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Abstract

Hyperparameter optimization (HPO) is a necessary step to ensure the
best possible performance of Machine Learning (ML) algorithms. Sev-
eral methods have been developed to perform HPO; most of these are
focused on optimizing one performance measure (usually an error-based
measure), and the literature on such single-objective HPO problems is
vast. Recently, though, algorithms have appeared which focus on optimiz-
ing multiple conflicting objectives simultaneously. This article presents a
systematic survey of the literature published between 2014 and 2020 on
multi-objective HPO algorithms, distinguishing between metaheuristic-
based algorithms, metamodel-based algorithms and approaches using a
mixture of both. We also discuss the quality metrics used to compare
multi-objective HPO procedures, and present future research directions.

Keywords: hyperparameter optimization, multi-objective optimization,
metamodel, meta-heuristic, machine learning
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1 Introduction

Nowadays, Artificial Intelligence (AI) is omnipresent in everyday life. Current
technological advances allow us to analyze huge amounts of data to gener-
ate knowledge that is used in many different ways, e.g. for automatic user
recommendations (Cai, Hu, Zhao, Zhang, & Chen, 2020), image recognition
(Andreopoulos & Tsotsos, 2013; Phillips et al., 2005), and supporting health-
care related tasks (F. Jiang et al., 2017). In general, AI can been seen as a
computer technology capable of carrying out functions that traditionally re-
quired human intelligence (Ertel, 2018). Although learning is a key element
in many areas of artificial intelligence, the very concept of learning is mainly
studied in the Machine Learning (ML) subfield. According to T.M. Mitchell
et al. (1997), “a computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E”. ML algorithms
and their parameters must be intelligently configured to make the most of the
data. Those parameters that need to be specified before training the algorithm
are usually referred to as hyperparameters: they influence the learning process,
but they are not optimized as part of the training algorithm.

The impact of these hyperparameters on algorithm performance should not
be underestimated (Cooney, Korik, Folli, & Coyle, 2020; Kim, Reddy, Yun, &
Seo, 2017; Kong et al., 2017; Singh, Kumar, & Kaur, 2020); yet, their opti-
mization (hereafter referred to as hyperparameter optimization or HPO) is a
challenging task, as traditional optimization methods are often not applica-
ble (Luo, 2016). Indeed, classic convex optimization methods such as gradient
descent tend to be ill-suited for HPO, as the measure to optimize is usually
a non-convex and non-differentiable function (Parsa, Ankit, Ziabari, & Roy,
2019; Stamoulis, Chin, et al., 2018). Furthermore, the hyperparameters to opti-
mize may be discrete, categorical and/or continuous (typical hyperparameters
for an Artificial Neural Network (ANN), for instance, are the number of lay-
ers, the number of neurons per layer, the type of optimizer, and the learning
rate). The search space can also contain conditional hyperparameters; e.g., the
hyperparameters in a support vector machine algorithm depend on the type
of kernel used. Finally, the time needed to train a machine learning model
with a given hyperparameter configuration on a given dataset may already be
substantial, particularly for moderate to large datasets; as a common HPO al-
gorithm requires multiple such training cycles, the algorithm itself needs to be
computationally efficient to be useful in practice.

HPO should not be confused with the more general topic of automatic
algorithm configuration, which is much broader in scope (see Hutter, Hoos,
Leyton-Brown, and Stützle (2009); López-Ibáñez, Dubois-Lacoste, Cáceres,
Birattari, and Stützle (2016) for examples on this topic). Analogous to HPO,
automatic algorithm configuration tries to find parameter values for which an
algorithm achieves the best possible performance on the input data; yet, the
target algorithm does not necessarily carry out a learning process of a certain
task (classification, image recognition, or other).
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HPO has gained increasing attention in recent years, probably spurred by
the popularity of deep learning algorithms, which have demanding characteris-
tics (e.g., the need for large amounts of data and time to train the models, high
model complexity, and a diverse mix of hyperparameter types). Previously,
analysts tended to use simple methods to look for the “best” hyperparame-
ter settings. The most basic of these is grid search (Montgomery, 2017): the
user creates a set of possible values for each hyperparameter, and the search
evaluates the Cartesian product of these sets. Although this strategy is easy
to implement and easy to understand, its performance is influenced by the
number of hyperparameters to optimize, and the (number of) values chosen
on the grid. Random search (Bergstra & Bengio, 2012) provides an alternative
to grid search, and tends to be popular when some of the hyperparameters
are more important than others; e.g, learning rate and momentum are criti-
cal to guarantee a faster convergence of neural networks (C. Guo, Li, Hu, &
Yan, 2020). More advanced optimization methods have also been put forward,
such as population-based algorithms (Keshtkaran & Pandarinath, 2019), meta-
learning methods (Bui & Yi, 2020), neural architecture search (NAS) methods
(Jing, Lin, & Wang, 2020), and surrogate-based or model-based optimization
approaches (Kim & Chung, 2019).

Our work aims to provide an overview of the state-of-the-art in the field of
multi-objective hyperparameter optimization for machine learning algorithms,
highlighting the approaches currently used in the literature, the typical perfor-
mance measures used as objectives, and discussing remaining challenges in the
field. Multi-objective optimization is particularly relevant for HPO, as differ-
ent conflicting objectives may be important for the analyst (e.g., error-based
performance of the target ML algorithm, inference time, model size, energy
consumption, etc.). To the best of our knowledge, our work presents the first
comprehensive review of these multi-objective HPO approaches. Previous re-
views (Feurer & Hutter, 2019; Hutter, Lücke, & Schmidt-Thieme, 2015; Luo,
2016; Talbi, 2021; Yang & Shami, 2020) mainly discuss single-objective HPO
approaches, often focusing on particular contexts (such as biomedical data
analysis), specific target algorithms (such as Deep Neural Networks) or specific
approaches (Sequential Model-based Bayesian Optimization, multi-fidelity ap-
proaches). While two of the most recent surveys (Feurer & Hutter, 2019; Talbi,
2021) mention multi-objective HPO on the sidelines, they only list some exam-
ples or common strategies relevant to this topic, without discussing the actual
approaches.

The remainder of this article is organized as follows. Section 2 discusses the
methodology used in the literature search. Section 3 formalizes the concepts
of single- and multi-objective hyperparameter optimization, and discusses the
most commonly used performance measures in HPO algorithms. Section 4 dis-
cusses the existing methods for multi-objective hyperparameter optimization.
Finally, section 5 summarizes the findings, highlighting open challenges and
potential solutions.
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2 Methodology

Given the remarkable surge in publications on HPO since 2014, we focused on
research published between 2014 and 2020. Figure 1 shows an overview of the
search and selection process.

