Expert Systems With Applications 205 (2022) 117721

Contents lists available at ScienceDirect Eipert

Systems
. . . XI lications &
Expert Systems With Applications s |

Eebtorin-Chiel
Binshon

journal homepage: www.elsevier.com/locate/eswa

Check for

Online learning of windmill time series using Long Short-term Cognitive | opnes’
Networks

Alejandro Morales-Herndndez ?, Gonzalo Népoles >, Agnieszka Jastrzebska ¢,
Yamisleydi Salgueiro ¢, Koen Vanhoof ?

a Business Informatics Research Group, Hasselt University, Belgium

b Department of Cognitive Science & Artificial Intelligence, Tilburg University, The Netherlands

¢ Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

d Department of Computer Science, Faculty of Engineering, Universidad de Talca, Campus Curic6, Chile

ARTICLE INFO ABSTRACT

Keywords:

Long Short-term Cognitive Network
Recurrent Neural Network
Multivariate time series
Forecasting

Forecasting windmill time series is often the basis of other processes such as anomaly detection, health
monitoring, or maintenance scheduling. The amount of data generated by windmill farms makes online learning
the most viable strategy to follow. Such settings require retraining the model each time a new batch of data is
available. However, updating the model with new information is often very expensive when using traditional
Recurrent Neural Networks (RNNs). In this paper, we use Long Short-term Cognitive Networks (LSTCNs) to
forecast windmill time series in online settings. These recently introduced neural systems consist of chained
Short-term Cognitive Network blocks, each processing a temporal data chunk. The learning algorithm of these
blocks is based on a very fast, deterministic learning rule that makes LSTCNs suitable for online learning tasks.
The numerical simulations using a case study involving four windmills showed that our approach reported the
lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit,
and a Hidden Markov Model. What is perhaps more important is that the LSTCN approach is significantly
faster than these state-of-the-art models.

1. Introduction On the one hand, most ML models require feature engineering before

building the model and lack interpretability. On the other hand, these

Humanity’s sustainable development requires the adoption of less
environmentally aggressive energy sources. Over the last years, re-
newable energy sources (RES) have increased their presence in the
energy matrix of several countries. These clean energies are less pol-
luting, renewable, and abundant in nature. However, limitations such
as volatility and intermittency reduce their reliability and stability for
power systems. This hinders the integration of renewable sources into
the main grid and increases their generation costs (Sinsel et al., 2020).

Power generation forecasting (Foley et al.,, 2012) is one of the
approaches adopted to facilitate the optimal integration of RES in
power systems. Overall, the goal of power generation forecasting is
to know in advance the possible disparity between generation and
demand due to fluctuations in energy sources (Ahmed & Khalid, 2019).
Forecasting methods used for renewable energies are based on physical,
statistical, or machine learning (ML) models. Although ML models
often achieve the highest performance compared to other models, their
deployment in real applications is limited (Jorgensen & Shaker, 2020).

* Corresponding author.

methods usually assume that the training data is completely available
in advance. Hence, most ML methods are unable to incorporate new
information into the previously constructed models (Wang et al., 2019).

Within clean energy approaches, wind energy has shown sustained
growth in installed capacity and exploitation in recent years (Ahmed
et al., 2020). However, wind energy involves some peculiarities to be
considered when designing new forecasting solutions. Firstly, wind-
based power generation can heavily be affected by weather variabil-
ity, which means that the power generation fluctuates with extreme
weather phenomena (i.e., frontal systems or rapidly evolving low-
pressure systems). Weather events are unavoidable, but their impact
can be minimized if anticipated in advance. Secondly, wind generators
are dynamic systems that behave differently over time (i.e., due to wear
of turbine components, maintenance, etc.). Finally, the data generated
by windmills is not static since they will continue to operate, thus pro-
ducing new pieces of data. These characteristics make traditional ML

E-mail addresses: alejandro.moraleshernandez@uhasselt.be (A. Morales-Herndndez), g.r.napoles@uvt.nl (G. Néapoles), a.jastrzebska@mini.pw.edu.pl
(A. Jastrzebska), ysalgueiro@utalca.cl (Y. Salgueiro), koen.vanhoof@uhasselt.be (K. Vanhoof).

https://doi.org/10.1016/j.eswa.2022.117721

Received 10 July 2021; Received in revised form 25 May 2022; Accepted 31 May 2022

Available online 6 June 2022

0957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:alejandro.moraleshernandez@uhasselt.be
mailto:g.r.napoles@uvt.nl
mailto:a.jastrzebska@mini.pw.edu.pl
mailto:ysalgueiro@utalca.cl
mailto:koen.vanhoof@uhasselt.be
https://doi.org/10.1016/j.eswa.2022.117721
https://doi.org/10.1016/j.eswa.2022.117721
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117721&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Morales-Herndndez et al.

methods inadequate to model the dynamics of these systems properly.
This means that new approaches are needed to improve the prediction
of wind generation. The development of algorithms capable of learning
beyond the production phase will also allow them to be kept up-to-date
at all times (Losing et al., 2018).

Recently, Napoles et al. (2021) introduced a recurrent neural system
termed Long Short-term Cognitive Network (LSTCN) that seems suitable
for online learning setting where data might be volatile. Moreover,
the cognitive component of such a recurrent neural network allows for
interpretability and it is given by two facts. Firstly, neural concepts and
weights have a well-defined meaning for the problem domain being
modeled. This means that the resulting model can easily be interpreted
with little effort. For example, in Napoles et al. (2021) the authors
discussed a measure to compute the relevance of each variable in
multivariate time series without the need for any post-hoc method.
Secondly, the domain expert can insert knowledge into the network
by modifying the prior knowledge matrix, which is not altered during
the learning process. For example, we can modify some connections
in the weight matrix to manually encode patterns that have not yet
been observed in the data or that were observed under exceptional
circumstances.

Despite the advantages of the LSTCN model when it comes to
its forecasting capabilities, intrinsic interpretability and short training
time, it has not yet been applied to a real-world problem, as far as
we know. In addition, we have little knowledge of the performance
of this brand new model on online learning settings operating with
volatile data that might be shortly available. Such a lack of knowledge
and the challenges related to the wind prediction described above
have motivated us to study the LSTCNs’ performance on a real-world
problem concerning the power forecasting of four windmills.

More explicitly, this paper elaborates on the task of forecasting
power generation in windmills using the LSTCN model. By doing
that, we propose an LSTCN-based pipeline to tackle the related online
learning problem where each data chuck is processed only once. In
this pipeline, each iteration processes a data chunk using a Short-
term Cognitive Network (STCN) block (Napoles et al.,, 2019) that
operates with the knowledge transferred from the previous block. This
means that the model can be retrained without compromising what the
network has learned from previous data chunks. The numerical simu-
lations show that our solution (i) outperforms state-of-the-art recurrent
neural networks when it comes to the forecasting error and (ii) reports
significantly shorter training and test times.

The remainder of the paper is organized as follows. Section 2 revises
the literature about recurrent neural networks used to forecast windmill
time series. Section 3 presents the proposed LSTCN-based power fore-
casting model for an online learning setting. Section 4 describes the
case study, the state-of-the-art recurrent models used for comparison
purposes and the simulation results. Finally, Section 5 concludes the
paper and suggests further research directions to be explored.

