequence is generated. 
In each step, the part/ sub- assembly that needs to be assembled 
is separated, together with position related (final position, 
assembly direction) and tracking related data (way of tracking, 
tool). Based on the assembly sequence, the AR instructions are 
generated.  

To track the scene, the feed of a top-down camera is used. In 
each step, the part to be picked is detected and its position is 
sent to the AR application. The part location is highlighted, 
either by projecting a green square on the working table 
(Fig.4d) or by highlighting in green its position in the toolbox 
if its position is preregistered (Fig. 4b). Some examples of how 
the assembly instructions are visualized in AR, considering also 
the usage of the required tools, are presented in the Fig. 4 below.  

 

Fig. 4. The key features of the AR assembly support application: a) 
instructions visualization, b) hand tracking for parts in the toolbox, c) tool 

visualization, d) part to be picked is highlighted 
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Fig. 2. Detecting whether an object is in place. A reference image is rendered 
from the same position as where the real camera is positioned. Edge maps are 

calculated for both images and a HOG descriptor is calculated for both 
approaches. The resulting descriptors are compared to each other using 

Normalized Cross-Correlation. 

By comparing the corresponding NCC’s, an additional 
measure is taken to see whether the parts have been placed: the 
NCC of the former comparison should be larger than the one of 
the latter, since this means that the current state of assembly is 
more similar to the render with the step completed than to the 
one without. This is useful in cases where the scene containing 
the part is similar to the scene without it. An example of this is 
a bearing that needs to be placed in a matching hole. 

Stability can be further increased by checking whether the 
correct tools (e.g. screwdriver or wrench, but also the fingertips 
of the operator), have been used on the area where the objects 
need to be placed. This can be done using the tool landmark 
detection (described in Section 3.5). To detect the landmarks of 
the user’s hands we utilize the joint detection network from 
Zhou et al. [16]. In the case that these tools are the hands of the 
operator, we take the average of the landmarks at the tips of the 
thumb and index fingers to check interaction with the parts, 
since objects are usually picked up using those two fingers. 

The explained approach has the advantage that it requires no 
extensive training to detect the required objects. It works well 
on distinctive objects, and can be made to work for less 
distinctive objects, as explained above. However, it requires 
that the poses of the assembly station and the camera are known 
at all times. 

3.5. Path Tracking and Surface Treatment 

Some steps require that a tool follows a predefined path or 
that it is used to treat a surface. Examples include applying glue 
or primer on a surface or cleaning the surface. To check if such 
a procedure has been completed, we define 3D points on the 
object. These points make up the path or surface that needs to 
be treated. Every point is given a radius in which the tool is 
allowed to operate. Since the landmarks that we calculate for 
the tools only give us 2D locations in the camera image, we 
project the 3D points and their radius onto the image plane. 
Interaction between a path point and a landmark point of a tool 
can be checked by calculating the distance between them and 
comparing it to the projected radius. 

Depending on the kind of treatment, the order in which one 
is allowed to handle the points may be different. For a surface 
treatment for which no specific order is required, for example 
cleaning a surface, the system marks every point with which the 

tool has interacted as “treated”. When a specific order is 
required or expected, for example when applying glue on a 
specific path, the 3D points should be defined in the correct 
order. For every frame interaction, only the first “untreated” 
point in the list should be checked. This point should be marked 
as “treated” if there is interaction. This procedure returns a 
score indicating the percentage of points that have been treated. 

Additional information, such as a timestamp or an indication 
of velocity, may be provided with the points to give additional 
details to the operator. 

3.6. Tool detection 

There are certain actions in the assembly sequence that 
require the use of a tool to be completed: placement steps where 
for which a tool is used (e.g. tightening a bolt after placing it) 
or surface treatment steps (e.g. apply glue to a surface using a 
glue gun). To verify the completement of these steps we need 
to know the location of certain keypoints of the tool in question 
in the input image. These 2D locations can then be used to 
approximate whether there has been contact with the target part 
or surface region by checking for overlap on the image. 

Since it is known what tool will be used for each step and 
approximately in which part of the image, no object detection 
is used to identify tools. Instead, the region around the target 
part or surface is directly used as input for a keypoint detection 
algorithm. Keypoint detection is achieved by a neural network 
that, given an image, outputs a set of heatmaps. A heatmap is 
generated for each type of keypoint. Such a heatmap indicates, 
for each pixel, the probability that the keypoint is at location. 

The neural network used is a Fully Convolutional U-Net [17] 
that uses MobileNetV2 [18] as a feature detector. Training 
images are generated using Unity’s High Definition Rendering 
Pipeline. From the ground truth keypoint locations of these 
images, heatmaps are created by evaluating a Gaussian around 
the location. The feature detection network is initialized on 
weights trained on ImageNet, the weights are then frozen to be 
able to detect features from real life images [19]. Keypoint 
locations are retrieved from the network output by finding local 
maxima above a certain threshold, as shown in Fig. 3. A new 
network is trained for each tool that is used in the process. 