Se
ar

ch
 a

nd
 s

el
ec

tio
n

Perform Digital
Library Search

(WoS)
Apply first filter

Perform manual
search (Google
Scholar Alerts)

Select MO HPO
papers

Search
references

230 papers 175 papers

39 papers

214 papers

33 papers 11 papers

44 MO HPO
papers

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 1: Overview of search and selection process

We first performed a WoS (Web of Science) search, using the search terms
shown in Table 1. Although the main focus is on multi-objective HPO, we
also consider the occurrence of the phrase “single objective” in the abstract
(AB), as it is common to transform multiple objectives into a single objec-
tive by means of a scalarization function. As the use of surrogates is common
in single-objective HPO for deep learning networks (e.g., Sjöberg, Önnheim,
Gustavsson, and Jirstrand (2019); Victoria and Maragatham (2021); Wistuba,
Schilling, and Schmidt-Thieme (2018)), we also searched for articles men-
tioning the terms “surrogate”, “deep learning”, “neural networks”, “Gaussian
process”, and “kriging” in the abstract. The choice of hyperparameters is also
related to overfitting (Feurer & Hutter, 2019). Finally, we also include the term
“constraint”, as the required performance targets (e.g., maximummemory con-
sumption, training time (Hu, Jin, Liu, & Zhang, 2019; Stamoulis, Cai, Juan,
& Marculescu, 2018)) may be presented as constraints in (multi-objective)
HPO. We limited our search to publications (including conference proceedings,
articles, book chapters and meeting abstracts) in computer science related
categories (WC).

We subsequently completed the set of papers through (1) scanning sugges-
tions of papers on Google Scholar alerts, and (2) a reference search. We limited
the latter to electronic collections only, and solely considered journals/confer-
ence proceedings/workshop proceedings that were indexed on WoS (for the
WoS journals, we included accepted preprints of forthcoming articles).

The papers obtained through the WoS and manual search were manu-
ally filtered based on the title and abstract, to ensure they were related to
the topic of discussion. We filtered out irrelevant papers, such as those that
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Table 1: Search term details

TI
hyperparameter optimization, hyperparameter tuning, parameter optimization,
hyperparameter, parameter tuning

TS hyperparameter optimization, hyperparameter tuning

AB
neural networks, deep learning, constraint, overfitting, multiobjective,
multi objective, multi-objective, many-objective, many objective, single objective,
surrogate, gaussian process, kriging

WC

Computer Science, Artificial Intelligence
Computer Science, Information Systems
Computer Science, Theory & Methods
Computer Science, Interdisciplinary Applications

TI: Title, TS: Topic, AB: Abstract, WC: Web of Science Categories

focus on optimization of industrial processes (Chen, Jiang, Chang, & Chen,
2014), meta-learning (Vanschoren, 2019), optimization of internal parameters
(Wawrzyński, 2017), and papers related to AutoML systems that are not fo-
cused on hyperparameter optimization (such as model selection algorithms
(Silva et al., 2016; van Rijn, Abdulrahman, Brazdil, & Vanschoren, 2015) or
pure feature selection methods (Hegde & Mundada, 2020)). Neural Architec-
ture Search (NAS) is usually considered as a distinct category with its own
methods and techniques for optimizing the structure of a neural network;
hence, articles on NAS were only considered when the problem was addressed
as an HPO problem. Articles focusing on more specific aspects of NAS (such
as Negrinho et al. (2019)) are beyond the scope of this research.

A full read of the articles, combined with a reference search, resulted in
a final selection of 44 relevant articles. Most of these articles (about 60%)
were published in conferences or workshops, though there has been a notable
increase in scientific journal articles in 2020 (see Figure 2); these were mainly
published in Q1/Q2 journals belonging to the Computer Science field.
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Figure 2: Number of articles that address multi-objective HPO, according to
the publication source (2014-2020)

3 HPO: Concepts and performance measures

Section 3.1 provides an overview of the basic concepts related to HPO, while
Section 3.2 discusses the main performance measures (objectives) used in
such optimization. Finally, Section 3.3 discusses the quality metrics used for
comparing the performance of multi-objective HPO algorithms.

3.1 HPO: Concepts and terminology

In mathematics and computer science, an algorithm is a finite sequence of
well-defined instructions that, when fed with a set of initial inputs, eventually
produces an output. Figure 4 shows that in HPO, the optimization algorithm
forms an “outer” shell of optimization instructions; the “inner” optimization
refers to the training and cross-validation of the target ML algorithm (e.g.,
ANN, SVM, etc.). This inner optimization trains the target algorithm to per-
form the task it should perform (e.g., predicting house prices from a data set,
using a set of features). In turn, the HPO algorithm takes the hyperparameters
of the target ML algorithm as input, and produces a number of performance
measures as output (e.g., RMSE, energy consumption, etc.). The aim of the
HPO algorithm is to optimize the set of hyperparameters, in view of obtaining
the best possible outcomes for the performance measures considered.

More formally, the single-objective HPO problem can then be formalized
as follows. Consider a target ML algorithm A with N hyperparameters, such
that the n-th hyperparameter has a domain denoted by Λn. The overall hyper-
parameter configuration space is denoted as Λ = Λ1 × Λ2 × ...× ΛN . A vector
of hyperparameters is denoted by λ ∈ Λ, and an algorithm A with its hyper-
parameters set to λ is denoted by Aλ. In the case of HPO, the available data
are split into a training set, a validation set and a test set. The learning pro-
cess of the algorithm take place on the training set (Dtrain), and is validated
on the validation set (Dvalid). We can then formalize the single-objective HPO
problem as (Feurer & Hutter, 2019):
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Figure 3: Input/Output of an HPO algorithm

Figure 4: Example of the interplay between a target ML algorithm (ANN, in
this case) and the HPO algorithm.

λ∗ = argmin
λ∈Λ

V (L | Aλ,Dtrain,Dvalid)

where V (L | Aλ,Dtrain,Dvalid) is a validation protocol that uses a loss function
L to estimate the performance of a model Aλ trained on Dtrain and validated
on Dvalid. Popular choices for the validation protocol V (·) are the holdout and
cross-validation process (see Bischl, Mersmann, Trautmann, and Weihs (2012)
for an overview of validation protocols). Without loss of generality, we assume
in the remainder of this article that the loss function should be minimized.