2. Forecasting models with recurrent neural networks

Neural networks are a family of biology-inspired computational
models that have found applications in many fields. An example of en-
gineering applications of neural models is the support of wind turbine
operation and maintenance. In this area, neural models dedicated to
the analysis of temporal data have proven to be quite useful. This is
motivated by the fact that typical data describing the operation of a
wind turbine are collected by sensors forming a supervisory control and
data acquisition (SCADA) system (Du et al., 2017; Weerakody et al.,
2021). Such data come in the form of long sequences of numerical
values, thus making Recurrent Neural Networks (RNNs) the right choice
for processing such data. This section briefly revises the literature on
the applications of RNNs on data analysis in the area of wind turbine
operation and maintenance support.

Expert Systems With Applications 205 (2022) 117721

RNNs differ from other neural networks in the way the input data
is propagated. In standard neural networks, the input data is processed
in a feed-forward manner, meaning the signal is transmitted unidirec-
tionally. In RNN models, the signal goes through neurons that can have
backward connections from further layers to earlier layers (Che et al.,
2018). Depending on a particular neural model architecture, we can
restrict the layers with feedback connections to only selected ones. The
overall idea is to allow the network to “revisit” nodes, which mimics
the natural phenomenon of memory (Kong et al., 2019). RNNs turned
out to be useful for accurate time series prediction tasks (Strobelt et al.,
2018), including wind turbine time series prediction (Cui et al., 2021).

As reported by Zhang et al. (2020), the task of analyzing wind
turbine data often involves building a regression model operating on
multi-attribute data from SCADA sensors. Such models can help us
understand the data (Delgado & Fahim, 2021; Janssens et al., 2016).

Currently, the most popular variant of RNN in the field of wind
turbine data processing is the Long Short-Term Memory (LSTM) model
(Hochreiter & Schmidhuber, 1997; Mishra et al., 2020). In this model,
the inner operations are defined by neural gates called cell, input gate,
output gate, and forget gate. The cell acts as the memory, while the
other components determine the way the signal propagates through
the neural architecture (Zhang et al., 2018). The introduction of these
specialized units helped prevent (to some extent) the gradient problems
associated with training RNN models (Sherstinsky, 2020).

Existing neural network approaches to wind turbine data forecasting
do not pay enough attention to the issue of model complexity and
efficiency. In most studies, authors reduce the available set of input
variables rather than optimizing the neural architecture used. For ex-
ample, Feng et al. (2019) used the LSTM model with hand-picked three
SCADA input variables, while Riganti-Fulginei et al. (2018) used eleven
SCADA variables. Qian et al. (2019) also used LSTM to predict wind
turbine data. In their study, the initial set of input variables consisted
of 121 series, but this was later reduced to only three variables and
then to two variables using the Mahalanobis distance method. The
issue of preprocessing and feature selection was also raised by Wang
et al. (2018), suggesting Principal Component Analysis to reduce the
dimensionality of the data.

LSTM has been found to perform well even when the time series
variables are of incompatible types. It is worth citing the study of Lei
et al. (2019), who used LSTM to predict two qualitatively different
types of time series simultaneously: (i) vibration measurements that
have a high sampling rate and (ii) slow varying measurements (e.g.,
bearing temperature). It should be noted that existing studies bring ad-
ditional techniques that enhance the capabilities of the standard LSTM
model. For example, Cao, Zhang et al. (2019) propose segmenting the
data and using segment-related features instead of raw signals. Xiang
et al. (2021) also do not use raw signals. Instead, they use Convolu-
tional Neural Networks (CNNs) to extract the dynamic features of the
data, which is then fed to LSTM. A similar approach, combining CNN
with LSTM, was presented by Xue et al. (2021). Another interesting
technique was introduced by Chen et al. (2021), who combined LSTM
with an auto-encoder (AE) neural network so that their model can
detect and reject anomalies while achieving better results for non-
anomalous data. Liu et al. (2020) used wavelet decomposition together
with LSTM and found that it achieves better results than standard
LSTM, but this comes at the cost of increased time complexity (training
time increases by about 30%). Other studies on LSTM and wind power
prediction have focused on tuning the LSTM architecture, for example,
by testing different transformation functions (Yin et al., 2020) or by
adding a specialized imputation module for missing data (Li et al.,
2019).

In addition, the bidirectional LSTM model (Gers et al., 2002) has
also been applied to forecast wind turbine data. The application of this
model was found in the study of Zhen et al. (2020) and, in a deeper
architecture, in the study of Cao, Qian et al. (2019).

A. Morales-Herndndez et al.

While most of the recently published studies using neural models to
predict multivariate wind turbine time series employ LSTM, there are
also several alternative approaches focusing on other RNN variants. For
example, there are several papers on the use of Elman neural networks
in forecasting multivariate wind turbine data (Lin, 2013, 2016). Kramti
et al. (2018) also applied Elman neural networks, but using a slightly
modified architecture. Likewise, we should mention the work of Lépez
et al. (2020), which involved Echo State Network and LSTM. Finally,
it is worth mentioning the work of Kong et al. (2020), in which the
task of processing data from wind turbines is implemented using CNNs
and Gated Recurrent Unit (GRU) (Cho et al., 2014). The latter neural
architecture is a variant of RNN, which can be seen as a simplification
of the LSTM architecture. GRU was also used in the study of Niu et al.
(2020), which employs attention mechanisms to reduce the forecasting
error.

There are other models equipped with reasoning mechanisms sim-
ilar to the one used by neural networks. In particular, the concept
of “neuron" can also be found in Hidden Markov Models (HMMs)
(Rabiner, 1989). Such neurons are implemented as states, and the set
of states essentially plays a role analogous to that of hidden neurons
in a standard neural network. HMMs have also found applications in
wind power forecasting. The studies of Bhaumik et al. (2019) and Qu
et al. (2021) should be mentioned in this context. Both research teams
highlight decent predictions and robustness to noise in the data.

As pointed out by Manero et al. (2018), the task of comparing wind
energy forecasting approaches described in the literature is challenging
due to several factors such as the differences in time series datasets,
the alternative forecast horizons, etc. In this paper, we will conduct
experiments for key state-of-the-art models for our data alongside the
LSTCN formalism. The methodology adopted allows us to draw conclu-
sions about the forecasting accuracy of different models and compare
their empirical computational complexity.

3. Long Short-term Cognitive Network

This section elaborates on the LSTCN model used for online learning
of multivariate time series. The first sub-section will explain how to
prepare the data to simulate an online learning problem, while the re-
maining ones will introduce the network architecture and the learning
algorithm.

3.1. Data preparation for online learning simulations

Let x € R be a variable observed over a discrete time scale within
a period ¢t € {1,2,...,T} where T € N is the number of observations.
Hence, a univariate time series can be defined as a sequence of ob-
servations {x®}T = {x1,x®, .. x™}. Similarly, we can define a
multivariate time series as a sequence {X®}T = (X, x® .. xD)
of vectors of M variables, such that X = [xg'),x(zt), ,x(](}]. A model
F is used to forecast the next L < T steps ahead. In this paper, we
assume that the model F is built as a sequence of neural blocks with
local learning capabilities, each able to capture the trends in the current
time patch (i.e.,, a chunk of the time series) being processed. Both
the network architecture and the parameter learning algorithm will be
detailed in the following sub-sections.