 

Fig. 3. Detecting the 2D locations of the keypoints on an image of a tool. On 
the left side the raw input image is shown. The heatmap generated by the 

neural network is shown on the right. 
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3.7. AR assembly instructions 

The state tracker is connected with an application that 
provides assembly instructions to the operator. The instructions 
are generated based on the product’s CAD file and broken 
down to assembly steps using an algorithm that evaluates the 
capability of each of the remaining parts to move along one of 
its six principal directions [20]. In each step of the assembly, 
the application loads the corresponding part and if the part is a 
fastener, a tool (e.g. a wrench in the case of a bolt) and a 
rotational arrow are also visualized, giving the operator a more 
immersive feeling. The application, apart from the instructions 
on what to assemble where, is also exchanging information 
with the state tracker. When the assembly moves to a new step, 
the position of the part to be picked is highlighted. If the part is 
on the worktable a green plane is visualized below it; if it is in 
a toolbox the box is highlighted in green color. Moreover, when 
the state tracker detects that the part is in its final position, it 
sends a trigger to the application to move to the next step.  
 

4. System implementation 

At the core of the state tracking system is a ROS network of 
nodes that communicate by publishing on and listening to ROS 
topics. Thanks to the use of the ROS framework, the system is 
modular: when a new node is introduced, it can simply 
subscribe to the topics it needs to obtain information from, and 
publish its outputs on topics that other nodes have subscribed 
to. The broader goal of the system is to estimate the context in 
which the operator is located. More specifically, the goal is to 
estimate the state of the assembly the operator is performing. 
To that end, input data is processed from one or several imaging 
sources; in the simplest case, an overhead camera. The images 
produced by this source are published on a ROS topic that any 
other ROS node can subscribe to. 

Subscribers of the image topic include an object detection 
node and an object and hand tracking node. The former detects 
where the relevant parts are, the latter tracks them as they move 
across the 2D image. Their 2D image space coordinates are 
published. Image processing nodes are mostly unaware of the 
state of the assembly. They merely process images in order to 
provide information to a node that keeps track of the state, 
conveniently called the “state tracker” node. This node is 
configured to keep track of the steps pre-defined in an 
automatically generated instruction document. It makes an 
estimate for the likelihood that a step has been completed, based 
on the information of the image processing nodes. For example, 
when the no hand has been detected to be in the neighborhood 
of the part relevant for this step, the likelihood will remain low. 

Outside of this core network of ROS nodes are some other 
software blocks or systems that interact with the ROS network 
through simple web requests or through a bridge: both a TCP 
bridge and a WebSocket bridge have been implemented to 
enable communication with outside systems. Examples of such 
outside systems include a graphical user interface implemented 
in the Qt framework, a web based graphical user interface 
implemented in React, and an AR application for HoloLens (2).  

Another one of those outside systems is a database called 
“content repository”, which enables the centralized storage of 
instruction documents, visualization assets and configuration 
parameters. By centralizing all data, the software systems 
remain highly configurable and are guaranteed to remain 
synchronized. The communication to this content repository is 
implemented by standard HTTP requests to a REST API, and 
the data is structured according to the ISA-95 standard. As a 
result, other systems that adhere to those standards are able to 
communicate to the same content repository. 

5. Validation 

The developed system is applied in an industrial use case that 
revolves around the assembly of a compressor. As human 
operators are an important part of the assembly sequence, 
introducing new ways to integrate digital instructions will 
facilitate and accelerate the instructions generation stream, 
while also the automated state tracking will reduce the errors of 
the operators and boost their confidence in cases with limited 
experience. Especially since the operators are called to deal 
with different product variants that require high attention to 
detail, the AR instruction, together with the state tracker aim to 
provide accurate and constantly updated instructions.  

Based on the CAD files, the assembly sequence is generated. 
In each step, the part/ sub- assembly that needs to be assembled 
is separated, together with position related (final position, 
assembly direction) and tracking related data (way of tracking, 
tool). Based on the assembly sequence, the AR instructions are 
generated.  

To track the scene, the feed of a top-down camera is used. In 
each step, the part to be picked is detected and its position is 
sent to the AR application. The part location is highlighted, 
either by projecting a green square on the working table 
(Fig.4d) or by highlighting in green its position in the toolbox 
if its position is preregistered (Fig. 4b). Some examples of how 
the assembly instructions are visualized in AR, considering also 
the usage of the required tools, are presented in the Fig. 4 below.  

 

Fig. 4. The key features of the AR assembly support application: a) 
instructions visualization, b) hand tracking for parts in the toolbox, c) tool 

visualization, d) part to be picked is highlighted 
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Fig. 5. The state tracker monitors the process. Red area: Part to be picked 
detection. Pink dots: operator’s hands detection 

As the operator moves towards the part to be picked and the 
picking confidence surpasses the set threshold, the state tracker 
then sends the trigger to the AR application to proceed to the 
assembly instructions. The part is visualized moving towards 
its final position with an automatically created animation, based 
on the data coming from the CAD analysis. The top-down 
camera tracks the motion of the hand together with the part until 
it reaches its final position, as it is depicted in the Fig. 5. When 
the step was detected as completed (threshold exceeded), the 
flow manager sends a trigger to the state tracker and the AR 
application to proceed to the next step. 
 

6. Conclusions and future work 

This study presents a state tracker based on object, hand and 
tool recognition that supports automatic detection of task 
completion in manual assembly operations. The developed state 
tracker is used together with an AR application that aims to 
support the operator by providing high fidelity instructions in a 
semi-automated way. The state tracker allows the operators to 
focus on the task, while also increasing their confidence that the 
task has been successfully completed.  

As a future development, the training of the object 
recognition algorithms can be solely supported by a 
sophisticated photorealistic image generator, so that the training 
dataset is generated in a virtual environment. Additionally, the 
developed framework could record limiting cases (whenever 
the operator confirms that a step is completed though the 
algorithm was not that confident) so as to improve its training.  
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