The previous definition can be readily extended to multi-objective opti-
mization (see M. Li and Yao (2019)). Consider a multi-objective hyperparam-
eter optimization problem with N hyperparameters and m performance mea-
sures (objectives). Each hyperparameter configuration λ ∈ ΛN in the search
space is then mapped to an objective vector f | Aλ = (f1 | Aλ, ..., fm | Aλ) ⊂
Rm in the objective space. The multi-objective HPO problem can then be
formalized as follows (assuming that all performance measures should be
minimized):

λ∗ = argmin
λ∈Λ

V (f | Aλ,Dtrain,Dvalid)

Usually, there is a trade-off among the different objectives: for instance, be-
tween the performance of a model and training time (increasing the accuracy
of a model often requires larger amounts of data and, hence, a higher train-
ing time; see e.g., Rajagopal et al. (2020)), or between different error-based
measures (e.g., between confusion matrix-based measures (Tharwat, 2020) of
a binary classification problem; see Horn and Bischl (2016)). Considering these
trade-offs is often crucial: e.g., in medical diagnostics (de Toro, Ros, Mota, &
Ortega, 2002), the simultaneous consideration of objectives such as sensitiv-
ity and specificity is essential to determine if the machine learning model can
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be used in practice. The goal in multi-objective HPO is to obtain the Pareto-
optimal solutions, i.e., those solutions for which none of the objectives can
be improved without negatively affecting any other objective. In the decision
space, the set of optimal solutions is referred to as the Pareto set ; in objective
space, it yields the Pareto front (or Pareto frontier). The Pareto-optimal solu-
tions are also referred to as the non-dominated solutions (Emmerich & Deutz,
2018).

It is crucial that HPO approaches (both single-objective and multi-
objective) balance exploration and exploitation in their search process. Ex-
ploitation refers to the selection of hyperparameter configurations that are
located in regions of the search space that have already shown to be promis-
ing (i.e., that are known to yield configurations with good performance), while
exploration refers to the selection of configurations in regions where little is
known yet about the related performance. In (general) multi-objective opti-
mization problems, the multiple objectives are often scalarized into one single
function, such that the problem can be solved as a single-objective problem.
Care should be taken, though, when selecting the scalarization approach: e.g.,
not all approaches allow to detect non-convex parts of the front (see Miettinen
and Mäkelä (2002) for further details about scalarization functions). Scalar-
ization methods have also been applied in multi-objective HPO; see Section 4
for further details.

3.2 Multi-objective HPO: Typical objectives

Table 2 shows an overview and concise description of the most common error-
based performance measures in multi-objective HPO. As evident from the
table, for regression problems, these are commonly based on the squared errors.
For classification problems, they are commonly related to the elements of the
confusion matrix. By definition, a confusion matrix C has elements Ci,j which
show the number of observations known to be in class i and predicted to be in
class j (see Figure 5 for the confusion matrix of a binary classification problem).
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Table 2: Error-based measures used in multi-objective HPO algorithms. The description given for the classification metrics
assumes a two-class problem; in multi-class settings, the metrics are computed for each individual class.

Type of problem Performance
metric

Description References

Classification

Classification
error

FN+FP
P+N Abdolsh, Shilton, Rana, Gupta, and Venkatesh

(2019); Albelwi and Mah. (2016); Binder, Moos-
bauer, Thomas, and Bischl (2020); Bouraoui, Ja-
moussi, and BenAyed (2018); Chin, Morcos, and
Marculescu (2020); Elsken, Metzen, and Hut-
ter (2019); Faris, Habib, Faris, Alomari, and
Alomari (2020); Garrido and Hernández (2019);
Hernández, Hernandez-Lobato, Shah, and Adams
(2016); J. Jiang et al. (2020); Kim et al. (2017);
Laskaridis, Venieris, Kim, and Lane (2020); Liang et
al. (2019); Loni, Zoljodi, Sinaei, Daneshtalab, and
Sjödin (2019); Lu, Deb, Goodman, Banzhaf, and
Boddeti (2020); Mostafa, Mendonça, Ravelo-Garcia,
Juliá-Serdá, and Morgado-Dias (2020); Parsa et al.
(2019,?); H. Qin, Shinozaki, and Duh (2017); Ra-
jagopal et al. (2020); Salt, Howard, Indiveri, and San-
damirskaya (2019); Shah and Ghahramani (2016);
Smithson, Yang, Gross, and Meyer (2016); Sopov and
Ivanov (2015); Wang, Sun, Xue, and Zhang (2019);
Wang, Xue, and Zhang (2020); C. Zhang, Lim, Qin,
and Tan (2016)

Continued on next page
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Type of problem Performance
metric

Description References

Recall / Sen-
sitivity

TP
TP+FN Chatelain, Adam, Lecourtier, Heutte, and Paquet

(2007); Ekbal and Saha (2015, 2016); Mostafa et al.
(2020); Pathak, Shukla, and Arya (2020); Singh et
al. (2020)

Precision TP
TP+FP Ekbal and Saha (2015, 2016)

Specificity TN
TN+FP (Mostafa et al., 2020; Pathak et al., 2020; Singh et

al., 2020)

False
positive rate

FP
FP+TN Chatelain et al. (2007); Horn and Bischl (2016);

Horn, Dagge, Sun, and Bischl (2017)

False
negative rate

FN
FN+TP Horn and Bischl (2016); Horn et al. (2017)

Regression
Root mean
square error

√∑
(Real−Prediction)2

Total of observations
Juang and Hsu (2014); Magda, Martinez-Alvarez,
and Cuenca-Asensi (2017); Martinez-de Pison,
Gonzalez-Sendino, Aldama, Ferreiro, and Fraile
(2017)

Mean square
error

∑
(Real−Prediction)2

Total of observations
Smith and Jin (2014)

Sum square
error

∑
(Real − Prediction)

2 Salt et al. (2019)

Continued on next page
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Type of problem Performance
metric

Description References

Speech recognition Word error
rate

Measures how different the
recognised word is from reference
word

Chandra and Lane (2016); Shinozaki, Watanabe, and
Duh (2020); Tanaka et al. (2016)

Image recognition
Segmentation
accuracy

Computed as two times the area
of overlap of two images divided
by the total number of pixels in
both images

Baldeon and Lai-Yuen (2020); Calisto and Lai-Yuen
(2020)

Mutual
Information

Measures the dependencies be-
tween two images, or the amount
of information that one image
contains about the other

Albelwi and Mah. (2016)
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Figure 5: Confusion matrix of a binary classification problem

In single-objective HPO, the objective considered is commonly an error-
based measure. The references in Table 2 show that error-based measures are
also heavily used in multi-objective HPO, as they ensure a response from the
model that is close to reality. Additionally, model complexity objectives are
often included (following Occam’s razor principle; Blumer, Ehrenfeucht, Haus-
sler, and Warmuth (1987)), along with time-based metrics (e.g., training time
on embedded devices) and/or (computational) cost objectives. The complex-
ity of a neural network, for instance, is often estimated using the number of
parameters (weights of the connections between neurons); e.g., (Baldeon & Lai-
Yuen, 2020; Calisto & Lai-Yuen, 2020; Elsken et al., 2019; J. Jiang et al., 2020;
Liang et al., 2019; Lu et al., 2020; Smith & Jin, 2014) use this measure as a
second objective (along with an error-based measure). The number of features
can also be used as a complexity measure: see Binder et al. (2020); Bouraoui
et al. (2018); Faris et al. (2020); Martinez-de Pison et al. (2017); Sopov and
Ivanov (2015). The more features the training algorithm has to consider, the
more expensive it will be. Likewise, considering fewer features may negatively
affect the performance of the algorithm.