Let us assume that X € RM*T is a dataset comprising a multivariate
time series (Fig. 1(a)). Firstly, we need to transform X into a set of
Q tuples with the form (X“~®, XDyt — R > 0,t + L < T where R
represents how many past steps we will use to forecast the following
L steps ahead (see Fig. 1(b)). In this paper, we assume that R = L
for the sake of simplicity. Secondly, each component in the tuple is
flattened such that we obtain a Qx(M (R+ L)) matrix. Finally, we create
a partition P = {P(, ..., P®_ . PX)} from the set of flattened tuples
such that P® = (Pl(k),Pz(k)) is the kth time patch involving two data
pieces Pl(k), Pz(k) € RN where N = MR and C denotes the number of
instances in that time patch.

Expert Systems With Applications 205 (2022) 117721

24 |25 |41 |43 39|29 40|48 | 19|25 |45 |38 |47 |30 34
22 118 |14 |50 | 26 |38 |23 3945|1944 3136|3012
2 |14 140 36|26 |46 |28 19|19 |10|39 |18 | 10| 25| 56
28 | 4 |21 | 3 | 26|14 49|26 |17 |48 35|12 |49 |21 34

split1 split 2 split 3 split 4 split5

(a) Original multivariate time series

24|25|41|43|39|29 43(39(29]40|48|19 40|48|19|25|45|38 25|45|38/47|30(34
22|18|14|50)|26|38 50(26|38|23|39|45 23|39|45|19|44|31 19]44|31|36(30|12
2 [14|40|36|26|46 36(26|46|28|19|19 28|19|19|10|39|18 10|39|18|10|25|56
28| 4 |21|3 |26|14 3 126/14|49|26|17 49|26|17|48|35|12 48|35|12|49|21|34

input output input output input output input output

(b) Rolling mean

24|25|41|22|18|14| 2 |14|40|28| 4 |21|43|39|29|50|26|38|36|26|46| 3 |26|14
43139|29|50(26|38|36|26|46| 3 |26(14]|40|48|19|23|39|45|28|19/19|49|26|17
40|48|19|23|39]45|28|19/19|49|26|17|25|45|38|19|44|31|10|39/18|48|35|12
25|45|38|19|44|31|10|39|18|48|35|12|47|30|34|36|30/12|10|25|56|49|21 |34

p@ p

input output

(c) Flattening

Fig. 1. Data pre-processing using R = L = 3. (a) The original multivariate time series
X € RMXT | with rows as variables and columns as timestamps. (b) Selection of sub-
sequences of the time series according to parameters R and L. (¢) Each sub-sequence
is flattened to obtain the temporal instances. In this example, the flattened dataset is
divided into two time parches.

Fig. 1 shows an example of such a pre-processing method. First, the
times series is split into chunks of equal length as defined by the L and
R parameters. Second, we use the resulting chunks to create a set of
input-output pairs. Finally, we flatten these pairs to obtain the tuples
with the inputs to the network and the corresponding expected outputs.

It should be highlighted that the forecasting model will have access
to a time patch in each iteration, as it usually happens in an online
scenario. If the neural model is fed with several time steps, then it will
be able to forecast multiple-step ahead of all variables describing the
time series.

3.2. Network architecture and neural reasoning

In the online learning setting, we consider a time series (regardless
of the number of observed variables) as a sequence of time patches
of a certain length. Such a sequence refers to the partition P =
(P, ..., PR . PK)} obtained with the data preparation steps dis-
cussed in the previous subsection. Hence, the proposed network archi-
tecture consists of an LSTCN model able to process the sequence of time
patches.

An LSTCN model can be defined as a collection of STCN blocks,
each processing a specific time patch and transferring knowledge to
the following STCN block in the form of weight matrices. Fig. 2 shows
the recurrent pipeline of an LSTCN involving three STCN blocks to
model a multivariate time series decomposed into three time patches. It
should be highlighted that learning happens inside each STCN block to
prevent the information flow from vanishing as the network processes
more time patches. Moreover, weights estimated in the current STCN
block are transferred to the following STCN block to perform the
next reasoning process (see Fig. 3). These weights will no longer be
modified in subsequent learning processes, which allow preserving the
knowledge we have learned up to the current time patch. That makes
our approach suitable for the online learning setting.

The reasoning within an STCN block involves two gates: the input
gate and the output gate. The input gate operates the prior knowledge
matrix W% € RV with the input data Pl(k) € RE*N and the prior bias

matrix Blk) € RIXN denoting the bias weights. Both matrices Wl(k) and
B§k> are transferred from the previous block and remain locked during

the learning phase to be performed in that STCN block. The result of

A. Morales-Herndndez et al.

ﬁz(o) ﬁz(l) 132(2)
— WO B® | w®, B _ w®,p® _
STCN STCN STCN
.. w®, - w® D - w® B® __
p©® PO p,®

Fig. 2. LSTCN architecture of three STCN blocks. The weights learned in the current
block are transferred to the following STCN block as a prior knowledge matrix.

K
Bl() Input gate
@ Transfer function

(k)
A ® Matrix multiplication
p,® _T D Matrix-vector addition
W, (k) Output gate
2
(k) A 5 (k)
B, oY P,

Fig. 3. Reasoning within an STCN block. Firstly, the current time patch is mixed with
the prior knowledge matrices W% and B{". This operation produces a temporal state
matrix H®. Secondly, we operate the H*® matrix with the matrices W, and B{".
The result of such an operation will be an approximation of the expected output Pz(k).

the input gate is a temporal state H® € RN that represents the
outcome that the block would have produced given Pl(k) if the block
would not have been adjusted to the block’s expected output szk). Such
an adaptation is done in the output gate where the temporal state is
operated with the matrices Wz(k) e RN¥N*N and Bg‘) e RN which
contain learnable weights. Fig. 3 depicts the reasoning process within
the kth block.

Egs. (1) and (2) show the short-term reasoning process of this model
in the kth iteration,

Y=y (H(k)Wz(k) ® B;k)) €))
and

H® = f (POW® ng)) @
where f(x) = ﬁ, whereas ﬁz(k) is an approximation of the expected

block’s output. In these equations, the @ operator performs a matrix—
vector addition by operating each row of a given matrix with a vector,
provided that both the matrix and the vector have the same number of
columns. Notice that we assumed that values to be forecast are in the
[0, 1] interval.

As mentioned, the LSTCN model consists of a sequential collection
of STCN blocks. In this neural system, the knowledge from one block is
passed to the next one using an aggregation procedure (see Fig. 2). This
aggregation operates on the knowledge learned in the previous block
(that is to say, the W;k_” matrix). In this paper, we use the following
non-linear operator in all our simulations:

W =vw V) k-120 ®
and
B® =wB! ") k=120 4)

such that ¥ (x) = ranh(x). However, we can design operators combining
the knowledge in both Wl(kfl) and Wz(kfl).

There is an important detail to be discussed. Once we have pro-
cessed the available sequence (i.e., performed K short-term reasoning
steps with their corresponding learning processes), the whole LSTCN
model will narrow down to the last STCN block. Therefore, that net-
work will be used to forecast new data chunks as they arrive and a
new learning process will follow, as needed in online learning settings.

Expert Systems With Applications 205 (2022) 117721
3.3. Parameter learning

Training the LSTCN in Fig. 2 means training each STCN block with
its corresponding time patch. The learning process within a block is
partially independent of other blocks as it only uses the prior weights
matrices that are transferred from the previous block. As mentioned,
these prior knowledge matrices are used to compute the temporal state
and are not modified during the block’s learning process.

The learning task within an STCN block can be summarized as
follows. Given a temporal state H®) resulting from the input gate and
the block’s expected output Pz(k), we need to compute the matrices
Wz(k) € RM*N and BW e RV,

Mathematically speaking, the learning is performed by solving a
system of linear equations that adapt the temporal state to the expected
output. Eq. (5) displays the deterministic learning rule solving this
regression problem,

(k) -
] = (w7t s 007 () ®
2

where @0 = (H®|A) such that Aq,, is a column vector filled with
ones, QW denotes the diagonal matrix of (@®)T®®, while 1 > 0
denotes the ridge regularization penalty. This learning rule assumes
that the neuron’s activation values inner layer are standardized. When
the final weights are returned, they are adjusted back into their original
scale.

It shall be noted that we need to specify Wl(o) and Bio) in the first
STCN block. We can use a transfer learning approach from a previous
learning process or it can be provided by domain experts. Since this
information is not available, we fit a single STCN block without an
intermediate state (i.e., H® = PI(O)) on a smoothed representation of
the whole (available) time series. The smoothed time series is obtained
using the moving average method for a given window size.

Fig. 4 portrays the workflow of the iterative learning process of
an LSTCN model. An incoming chunk of data triggers a new training
process on the last STCN block using the stored knowledge that the net-
work has learned in previous iterations. After that, the prior knowledge
matrices are recomputed using an aggregation operator and stored to
be used as prior knowledge when performing reasoning.

4. Numerical simulations

In this section, we will explore the performance (forecasting error
and training time) of the proposed LSTCN-based online forecasting
model for windmill time series.

4.1. Description of windmill datasets

To conduct our experiments, we adopted four public datasets from
the ENGIE web page.! Each dataset corresponds to a windmill where
measurements were recorded every 10 min from 2013 to 2017. The
time series of each windmill contains 264,671 timestamps. Eight vari-
ables concerning the windmill and environmental conditions were se-
lected: generated power, rotor temperature, rotor bearing temperature, gear-
box inlet temperature, generator stator temperature, wind speed, outdoor
temperature, and nacelle temperature.

As of the pre-processing steps, we removed duplicated timestamps,
imputed missing timestamps and values, and applied a min-max nor-
malization. Moreover, the data preparation procedure described in
Fig. 1 was applied to each dataset. Table 1 displays a descriptive sum-
mary of all datasets after normalization where the minimum, median
and maximum of the absolute Pearson’s correlation values among the
variables are denoted as min, med, max, respectively.

1 https://opendata-renewables.engie.com/explore/index.

https://opendata-renewables.engie.com/explore/index

A. Morales-Herndndez et al.

Online flow of
input data

Expert Systems With Applications 205 (2022) 117721

Specification of prior
knowledge about Data pre-processing
the problem

Return STCN block

Pavailable?

Update prior

knowledge after

aggregation

Train an STCN

< using the stored
prior knowledge

Fig. 4. The LSTCN model can be seen as a sequential collection of STCN blocks that perform iterative learning. When a new chunk of data is available, a new STCN block is

trained and the prior knowledge is updated using an aggregation procedure.

Table 1

Descriptive statistics for the windmill datasets.
Dataset min med max

1 0.0708 0.2799 0.9456
2 0.0888 0.3032 0.8848
3 0.0687 0.3014 0.9497
4 0.0835 0.3148 0.9441

We split each dataset using a hold-out approach (80% for training
and 20% for testing purposes). As for the performance metric, we
use the mean absolute error (MAE) in all simulations reported in this
section. In addition, we report the training and test times of each
forecasting model. The training time (in seconds) of each algorithm was
computed by adding the time needed to train the algorithm in each time
patch. Finally, we arbitrarily fix the patch size to 1024.

4.2. Recurrent online learning models

We contrast the LSTCNs’ performance against four recurrent learn-
ing networks used to handle online learning settings. The models
adopted for comparison are GRU, LSTM, HMM, and a fully connected
Recurrent Neural Network (RNN) where the output is to be fed back to
the input.

The RNN, LSTM and GRU networks were implemented using Keras
v2.4.3, while HMM was implemented using the hmmlearn library.? The
training of these models was adapted to online learning scenarios. In
practice, this means that RNN, GRU, and LSTM were retrained on each
time patch using the prior knowledge structures learned in previous
learning steps. In the HMM-based forecasting model, the transition
probability matrix is passed from one patch to another, and it is
updated based on the new information.

In the LSTCN model, we used L = {6,48,72} such that R =
L (hereinafter we will only refer to L) and w = 10. Notice that
given the sampling interval of the data, six steps represent one hour
while 72 steps represent half a day. We did not perform parameter
tuning since the online learning setting demands fast re-training of
these recurrent models when a new data chunk arrives. It would not
be feasible to fine-tune the hyperparameters in each iteration since
such a process is computationally demanding. Instead, we retained the
default parameters reported on the corresponding Keras layers. In the
HMM-based model, we used four hidden states and Gaussian emissions
to generate the predictions. These parameter values were arbitrarily
selected without further experimentation.

2 https://github.com/hmmlearn/hmmlearn.

Table 2
Results for the windmill case study for L = 6 (1 h). LSTCN clearly outperforms the
other models in both in accuracy and training time.

Model Training error Training time Test error Test time
LSTCN 0.0672 0.0091 0.0715 0.0255
RNN 0.1087 0.6477 0.1321 1.3503
WT1 LSTM 0.1036 1.7681 0.1258 2.6994
GRU 0.1193 1.7162 0.1396 2.4513
HMM 0.0567 241.17 0.1267 91.08
LSTCN 0.0592 0.0091 0.0647 0.0261
RNN 0.1086 0.6516 0.1209 1.3048
WT2 LSTM 0.1035 1.7075 0.1147 2.5682
GRU 0.1243 1.7718 0.1384 2.3741
HMM 0.0381 333.61 0.0941 107.54
LSTCN 0.0474 0.0103 0.0564 0.0370
RNN 0.1221 0.6418 0.1532 1.3171
WT3 LSTM 0.1107 1.6932 0.1455 2.6672
GRU 0.1219 1.6821 0.1499 2.3471
HMM 0.0683 318.11 0.1768 118.31
LSTCN 0.0602 0.0112 0.0666 0.0398
RNN 0.1069 0.6609 0.1398 1.3507
WT4 LSTM 0.0979 1.1241 0.1275 1.4140
GRU 0.1162 1.6661 0.1405 2.3841
HMM 0.0534 367.05 0.1445 164.15

Table 3
Results for the windmill case study for L = 48 (8 h). LSTCN clearly outperforms the
other models in both in accuracy and training time.