A complexity measure can also be defined in terms of the “model size”;
therefore it depends of the target ML algorithm to be optimized (e.g., the
number of neurons in one layer (Juang & Hsu, 2014), the number of support
vectors in a SVM (Bouraoui et al., 2018), the DNN file size (Shinozaki et
al., 2020) or the ensemble size (Garrido & Hernández, 2019) for ensemble
algorithms). Alternatively, the number of floating point operations (FLOPS)
can be used (Chin et al., 2020; Elsken et al., 2019; Lu et al., 2020; Wang et al.,
2019, 2020). This metric is also used to reflect the energy consumption (Han,
Pool, Tran, & Dally, 2015), and used along the number of parameters in the
network (Smithson et al., 2016). Both FLOPS and the number of parameters
are sometimes used as a memory consumption measures (Laskaridis et al.,
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2020), and can be combined with a time-based measure (Shah & Ghahramani,
2016). Time-based measures can be related to the training phase (Laskaridis
et al., 2020; Lu et al., 2020; Rajagopal et al., 2020; Tanaka et al., 2016), the
prediction phase (Abdolsh et al., 2019; Garrido & Hernández, 2019; Hernández
et al., 2016), the inference process on forward passes in ANNs (Kim et al.,
2017), or the whole optimization process (Richter et al., 2016).

The increasing computational cost of Deep Learning models generally
translates into higher hardware costs. As a result, an optimization using both
algorithm performance and hardware cost should be considered, especially for
edge devices. Hardware-related costs can be measured in different ways; e.g.,
through energy consumption or memory utilization. In many cases, these mea-
sures are estimated as a function of the hyperparameters. For instance, Parsa
et al. (2019) present an abstract energy consumption model that depends on
the neural network architecture (number of layers, number of outputs of each
layer, kernel size, etc).

3.3 Quality metrics for comparing multi-objective HPO
algorithms

The surveyed literature presents different metrics to judge and/or compare
the strengths and weaknesses of multi-objective HPO algorithms. A first set
of quality metrics is related to the resulting Pareto front. Here, hypervolume
is the most widely used; see Garrido and Hernández (2019); Hernández et al.
(2016); Horn and Bischl (2016); Horn et al. (2017); Lu et al. (2020); Shah and
Ghahramani (2016). It computes the volume of the area enclosed by the Pareto
front and a reference point, specified by the user. Binder et al. (2020) compute
the generalization dominated hypervolume, which is obtained by evaluating
the non-dominated solutions of the validation set on the test set data. Other
quality metrics based on the Pareto front are the difference in performance
between each solution on the front and the single-objective version of the
algorithm (holding the other objectives steady) (Chatelain et al., 2007), the
average distance (or Generational Distance) of the front to a reference set
(such as the approximated true Pareto front obtained by exhaustive search, see
Smithson et al. (2016); or an aggregated front, see Gülcü and Kuş (2021)), a
coverage measure computed as the percentage of the solutions of an algorithm
A dominated by the solutions of another algorithm B (Juang & Hsu, 2014;
H. Li, Zhang, Tsang, & Ford, 2004), or metrics based on the shape of the
Pareto front (Abdolsh et al., 2019) or its diversity (Juang & Hsu, 2014; H. Li
et al., 2004). The latter can be computed using the spacing and the spread
of the solutions: spacing evaluates the diversity of the Pareto points along a
given front (Gülcü & Kuş, 2021), whereas spread evaluates the range of the
objective function values (see Zitzler, Deb, and Thiele (2000)).

Some authors use performance measures that do not relate to the quality
of the front obtained; e.g., execution time (Horn et al., 2017; Parsa et al.,
2019; Richter et al., 2016), number of performance evaluations (Parsa et al.,
2019), CPU utilization in parallel computer architectures (Richter et al., 2016),
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measures that were not considered as an objective and that are evaluated in the
Pareto solutions (usually, confusion matrix-based measures for classification
problems; see Salt et al. (2019)), or measures that are specific for the HPO
algorithm used (e.g., the number of new points suggested per batch is used by
Gupta, Shilton, Rana, and Venkatesh (2018) to evaluate the performance of
the search executed during batch Bayesian optimization).

4 Multi-objective HPO: categorization

This section categorizes the selected articles, distinguishing between
metaheuristic-based algorithms (Section 4.1) and metamodel-based algorithms
(Section 4.2). Finally, Section 4.3 discusses the (scarce) research on hybrid
HPO algorithms.

4.1 Metaheuristic-based HPO algorithms

Heuristic search attempts to optimize a problem by improving the solution
based on a given heuristic function or a cost measure (Russell & Norvig, 2010).
A heuristic search method does not always guarantee to find the optimal so-
lution, but aims to find a good or acceptable solution within a reasonable
amount of time and memory space. Metaheuristics are algorithms that com-
bine heuristics (which are often problem-specific) in a more general framework
(Bianchi, Dorigo, Gambardella, & Gutjahr, 2009). Figure 6 summarizes the
general procedure of a metaheuristic-based algorithm. The algorithm generates
new solution(s) (exploration and/or exploitation of the search space) starting
from one or more initial solution(s). Depending on the algorithm, the infor-
mation available at the moment of the search can be updated before the next
iteration and/or bad solutions can be discarded. The process is repeated until
a stop criterion is met.

Create a set of initial
solutions

     Stopping criteria     
 satisfied?

Return Pareto
optimal solutions EndStart

Discard bad solutions
(if it is needed)

Create new solution(s)
through an exploration
and/or exploitation step

Update search
information

Yes

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 6: General procedure in metaheuristic-based algorithms.
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While some metaheuristics start from a single initial solution (e.g., Tabu
Search (Glover, 1986)), others (referred to as population-based algorithms)
start from a set of solutions (e.g., Ant Colony Optimization (Dorigo & Blum,
2005) and Genetic Algorithms (M. Mitchell, 1998)). In general, single-solution
based metaheuristics are more exploitation oriented, whereas basic population-
based metaheuristics are more exploration oriented (Boussäıd, Lepagnot, &
Siarry, 2013). Table 3 gives an overview of the metaheuristics-based algorithms
currently used in multi-objective HPO.

Clearly, the most popular metaheuristic-based algorithm for multi-
objective HPO is the Non-dominated Sorting Genetic Algorithm II (NSGA-II;
Deb, Pratap, Agarwal, and Meyarivan (2002)). This is not surprising, as ge-
netic algorithms have shown to perform quite well in single-objective HPO
settings: see, e.g., Deighan, Field, Capano, and Khanna (2021), who showed
that they cannot only obtain CNN configurations from scratch, but can also
refine state-of-the-art CNNs. NSGA-II builds on the original NSGA algorithm
(Srinivas & Deb, 1994); yet, it is computationally less expensive (a temporal
complexity of O(MN2) versus O(MN3) for the original algorithm, where M
is the number of objectives and N is the population size). Another important
difference is the preservation of the best solutions, through an elitist selection
according to the fitness and spread of solutions. Ekbal and Saha (2015) applied
NSGA-II to jointly optimize hyperparameters and features, and demonstrated
the superiority of the resulting models over others constructed with all the
features and default hyperparameters. Binder et al. (2020) observed analogous
results optimizing a SVM, kkNN, and XGBoost. Yet, according to the gen-
eralization dominated hypervolume, NSGA-II performed slightly worse than
ParEGO, a Bayesian optimization-based approach (see Knowles (2006) for
further details). Binder et al. (2020) thus suggest to prefer NSGA-II over
ParEGO only when model evaluations are cheap, and marginal degradation of
performance is acceptable.

Contrary to NSGA-II, the Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) (Q. Zhang & Li, 2007) uses scalarization to
solve the multi-objective HPO problem. Both MOEA/D and NSGA-II have
shown to improve the accuracy of the resulting model compared with man-
ual hyperparameter selection (Calisto & Lai-Yuen, 2020; Magda et al., 2017).
In Baldeon and Lai-Yuen (2020), MOEA/D is compared with a Bayesian
Optimization approach (using Gaussian Process Regression with Expected
Improvement as acquisition function), for tuning an adaptive convolutional
neural network (AdaResU-Net) used for medical image segmentation. The use
of MOEA/D results in a reduction in the number of parameters to train; the
comparison is not really reliable, though, as the Bayesian approach was used
in a single-objective optimizer, focusing only on segmentation accuracy and
not on model size.
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Table 3: Overview of Metaheuristics-based HPO algorithms (N,D,C refer to the number of numeric, discrete and categorical
hyperparameters respectively). Some algorithms require scalarization; if so, this is indicated in the first column.

HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

NSGA-II

Ekbal and Saha
(2015)

N: 1,
D: 1,
C: -

CRF - Recall
- Precision

Mention
recognition
in texts

-

N: 2,
D: 2,
C: 1

SVM

Magda et al.
(2017)

N: -,
D: 2,
C: -

Komi
threshold
algorithm

- Mean error
- Number of
outliers

Muscle onset
detection

Manual selection

Mostafa et al.
(2020)

N: 3,
D: 2,
C: -

CNN - Accuracy
- Recall
- Specificity

Apnea detec-
tion

-

Sopov and
Ivanov (2015)

N: -,
D: 2,
C: -

MLP - Classification
rate
- Number of
neurons

Emotion
recognition

SPEA (Zitzler &
Thiele, 1999), VEGA
(Schaffer, 1985),
SelfCOMO-GA (Sopov
& Ivanov, 2015)

Continued on next page
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HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

Binder et al.
(2020)

N: -,
D: 2,
C: -

SVM - Fraction of
selected features
- Generalization
error

OpenML
benchmark

ParEGO (Knowles,
2006)

N: 5,
D: 4,
C: -

XGBoost

N: -,
D: 2,
C: 1

kkNN

Shinozaki et al.
(2020)

N: 7,
D: 3,
C: 1

DNN-based
Spoken
Language
Systems

- Word error
rate
- Model size

Speech
recognition

CMA-ES (Hansen,
Müller, &
Koumoutsakos, 2003)

Kim et al.
(2017)

N: 2,
D: 1,
C: -

LeNet - Accuracy
- Running
time

Image recog-
nition

-

Bouraoui et al.
(2018)

N: 4,
D: 1,
C: -

SVM - Accuracy
- Number of SV
- Number of
features

UCI datasets Grid search

Continued on next page
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HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

Loni, Sinaei,
Zoljodi, Danesh-
talab, and
Sjödin (2020)

N: -,
D: 3,
C: 3

CNN - Accuracy
- Network size

Image recog-
nition

-

GA
(scalarized
objectives)

Deighan et al.
(2021)

N: 4,
D: 6,
C: -

CNN - Accuracy
- Network size

Gravitational
wave
classification

GA variants

MOEA/D
(scalarized
objectives)

Calisto and Lai-
Yuen (2020)

N: 1,
D: 3,
C: 3

AdaEn-net - Segmentation
accuracy
- Model size

Image seg-
mentation

Manual selection

Baldeon and
Lai-Yuen (2020)

N: 2,
D: 1,
C: 2

AdaResU-
net

- Segmentation
accuracy
- Model size

Image seg-
mentation

GP-EI (Snoek,
Larochelle, & Adams,
2012)

C. Zhang et al.
(2016)

N: 2,
D: 1,
C: -

DBN ensem-
bles

- Accuracy
- Diversity

Remaining
useful life
prediction

-

CMA-ES

Tanaka et al.
(2016)

N:19,
D: 6,
C: 2

NNLM - Word error rate
- Computational
time

Speech
recognition

-

Continued on next page
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HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

Shinozaki et al.
(2020)

N: 7,
D: 3,
C: 1

Spoken
Language
Systems

- Word error
rate
- Model size

Speech
recognition

NSGA-II (Deb et al.,
2002)

H. Qin et al.
(2017)

N: 6,
D: 4,
C: -

NMT
System

- BLEU score
- Validation
time

Machine
translation

-

Ekbal and Saha
(2016)

N: -,
D: 2,
C: -

CRF - Recall
- Precision

Named
entity
recognition

-

N: -,
D: 1,
C: -

SVM

N: -,
D: 1,
C: -

MBL

OMOPSO
Wang et al.
(2019, 2020)

N: -,
D: 5,
C: -

Densenet-
121

- Accuracy
- FLOPs

Image classi-
fication

-

Continued on next page
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HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

Rajagopal et al.
(2020)

N: 3,
D: 3,
C: -

CNN - Accuracy
- FLOPs

Scene classi-
fication

-

PSO
(scalarized
objectives)

Faris et al.
(2020)

N: 1,
D: 2,
C: -

SVM - Error
- Feature
selection rate

Medical spe-
cialties clas-
sification

-

CoDeepNeat Liang et al.
(2019)

N: 2,
D: 2,
C: 3

CNN - Error
- Number of
parameters

Medical
image
classification

-

SPEA II
(scalarized
objectives)

Loni et al.
(2019)

N: -,
D: 2,
C: 4

CNN - Accuracy
- Number of
parameters

Image classi-
fication

-

MADE Pathak et al.
(2020)