Model Training error Training time Test error Test time
LSTCN 0.0701 0.1958 0.0721 0.0408
RNN 0.5963 17.7336 0.5966 4.5753
WT1 LSTM 0.1248 229.1311 0.1290 30.7941
GRU 0.1641 155.0201 0.1689 13.7719
HMM 0.0794 1432.65 0.0978 431.02
LSTCN 0.0594 0.7503 0.0600 0.0753
RNN 0.5340 27.3444 0.5357 5.7755
WT2 LSTM 0.1424 225.2245 0.1444 31.2621
GRU 0.2317 137.3365 0.2324 15.9500
HMM 0.0388 1586.91 0.0821 441.19
LSTCN 0.0474 0.2333 0.0482 0.0470
RNN 0.4991 20.1501 0.5048 5.8768
WT3 LSTM 0.1332 236.3217 0.1401 31.8122
GRU 0.1887 136.6582 0.1933 16.3957
HMM 0.0761 1462.68 0.1582 413.93
LSTCN 0.0600 0.2463 0.0623 0.0490
RNN 0.3407 37.1072 0.3425 5.8727
WT4 LSTM 0.1254 214.9554 0.1318 19.9095
GRU 0.1634 138.3381 0.1688 16.1307
HMM 0.0799 1971.42 0.1239 531.94

https://github.com/hmmlearn/hmmlearn

A. Morales-Herndndez et al.

Io.45
0.40
-0.35
030,

<
-0.25=

-0.20

0.15
[0410
0.05

(c) WT3

Expert Systems With Applications 205 (2022) 117721

0.40

ER 0.024 | 0.024 | 0.024 | 0.023 | 0.024 | 0.043 | 0.026 | 0.025
0.35
-0.30

0.045 | 0.045 | 0.041 | 0.042 | 0.041 | 0.047 | 0.044 | 0.046
<025,
.. (

.

(d) WT4

Fig. 5. MAE values obtained by the LSTCN-based model when changing the w and L parameters. As expected, expanding the prediction horizon (that is to say, increasing the
number of steps ahead to be predicted) leads to performance degradation of predictions. However, the model does not seem to be especially sensitive to the w parameter, except

for larger L values where the error increases as the w gets larger.

Table 4
Results for the windmill case study for L =72 (12 h). LSTCN clearly outperforms the
other models in both in accuracy and training time.

Model Training error Training time Test error Test time
LSTCN 0.0706 0.3770 0.0726 0.0430
RNN 0.5187 45.8973 0.5219 9.5791
WT1 LSTM 0.1376 714.2750 0.1418 53.8956
GRU 0.1891 892.9639 0.1927 31.4892
HMM 0.0861 2967.08 0.1236 549.49
LSTCN 0.0597 1.0251 0.0604 0.0605
RNN 0.6490 60.2035 0.6553 8.9644
WT2 LSTM 0.1320 726.8744 0.1345 53.2367
GRU 0.2304 806.9376 0.2316 38.6462
HMM 0.0488 2642.24 0.0718 622.14
LSTCN 0.0476 0.5155 0.0494 0.0545
RNN 0.5524 47.0321 0.5618 9.4718
WT3 LSTM 0.1441 768.9152 0.1518 54.4804
GRU 0.1846 787.8666 0.1909 36.3055
HMM 0.0811 2916.17 0.1281 631.11
LSTCN 0.0605 0.5040 0.0618 0.0535
RNN 0.5313 45.3868 0.5378 10.0499
WT4 LSTM 0.1358 690.0783 0.1404 37.7908
GRU 0.1813 809.8271 0.1895 31.4764
HMM 0.0887 2365.61 0.1112 589.81

4.3. Results and discussion

Fig. 5 shows an analysis of the influence of w and L on the
model’s behavior. The parameters were varied in the discrete set w =
{1,6,10,20,48,72,144} and L = {6,48,72,144}, and the MAE computed
on the test set was used for comparative purposes. The results did
not show a large difference when changing w while keeping L fixed.
However, the reduction in model performance was more evident when
L increases, which is usual in time series forecasting models (see
Figs. 7-10).

As mentioned, the knowledge used by the first STCN is extracted
from a smoothed representation of the time series data we have. Nev-
ertheless, we can start with a zero-filled matrix if such knowledge is not
available. Fig. 6 shows the MAE of the predictions in the training set of
the four windmills in both settings. Starting from scratch (no knowledge
about the data), the LSTCN starts predicting with a large MAE in the

first time patch. As new data is received, the network updates its
knowledge and reduces the prediction error. In this simulation, we used
five time patches such that each STCN block is fitted on the newly
received data. The LSTCN model using general knowledge of the time
series (assumed as a warm-up) generates small errors from the first time
patch.

Tables 2-4 show the results for L = 6,L = 48 and L = 72,
respectively. More explicitly, we report the average training and test
errors, and the average training and test times (in seconds). The LSTCN
model obtained the lowest MAE value in all cases (the lowest average
test error for each windmill is highlighted in boldface). Those results
allow us to conclude that our approach is able to produce better
forecasting results when compared with well-established recurrent neu-
ral networks. It should be noted, however, that such a conclusion is
attached to the fact that no hyper-parameter tuning was performed in
our simulations.

Another clear advantage of LSTCN over these state-of-the-art algo-
rithms is the reduced training and test times. Re-training the model
quickly when a new piece of data arrives while retaining the knowl-
edge we have learned so far is a key challenge in online learning
settings. Recurrent neural models such as RNN, LSTM, GRU use a
backpropagation-based learning algorithm to compute the weights reg-
ulating the network behavior. The algorithm needs to iterate multiple
times over the data with limited vectorization possibilities.

Overall, there is a trade-off between accuracy and training time
when it comes to the batch size. The smaller the batch size in the
backpropagation learning, the more accurate the predictions are ex-
pected to be. However, smaller batch sizes make the training process
slower. Another issue with gradient-based optimization methods is that
they usually operate in a stochastic fashion, thus making them quite
sensitive to the initial conditions. Notice that HMM also requires several
iterations to build the probability transition matrix.

To alleviate the problem caused by larger prediction horizons, we
could increase the batch size in our model (or decrease the batch size of
other recurrent models used for comparison purposes). In that way, we
will have more data in each training process, which will likely lead to
models with improved predictive power. Alternatively, we could adopt
an incremental learning approach to reuse data concerning previous
time patches as defined by a given window parameter. However, we
should be aware that many online learning problems operate on volatile
data that is just available for a short period.

A. Morales-Herndndez et al.

T T T
—@— without initial prior knowledge
~@— with initial prior knowledge

c
g
H
| o

0.08
0.07
2 0.06
=
0.05
0.04
- "Vm"\'f\
0.02
0 5 10 15 20 25 30
Time patch
(a) WT1
.) .
T —@— without initial prior kno
0.09 ~@— ithinitia prior kno
0.08
0.07
g 0.06
=
0.05
0.04
0.03 r\‘
0.02
0 5 10 15 20 25 30
Time patch
(c) WT3

Expert Systems With Applications 205 (2022) 117721

| I '
—@— without initial prior knowledge

0.045 ~®— with initial prior knowledge ~ ~
0.040
0.035
1y 0.030
<
=
0.025
0.020
0.015 .gn\.‘
0.010 »
0 5 10 15 20 25 30
Time patch
| i 1
—@~ without initial prior knowledge
—®— with initial prior knowledge
0.10
0.08
w
<
= 006
0.04
0.02 L 4 '.‘"0‘ L
0 5 10 15 20 25 30
Time patch

Fig. 6. MAE values obtained by the LSTCN-based model on the four windmill datasets with and without using initial prior knowledge. It can be noticed that the model needs to
process more time patches to reduce the error when the model is initialized with a random weight matrix. If this knowledge is not available, the network will still produce good

results provided it performs enough iterations.