N: 1,
D: 5,
C: 4

Bidirectional
LSTM

- Recall
- Specificity

Classification -

MODE
(scalarized
objectives)

Singh et al.
(2020)

N: 2,
D: 5,
C: 3

CNN - Recall
- Specificity

Classification -

MO-RACACO Juang and Hsu
(2014)

N: -,
D: 1,
C: -

Fuzzy Neural
Networks

- RMSE
- Number of
rules nodes

Regression MO-EA (Juang, 2002),
MO-ACOr (Socha &
Dorigo, 2008)

Continued on next page
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HPO
Algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

MOSA Gülcü and Kuş
(2021)

N: -,
D: 10,
C: 4

CNN - Accuracy
- FLOPs

Image classi-
fication

-

Nelder-Mead
(scalarized
objectives)

Albelwi and
Mah. (2016)

N: -,
D: 7,
C: -

CNN - Accuracy
- Mutual
information

Image classi-
fication

-
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The Covariance matrix adaptation-evolutionary strategy (CMA-ES)
(Hansen et al., 2003) is a population-based metaheuristic that differs from
Genetic Algorithms in the use of a fixed length real valued vector as a gene (in-
stead of the typical vector of binary components), and a multivariate Gaussian
distribution to generate new solutions. Multi-objective CMA-ES can be for-
mulated considering the dominance of solutions on the Pareto Frontier (H. Qin
et al., 2017; Shinozaki et al., 2020; Tanaka et al., 2016). Shinozaki et al.
(2020) optimize DNN-based Spoken Language Systems using this approach;
the resulting networks had lower word error rates and were smaller than the
networks designed by NSGA-II. Additionally, multi-objective CMA-ES gener-
ated smaller networks than the one obtained with single-objective CMA-ES
(using the error-based measure as objective to optimized). In our opinion,
though, this last comparison does not make much sense, since network size did
not appear as objective in the single-objective setting.

Analogous to Genetic Algorithms, Particle Swarm Optimization (PSO)
(Eberhart & Kennedy, 1995) works with a population of candidate solutions,
known as particles. Each particle is characterized by a velocity and a position.
The particles search for the optimal solutions by continuously updating their
position and velocity. Their movement is influenced not only by their own lo-
cal best known position, but is also guided towards the best known position
found by other particles in the search space. A multi-objective PSO algorithm
(OMOPSO) was developed by Sierra and Coello (2005), using Pareto domi-
nance and crowding distance to filter out the best particles. It employs different
mutation operators which act on subsets of the swarm, and applies the ϵ-
dominance concept (see Laumanns, Thiele, Deb, and Zitzler (2002) for more
details) to fix the size of the set of final solutions produced by the algorithm.

Strength Pareto Evolutionary Algorithm II (SPEA-II) (Zitzler, Laumanns,
& Thiele, 2001) adds several improvements to the original SPEA algorithm
presented by Zitzler and Thiele (1999). Loni et al. (2019) used the algorithm
to optimize six hyperparameters of a CNN, yielding more accurate and less
complex networks than could be obtained with hand-crafted networks, or with
NAS algorithms.

Differential Evolution (DE) (Storn & Price, 1997) is similar to Genetic
Algorithms, but differs in the way in which the solutions are coded (us-
ing real vectors instead of binary-coded ones) and, consequently, in the way
in which the evolutionary operators are applied. Multi-Objective Differen-
tial Evolution (MODE) (Babu & Gujarathi, 2007) selects the non-dominated
solutions to generate new solutions on each iteration. To reduce the compu-
tational effort while maintaining accuracy, a memetic adaptive DE method
(MADE) was developed by S. Li et al. (2019). DE depends significantly on
its control parameter settings. Therefore, MADE uses a historical memory of
successful control parameter settings to guide the selection of future control
parameter values (Tanabe & Fukunaga, 2013). Additionally, a local search
method (e.g., the Nelder-Mead simplex method (NMM) (S. Li et al., 2019), or
chaotic local search (Pathak et al., 2020)) is employed to refine the solutions,
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and a ranking-based elimination strategy (using non-dominated and crowding
distance sorting) is proposed to maintain the most promising solutions.

Ant Colony Optimization (ACO) (Dorigo, Maniezzo, & Colorni, 1996) is
inspired by the behavior of real ants; the basic idea is to model the HPO prob-
lem as the search for a minimum cost path in a graph. ACO algorithms can
be applied to solve multi-objective problems, and may differ in three respects
(Alaya, Solnon, & Ghedira, 2007): (1) the way solutions are built, using only
one pheromone structure for an aggregation of several objectives, or associ-
ating a different pheromone structure with each objective (Gravel, Price, &
Gagné, 2002; Iredi, Merkle, & Middendorf, 2001); (2) the way in which so-
lutions are updated (Barán & Schaerer, 2003; Iredi et al., 2001) and (3) the
incorporation of existing problem-specific knowledge into the transition rule
that defines how to create new solutions from existing ones (Doerner, Gutjahr,
Hartl, Strauss, & Stummer, 2004; Gravel et al., 2002). The latter is included in
a multi-objective version of ACO (MO-RACACO, Hsu and Juang (2013)) for
Fuzzy Neural Network (FNN) optimization (Juang & Hsu, 2014). The results
showed that MO-RACACO outperformed other population-based MO algo-
rithms (MO-EA, Juang (2002); and MO-ACOr, Socha and Dorigo (2008)) in
terms of the coverage measure obtained, yet it did not always obtain the best
diversity values.

Simulated annealing (SA) is a probabilistic technique for finding the global
optimum of a single-objective problem (Kirkpatrick, Gelatt, & Vecchi, 1983).
Gülcü and Kuş (2021) applied a multi-objective approach (MOSA) to optimize
14 hyperparameters of a CNN. Their MOSA algorithm selects new solutions
based on their relative merit (measured by the dominance relationship) w.r.t.
the current solutions.

Lastly, the Nelder-Mead simplex method (NMM) (Olsson & Nelson, 1975)
has been applied by Albelwi and Mah. (2016) to optimize seven hyperparam-
eters for a CNN. As NMM is a single-objective optimization procedure, the
objectives need to be scalarized (the authors used a weighted sum approach).
NMM is a local optimization procedure, so it may get stuck in a local mini-
mum. This may be avoided by running the algorithm from different starting
points, which increases the probability of reaching the global minimum. Alter-
natively, modifications to the algorithm have been proposed (as in McKinnon
(1998)) that allow the algorithm to escape from local minima, yet at the cost
of a large number of iterations.

4.2 Metamodel-based HPO algorithms

Training a machine learning algorithm can be computationally expensive, e.g.
due to the target algorithm’s own structure (e.g., Deep Learning models), the
amount and complexity of the data to process, resource limitations (execu-
tion time, memory and energy consumption, etc), and/or the type of training
algorithm used. Therefore, different HPO approaches have been developed
that employ less expensive models (referred to as metamodels or surrogate
models) to emulate the computation of the real performance functions. A
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metamodel can be used in combination with a metaheuristic (yielding a so-
called hybrid method, see Section 4.3) to reduce the computational complexity
of the optimization (Pech, Kandler, Lukacevic, & Füssl, 2019; Regis, 2014;
Sun, Gong, & Ma, 2009), or can be used independently to guide the search.
The latter requires an acquisition function or infill criterion to guide the
exploration/exploitation of the search space.

Start

EndFit a metamodel(s)
using the set of

solutions
Search infill point(s)

Evaluate the infill
point(s) on the real

function

Return Pareto
optimal solutions

Create an initial
set of solutions

Evaluate the set of
solutions

     Stopping criteria     
 satisfied?

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 7: Generic optimization procedure in metamodel-based algorithms.

Figure 7 summarizes the main steps in such a metamodel-based op-
timization algorithm. The optimization starts with a set of initial points
(input/output observations) to train the metamodel. Then, the acquisition
function is used to select one or more new points (infill points) to be evaluated.
The metamodel is updated with this new information (adding the new I/O
observations to the initial set), and the procedure continues until a stopping
criterion is met.

Table 4 gives an overview of the metamodel-based algorithms currently
used for multi-objective HPO. Most multi-objective HPO articles use a Gaus-
sian Process (GP) as metamodel. GPs use a covariance function, or kernel,
to compute the spatial correlation among several output observations for a
given performance measure (i.e., a given objective of the HPO algorithm; see
Figure 4). In this approach, it is assumed that HPO input configurations that
differ only slightly from one another (i.e., they are close to each other in the
search space) are strongly positively correlated w.r.t. their outputs; as the
configurations are further apart in the search space, the correlation dies out.
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Table 4: Overview of Metamodel-based HPO algorithms. N,D,C refer to numeric, discrete and categorical hyperparameters
respectively. Some algorithms require scalarization; if so, this is indicated below the acquisition function.

Metamodel
Infill

criteria
Ref. HP Target ML

algorithm
Performance

measure
Application

field
Compared
against

Gaussian
process

EI Salt et al.
(2019)

N:18,
D: -,
C: -

SNN - Accuracy
- MVS error
- Reward measure

Classification Random search, DE
(Storn & Price, 1997),
SADE (A.K. Qin, Huang,
& Suganthan, 2008)

Dominance*Parsa et al.
(2019)

N: 3,
D: 6,
C: -

AlexNET - Error
- Energy
requirement

Image classi-
fication

Grid search, Random
search, NSGA-II (Deb et
al., 2002)

N: -,
D:11,
C: -

VGG19

PEHI Abdolsh et
al. (2019)

N: 4,
D: 2,
C: -

NN - Prediction
error
- Prediction
time

Image classi-
fication

PESMO (Hernández et
al., 2016), SMS-EGO
(Ponweiser, Wagner, Bier-
mann, & Vincze, 2008),
SUR (Picheny, 2014),
ParEGO (Knowles, 2006)

CEIPV Shah and
Ghahramani
(2016)

N: 1,
D: 2,
C: -

NN - Accuracy
- Memory
consumption

Classification ParEGO (Knowles, 2006),
Random search, GP-EHV

Continued on next page



S
p
rin

ger
N
atu

re
2021

L AT
E
X

tem
p
late

26
A

su
rvey

o
n
m
u
lti-o

bjective
H
P
O

fo
r
M
L

Metamodel
Infill

criteria
Ref. HP Target ML

algorithm
Performance

measure
Application

field
Compared
against

LCB Richter et al.
(2016)

N: -,
D: 2,
C: -

SVM - Classification
error
- Running time

Classification Random search

UCB
(scalar-
ized
objec-
tives)

Chin et al.
(2020)

N: 6,
D: -,
C: -

Slimmable
NN

- Cross entropy
loss
- FLOPs

Classification -

PES
Hernández
et al. (2016)

N: 4,
D: 2,
C: -

NN - Prediction
error
- Prediction
time

Image classi-
fication

ParEGO (Knowles, 2006),
SMS-EGO (Ponweiser et
al., 2008), SUR (Picheny,
2014)

Garrido and
Hernández
(2019)

N: 2,
D: 3,
C: -

Ensemble
of Decision
Trees

- Prediction
error
- Ensemble
size

Classification Random search, BMOO
(Feliot, Bect, & Vazquez,
2017)

Hernández-
Lobato et al.
(2016)

N: 4,
D: 4,
C: -

NN - Prediction
error
- Energy

Classification Random search, NSGA-II
(Deb et al., 2002)

Continued on next page
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Metamodel
Infill

criteria
Ref. HP Target ML

algorithm
Performance

measure
Application

field
Compared
against

Random
Forest

LCB

Binder et al.
(2020)

N: -,
D: 2,
C: -

SVM - Fraction of
selected
features
- Generalization
error

OpenML
benchmark

-

N: 5,
D: 4,
C: -

XGBoost

N: -,
D: 2,
C: 1

kkNN

Horn and
Bischl (2016)

N: -,
D: 3,
C: -

SVM - False
Negative rate
- False
Positive rate

OpenML
Benchmark

SMS-EGO (Ponweiser
et al., 2008), ParEGO
(Knowles, 2006), Random
sampling, NSGA-II (Deb
et al., 2002)

N: -,
D: 2,
C: -

Random
Forest

N: -,
D: 2,
C: -

Logistic
regression

Continued on next page
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Metamodel
Infill

criteria
Ref. HP Target ML

algorithm
Performance

measure
Application

field
Compared
against

Tree
Parzen
Estimators

Modified
EHV
(scalar-
ized
objec-
tives)

Chandra and
Lane (2016)

N: 3,
D: 3,
C: -

NN-decoder - Word error
rate
- Real time
factor
- Memory usage

Speech
recognition

Random sampling,
GP, Genetic Algorithm
(Zames et al., 1981)

Noisy
SMS-EGO

EHI Horn et al.
(2017)

N: -,
D: 3,
C: -

SVM - False
Negative Rate
- False
Positive Rate

OpenML
benchmark

RTEA (Fieldsend & Ev-
erson, 2014) , Random
search

SExI-EGO EHI Koch,
Wagner,
Emmerich,
Bäck, and
Konen
(2015)

N:
2(5),
D: -,
C: -

SVM - Accuracy
(Mean
accuracy)
- Training
time

UCI bench-
mark

SMS-EGO (Ponweiser et
al., 2008) , Latin Hyper-
cube sampling
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The choice of the kernel in a GP is important, as it determines the shape
of the assumed correlation function. In general, the most common kernels
used in GP-based metamodels are the Gaussian kernel and the Matérn kernel
(Ounpraseuth, 2008). Using the kernel, the analyst can not only predict the
estimated outputs (i.e., in our case, the performance measures) at non-observed
input locations (i.e., hyperparameter configurations), but can also estimate
the uncertainty on these output predictions. Both the predictions and their
uncertainty are reflected in the acquisition function, to balance exploration and
exploitation in the search for new hyperparameter settings to be evaluated.
We refer the reader to Rojas-Gonzalez and Van Nieuwenhuyse (2020) for a
detailed review of acquisition functions, for (general, non HPO related) single
and multi-objective optimization problems.