— ongnatan
- Testpaetons /‘

o 200 400 600 800 1000 0 200

() L=6

(b) L =48

— Original data
—— Test prediciions.

— ongina daa 10
— Tt precicions /"\ ‘\"‘

600 800 1000 0 200 400 600 800 1000

(c) L=1T2

Fig. 7. Moving average power predictions (w = 24) for the first windmill with (a) L =6, (b) L =48 and (c) L =72.

— Orgnaldata 10
—— Test predictions ’\

o 200 400 600 00 1000 0 200
time

(a) L=6

— Original data 10 — Original data

— Test predictions — Test predictions.

600 800 1000 0 200 400 600 800 1000

time time

(b) L =48

Fig. 8. Moving average power predictions (w = 24) for the second windmill with (a) L =6, (b) L =48 and (c) L =72.

5. Concluding remarks

In this paper, we investigated the performance of Long Short-
term Cognitive Networks to forecast windmill time series in online
setting scenarios. This brand-new recurrent model system consists of a
sequence of Short-term Cognitive Network blocks. Each of these blocks
is trained with the available data at that moment in time such that the

learned knowledge is propagated to the next blocks. Therefore, the net-
work is able to adjust its knowledge to new information, which makes
this model suitable for online settings since we retain the knowledge
learned from previous learning processes.

The experiments conducted using four windmill datasets reported
that our approach outperforms other state-of-the-art recurrent neural
networks in terms of MAE. In addition, the proposed LSTCN-based
model is significantly faster than these recurrent models when it comes

A. Morales-Herndndez et al.

— Original data
Test prdictions.

|
N J\\
M\
N

00

200 400 600 800 1000 o 200
time

(a) L=6

o8
\ 0s
A
o
0w w we

(b) L =48

Expert Systems With Applications 205 (2022) 117721

10 — Original data
Test predictions

N v
/w J

1000 0 200 00 s00 800 1000
time tme.

(c) L=T2

— Original data
Test predictions

M 08

00

Fig. 9. Moving average power predictions (w = 24) for the third windmill with (a) L =6, (b) L =48 and (c) L =72.

o \ { "

N /
A ImaY :

0 200 00 600 800 1000 0 200 400

(a) L=6

| K\f\
} \ ‘ o \J /\/\ "
s f e

(b) L =48

— Original data
Test predictions:

— Original data 10
Test predictions

N
i

A

600 800 1000 0 200 400 600 800 1000
time time

Fig. 10. Moving average power predictions (w = 24) for the fourth windmill with (a) L =6, (b) L =48 and (c) L =72.

to both training and test times. Such a feature is of paramount relevance
when designing forecasting models operating in online learning modes.
Regrettably, the overall performance of all forecasting models deteri-
orated when increasing the number of steps ahead to be predicted.
While this result is not surprising, further efforts are needed to build
forecasting models with better scalability properties as defined by the
prediction horizon.

Before concluding our paper, it is worth mentioning that the pro-
posed architecture for online time series forecasting is not restricted to
windmill data. Instead, the architecture can be applied to any univari-
ate or multivariate time series provided that the proper pre-processing
steps are conducted.

CRediT authorship contribution statement

Alejandro Morales-Hernandez: Methodology, Software, Valida-
tion, Writing — original draft, Visualization. Gonzalo Napoles: Con-
ceptualization, Methodology, Software, Validation, Writing — original
draft, Visualization, Supervision. Agnieszka Jastrzebska: Validation,
Writing — original draft. Yamisleydi Salgueiro: Validation, Writing
- review & editing. Koen Vanhoof: Supervision, Writing — review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Alejandro Morales and Koen Vanhoof from Hasselt University would
like to thank the support received by the Flanders Al Research Program,
as well as other partners involved in this project. Agnieszka Jastrzeb-
ska’s contribution was founded by the National Science Centre, grant
No. 2019/35/D/HS4/01594, decision no. DEC-2019/35/D/HS4/01594.
Y. Salgueiro would like to acknowledge the support provided by the
National Center for Artificial Intelligence CENIA FB210017, Basal ANID
and the super-computing infrastructure of the NLHPC (ECM-02). The
authors would like to thank Isel Grau from the Eindhoven University
of Technology for revising the paper.

References

Ahmed, S. D., Al-Ismail, F. S., Shafiullah, M., Al-Sulaiman, F. A., & El-Amin, I. M.
(2020). Grid integration challenges of wind energy: A review. IEEE Access, 8,
10857-10878. http://dx.doi.org/10.1109/ACCESS.2020.2964896.

Ahmed, A., & Khalid, M. (2019). A review on the selected applications of forecasting
models in renewable power systems. Renewable and Sustainable Energy Reviews, 100,
9-21. http://dx.doi.org/10.1016/j.rser.2018.09.046.

Bhaumik, D., Crommelin, D., Kapodistria, S., & Zwart, B. (2019). Hidden markov models
for wind farm power output. IEEE Transactions on Sustainable Energy, 10, 533-539.
http://dx.doi.org/10.1109/TSTE.2018.2834475.

Cao, L., Qian, Z., Zareipour, H., Huang, Z., & Zhang, F. (2019). Fault diagnosis of
wind turbine gearbox based on deep bi-directional long short-term memory under
time-varying non-stationary operating conditions. IEEE Access, 7, 155219-155228.
http://dx.doi.org/10.1109/1SIE.2019.8781108.

Cao, L., Zhang, J., Wang, J., & Qian, Z. (2019). Intelligent fault diagnosis of wind
turbine gearbox based on long short-term memory networks. In 2019 IEEE 28th
international symposium on industrial electronics (pp. 890-895). http://dx.doi.org/
10.1109/ACCESS.2019.2947501.

Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural net-
works for multivariate time series with missing values. Scientific Reports, 8(6085),
http://dx.doi.org/10.1038/s41598-018-24271-9.

Chen, H., Liu, H., Chu, X., Liu, Q., & Xue, D. (2021). Anomaly detection and
critical SCADA parameters identification for wind turbines based on LSTM-AE
neural network. Renewable Energy, 172, 829-840. http://dx.doi.org/10.1016/j.
renene.2021.03.078.

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (pp. 1724-1734). http://dx.doi.org/10.3115/
v1/D14-1179.

Cui, Y., Bangalore, P., & Bertling Tjernberg, L. (2021). A fault detection framework
using recurrent neural networks for condition monitoring of wind turbines. Wind
Energy, 24(11), 1249-1262. http://dx.doi.org/10.1002/we.2628.

Delgado, I., & Fahim, M. (2021). Wind turbine data analysis and LSTM-based prediction
in SCADA system. Energies, 14, http://dx.doi.org/10.3390/en14010125.

Du, M., Yi, J., Mazidi, P.,, Cheng, L., & Guo, J. (2017). A parameter selection
method for wind turbine health management through SCADA data. Energies, 10,
http://dx.doi.org/10.3390/en10020253.

Feng, B., Zhang, D., Si, Y., Tian, X., & Qian, P. (2019). A condition monitoring
method of wind turbines based on long short-term memory neural network. In
2019 25th international conference on automation and computing (pp. 1-4). http:
//dx.doi.org/10.23919/I1ConAC.2019.8895037.

Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods
and advances in forecasting of wind power generation. Renewable Energy, 37, 1-8.
http://dx.doi.org/10.1016/j.renene.2011.05.033.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing
with Istm recurrent networks. Journal of Machine Learning Research, 3, 115-143.

http://dx.doi.org/10.1109/ACCESS.2020.2964896
http://dx.doi.org/10.1016/j.rser.2018.09.046
http://dx.doi.org/10.1109/TSTE.2018.2834475
http://dx.doi.org/10.1109/ISIE.2019.8781108
http://dx.doi.org/10.1109/ACCESS.2019.2947501
http://dx.doi.org/10.1109/ACCESS.2019.2947501
http://dx.doi.org/10.1109/ACCESS.2019.2947501
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1016/j.renene.2021.03.078
http://dx.doi.org/10.1016/j.renene.2021.03.078
http://dx.doi.org/10.1016/j.renene.2021.03.078
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1002/we.2628
http://dx.doi.org/10.3390/en14010125
http://dx.doi.org/10.3390/en10020253
http://dx.doi.org/10.23919/IConAC.2019.8895037
http://dx.doi.org/10.23919/IConAC.2019.8895037
http://dx.doi.org/10.23919/IConAC.2019.8895037
http://dx.doi.org/10.1016/j.renene.2011.05.033
http://refhub.elsevier.com/S0957-4174(22)01006-5/sb14
http://refhub.elsevier.com/S0957-4174(22)01006-5/sb14
http://refhub.elsevier.com/S0957-4174(22)01006-5/sb14

A. Morales-Herndndez et al.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9, 1735-1780. http://dx.doi.org/10.1162/nec0.1997.9.8.1735.

Janssens, O., Noppe, N., Devriendt, C., de Walle, R. V., & Hoecke, S. V. (2016).
Data-driven multivariate power curve modeling of offshore wind turbines. Engineer-
ing Applications of Artificial Intelligence, 55, 331-338. http://dx.doi.org/10.1016/j.
engappai.2016.08.003.

Jorgensen, K. L., & Shaker, H. R. (2020). Wind power forecasting using machine
learning: State of the art trends and challenges. In 2020 8th international conference
on smart energy grid engineering (pp. 44-50). http://dx.doi.org/10.1109/SEGE49949.
2020.9181870.

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J,, Xu, Y., & Zhang, Y. (2019). Short-term resi-
dential load forecasting based on LSTM recurrent neural network. IEEE Transactions
on Smart Grid, 10, 841-851. http://dx.doi.org/10.1109/TSG.2017.2753802.

Kong, Z., Tang, B., Deng, L., Liu, W., & Han, Y. (2020). Condition monitoring of
wind turbines based on spatio-temporal fusion of SCADA data by convolutional
neural networks and gated recurrent units. Renewable Energy, 146, 760-768. http:
//dx.doi.org/10.1016/j.renene.2019.07.033.

Kramti, S. E., Ben Ali, J., Saidi, L., Sayadi, M., & Bechhoefer, E. (2018). Direct
wind turbine drivetrain prognosis approach using elman neural network. In 2018
5th international conference on control, decision and information technologies (pp.
859-864). http://dx.doi.org/10.1109/CoDIT.2018.8394926.

Lei, J., Liu, C., & Jiang, D. (2019). Fault diagnosis of wind turbine based on long
short-term memory networks. Renewable Energy, 133, 422-432. http://dx.doi.org/
10.1016/j.renene.2018.10.031.

Li, T., Tang, J., Jiang, F., Xu, X., Li, C., Bai, J., & Ding, T. (2019). Fill missing data
for wind farms using long short-term memory based recurrent neural network.
In 2019 IEEE 3rd international electrical and energy conference (pp. 705-709). http:
//dx.doi.org/10.1109/CIEEC47146.2019.CIEEC-2019284.

Lin, C.-H. (2013). Recurrent modified elman neural network control of PM synchronous
generator system using wind turbine emulator of pm synchronous servo motor
drive. International of Electrical Power & Energy Systems, 52, 143-160. http://dx.doi.
org/10.1016/j.ijjepes.2013.03.021.

Lin, C.-H. (2016). Wind turbine driving a PM synchronous generator using novel
recurrent Chebyshev neural network control with the ideal learning rate. Energies,
9, http://dx.doi.org/10.3390/en9060441.

Liu, B., Zhao, S., Yu, X., Zhang, L., & Wang, Q. (2020). A novel deep learning
approach for wind power forecasting based on WD-LSTM model. Energies, 13,
http://dx.doi.org/10.3390/en13184964.

Lépez, E., Valle, C., Allende-Cid, H., & Allende, H. (2020). Comparison of recurrent
neural networks for wind power forecasting. In Pattern recognition (pp. 25-34).
http://dx.doi.org/10.1007/978-3-030-49076-8_3.

Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing, 275, 1261-1274.
http://dx.doi.org/10.1016/j.neucom.2017.06.084.

Manero, J., Bejar, J., & Cortes, U. (2018). Wind energy forecasting with neural
networks: A literature review. Computing and Systems, 22, 1085-1098. http://dx.
doi.org/10.13053/cys-22-4-3081.

Mishra, S., Bordin, C., Taharaguchi, K., & Palu, I. (2020). Comparison of deep learning
models for multivariate prediction of time series wind power generation and
temperature. Energy Reports, 6, 273-286. http://dx.doi.org/10.1016/j.egyr.2019.11.
009.

Népoles, G., Grau, 1., Jastrzebska, A., & Salgueiro, Y. (2021). Long short-term cognitive
networks. arXiv preprint arXiv:2106.16233.

Népoles, G., Vanhoenshoven, F., & Vanhoof, K. (2019). Short-term cognitive networks,
flexible reasoning and nonsynaptic learning. Neural Networks, 115, 72-81. http:
//dx.doi.org/10.1016/j.neunet.2019.03.012.

Expert Systems With Applications 205 (2022) 117721

Niu, Z., Yu, Z., Tang, W., Wu, Q., & Reformat, M. (2020). Wind power forecasting
using attention-based gated recurrent unit network. Energy, 196, Article 117081.
http://dx.doi.org/10.1016/j.energy.2020.117081.

Qian, P., Tian, X., Kanfoud, J., Lee, J. L. Y., & Gan, T.-H. (2019). A novel condition
monitoring method of wind turbines based on long short-term memory neural
network. Energies, 12, http://dx.doi.org/10.3390/en12183411.

Qu, K., Si, G., Sun, X., Lian, W., Huang, Y., & Li, P. (2021). Time series simulation for
multiple wind farms based on hmms and regular vine copulas. Journal of Renewable
and Sustainable Energy, 13, Article 023311. http://dx.doi.org/10.1063/5.0033313.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77, 257-286. http://dx.doi.org/10.
1109/5.18626.

Riganti-Fulginei, F., Sun, Z., & Sun, H. (2018). Health status assessment for wind turbine
with recurrent neural networks. Mathematical Problems in Engineering, 2018, Article
6972481. http://dx.doi.org/10.1155/2018/6972481.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, Article
132306. http://dx.doi.org/10.1016/j.physd.2019.132306.

Sinsel, S. R., Riemke, R. L., & Hoffmann, V. H. (2020). Challenges and solution
technologies for the integration of variable renewable energy sources—a review.
Renewable Energy, 145, 2271-2285. http://dx.doi.org/10.1016/j.renene.2019.06.
147.

Strobelt, H., Gehrmann, S., Pfister, H., & Rush, A. M. (2018). Lstmvis: A tool for visual
analysis of hidden state dynamics in recurrent neural networks. IEEE Transactions
on Visualization and Computer Graphics, 24, 667-676. http://dx.doi.org/10.1109/
TVCG.2017.2744158.

Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning
for renewable energy forecasting. Energy Conversion and Management, 198, Article
111799. http://dx.doi.org/10.1016/j.enconman.2019.111799.

Wang, Y., Xie, D., Wang, X., & Zhang, Y. (2018). Prediction of wind turbine-grid
interaction based on a principal component analysis-long short term memory
model. Energies, 11, http://dx.doi.org/10.3390/en11113221.

Weerakody, P. B., Wong, K. W., Wang, G., & Ela, W. (2021). A review of irregular
time series data handling with gated recurrent neural networks. Neurocomputing,
441, 161-178. http://dx.doi.org/10.1016/j.neucom.2021.02.046.

Xiang, L., Wang, P., Yang, X., Hu, A., & Su, H. (2021). Fault detection of wind turbine
based on SCADA data analysis using CNN and LSTM with attention mechanism.
Measurement, 175, Article 109094. http://dx.doi.org/10.1016/j.measurement.2021.
109094.

Xue, X., Xie, Y., Zhao, J., Qiang, B.,, Mi, L., Tang, C., & Li, L. (2021). Attention
mechanism-based CNN-LSTM model for wind turbine fault prediction using SSN
ontology annotation. Wireless Communications and Mobile Computing, 2021, Article
6627588. http://dx.doi.org/10.1155/2021/6627588.

Yin, A., Yan, Y., Zhang, Z., Li, C., & Sanchez, R.-V. (2020). Fault diagnosis of wind
turbine gearbox based on the optimized Istm neural network with cosine loss.
Sensors, 20, http://dx.doi.org/10.3390/520082339.

Zhang, X.-M., Han, Q.-L., Ge, X., & Ding, D. (2018). An overview of recent de-
velopments in lyapunov-krasovskii functionals and stability criteria for recurrent
neural networks with time-varying delays. Neurocomputing, 313, 392-401. http:
//dx.doi.org/10.1016/j.neucom.2018.06.038.

Zhang, F., Wen, Z., Liu, D., Jiao, J., Wan, H., & Zeng, B. (2020). Calculation and
analysis of wind turbine health monitoring indicators based on the relationships
with scada data. Applied Sciences, 10, http://dx.doi.org/10.3390/app10010410.

Zhen, H., Niu, D., Yu, M., Wang, K., Liang, Y., & Xu, X. (2020). A hybrid deep learning
model and comparison for wind power forecasting considering temporal-spatial
feature extraction. Sustainability, 12, http://dx.doi.org/10.3390/s5u12229490.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1016/j.engappai.2016.08.003
http://dx.doi.org/10.1109/SEGE49949.2020.9181870
http://dx.doi.org/10.1109/SEGE49949.2020.9181870
http://dx.doi.org/10.1109/SEGE49949.2020.9181870
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1016/j.renene.2019.07.033
http://dx.doi.org/10.1016/j.renene.2019.07.033
http://dx.doi.org/10.1016/j.renene.2019.07.033
http://dx.doi.org/10.1109/CoDIT.2018.8394926
http://dx.doi.org/10.1016/j.renene.2018.10.031
http://dx.doi.org/10.1016/j.renene.2018.10.031
http://dx.doi.org/10.1016/j.renene.2018.10.031
http://dx.doi.org/10.1109/CIEEC47146.2019.CIEEC-2019284
http://dx.doi.org/10.1109/CIEEC47146.2019.CIEEC-2019284
http://dx.doi.org/10.1109/CIEEC47146.2019.CIEEC-2019284
http://dx.doi.org/10.1016/j.ijepes.2013.03.021
http://dx.doi.org/10.1016/j.ijepes.2013.03.021
http://dx.doi.org/10.1016/j.ijepes.2013.03.021
http://dx.doi.org/10.3390/en9060441
http://dx.doi.org/10.3390/en13184964
http://dx.doi.org/10.1007/978-3-030-49076-8_3
http://dx.doi.org/10.1016/j.neucom.2017.06.084
http://dx.doi.org/10.13053/cys-22-4-3081
http://dx.doi.org/10.13053/cys-22-4-3081
http://dx.doi.org/10.13053/cys-22-4-3081
http://dx.doi.org/10.1016/j.egyr.2019.11.009
http://dx.doi.org/10.1016/j.egyr.2019.11.009
http://dx.doi.org/10.1016/j.egyr.2019.11.009
http://arxiv.org/abs/2106.16233
http://dx.doi.org/10.1016/j.neunet.2019.03.012
http://dx.doi.org/10.1016/j.neunet.2019.03.012
http://dx.doi.org/10.1016/j.neunet.2019.03.012
http://dx.doi.org/10.1016/j.energy.2020.117081
http://dx.doi.org/10.3390/en12183411
http://dx.doi.org/10.1063/5.0033313
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1155/2018/6972481
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1016/j.renene.2019.06.147
http://dx.doi.org/10.1016/j.renene.2019.06.147
http://dx.doi.org/10.1016/j.renene.2019.06.147
http://dx.doi.org/10.1109/TVCG.2017.2744158
http://dx.doi.org/10.1109/TVCG.2017.2744158
http://dx.doi.org/10.1109/TVCG.2017.2744158
http://dx.doi.org/10.1016/j.enconman.2019.111799
http://dx.doi.org/10.3390/en11113221
http://dx.doi.org/10.1016/j.neucom.2021.02.046
http://dx.doi.org/10.1016/j.measurement.2021.109094
http://dx.doi.org/10.1016/j.measurement.2021.109094
http://dx.doi.org/10.1016/j.measurement.2021.109094
http://dx.doi.org/10.1155/2021/6627588
http://dx.doi.org/10.3390/s20082339
http://dx.doi.org/10.1016/j.neucom.2018.06.038
http://dx.doi.org/10.1016/j.neucom.2018.06.038
http://dx.doi.org/10.1016/j.neucom.2018.06.038
http://dx.doi.org/10.3390/app10010410
http://dx.doi.org/10.3390/su12229490

	Online learning of windmill time series using Long Short-term Cognitive Networks
	Introduction
	Forecasting models with recurrent neural networks
	Long Short-term Cognitive Network
	Data preparation for online learning simulations
	Network architecture and neural reasoning
	Parameter learning

	Numerical simulations
	Description of windmill datasets
	Recurrent online learning models
	Results and discussion

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