Table 4 also shows the acquisition functions that have been used so far in
multi-objective HP. Clearly, the most popular one is Expected Improvement
(EI, which was originally proposed by Jones, Schonlau, and Welch (1998)).
The EI represents the expected improvement over the best outputs found so
far, at an (arbitrary) non-observed input configuration. As EI was originally
developed for single-objective problems, it is usually applied in multi-objective
problems where the objectives are scalarized. Salt et al. (2019), for instance,
optimize a Spiking Neural Network (SNN) using a weighted function of three
individual objectives (the accuracy, the sum square error of the membrane
voltage signal, and the reward of the spiking trace). Three types of acquisi-
tion function were studied; EI, Probability of Improvement (POI) and Upper
Confidence Bound (UCB). The performance obtained with POI was signifi-
cantly better than that obtained with EI and UCB, and overall, the BO-based
approach required significantly fewer evaluations than evolutionary strategies
such as SADE.

Another way to use BO in multi-objective HPO is to fit a metamodel to
each objective independently. Parsa et al. (2019) use such an approach in their
Pseudo Agent-Based multi-objective Bayesian hyperparameter Optimization
(PABO) algorithm; they use the dominance rank (based on the predictor values
of each objective) as infill criterion. This evidently yields different infill points
for the respective objectives (in their case, an error-based objective and an
energy-related objective); the infill point suggested for one objective function
is then also evaluated for the other objective function, provided that it is
not dominated by any previous HPO configuration analyzed. In this way, the
algorithm speeds up the search for Pareto-optimal solutions. The experiments
indeed demonstrated that PABO outperforms NSGA-II in terms of speed.

Other authors have studied HPO problems when the performance mea-
sures are correlated (Shah & Ghahramani, 2016), or when one of the measures
is clearly more important than the others (Abdolsh et al., 2019). The al-
gorithm proposed by Shah and Ghahramani (2016) models the correlations
between accuracy, memory consumption and training time of an ANN using
a multi-output Gaussian process or Co-Kriging (H. Liu, Cai, & Ong, 2018).
The authors propose a modification to the expected hypervolume (EHV) that
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reflects these correlations; this modified EHV is then used as acquisition func-
tion, preferring the infill point that increases the expected hypervolume of
the Pareto front the most. The algorithm is compared to ParEGO, (Knowles,
2006), random search, and a GP using the original EHV metric. The re-
sults suggest that the modified EHV criterion increases the speed of the
optimization, requiring fewer iterations to converge to the Pareto optimal
solutions.

The PEHI algorithm proposed by Abdolsh et al. (2019) accounts for
user preferences. While the other algorithms that are used as comparison
in the paper (PESMO, Hernández et al. (2016); SMS-EGO, Ponweiser et
al. (2008); Stepwise Uncertainty Reduction, Picheny (2014); and ParEGo,
Knowles (2006)) try to find solutions across the entire Pareto front, the pro-
posed algorithm manages to focus its budget on the Pareto solutions that are
most interesting for the analyst.

Other acquisition functions used in metamodel-based algorithms are the
Lower Confidence Bound (LCB) or Upper Confidence Bound (UCB). These
use a (user-defined) confidence bound to focus the search on local areas, or
explore the search space more globally. Richter et al. (2016) use a multipoint
LCB which simultaneously generates q hyperparameter configurations. A GP
is used to model the misclassification error and the logarithmic runtime. The
results demonstrated an improvement in CPU utilization (and, thus, an in-
crease in the number of hyperparameter evaluations) within the same time
budget. Confidence bounds are also used by Chin et al. (2020) to optimize the
hyperparameters of Slimmable Neural Networks. The algorithm fits a GP to
each individual performance measure, hence obtaining information to compute
individual UCBs. These UCBs are then scalarized, and the resulting single
objective function is minimized to obtain the next infill point. The proposed
algorithm succeeds in reducing the complexity of the NNs studied; yet, the
authors did not compare its performance with any other multi-objective HPO
algorithms.

The Predictive Entropy Search (PES) criterion is used by multiple authors,
as infill criterion for different algorithms. Hernández et al. (2016) use PESMO
(multi-objective PES) to optimize a NN with six hyperparameters, in view
of minimizing the prediction error and the training time. PESMO seeks to
minimize the uncertainty in the location of the Pareto set. The algorithm is
compared with ParEGO, SMS-EGO and SUR, showing that PESMO gives the
best overall results in terms of hypervolume and number of expensive evalua-
tions required for training/testing the neural network. Garrido and Hernández
(2019) use PESMOC (a modified version of PESMO which takes into account
constraints) to optimize an ensemble of Decision Trees. The experiments show
that PESMOC is able to obtain better results than a state-of-the-art method
for constrained multi-objective Bayesian optimization (Feliot et al., 2017), in
terms of the hypervolume obtained and the number of evaluations required.
Finally, Hernández-Lobato et al. (2016) used PES to design a neural network
with three layers. While most of the HPO methods collect data in a coupled



Springer Nature 2021 LATEX template

A survey on multi-objective HPO for ML 31

way by always evaluating all performance measures jointly at a given input,
these authors consider a decoupled approach in which, at each iteration, the
next infill configuration is selected according to the maximum value of the
acquisition functions across all objectives. The results showed that this ap-
proach obtains better solutions (compared to NSGA-II and random search)
when computational resources are limited; yet, the trade-offs found among the
performance measures may be affected and one of the objectives can turn out
to be prioritized over the others.

Random forests (RFs) (Ho, 1995) are an ensemble learning method that
trains a set of decision trees having low computational complexity. Each tree
is trained with different samples, taken from the initial set of observations.
For classification outputs, the RF uses a voting procedure to determine the
decision class; for regression output, it returns the average value over the
different trees. As for GP, RFs allow the analyst to obtain an uncertainty es-
timator for the prediction values. Some examples are the quantile regression
forests method (Meinshausen & Ridgeway, 2006), which estimates the predic-
tion intervals, and the U-statistics approach (Mentch & Hooker, 2016). Horn
and Bischl (2016) use RFs as metamodel to optimize the hyperparameters of
three ML algorithms: SVM, Random Forest, and Logistic regression. Using
LCB as acquisition function, the authors show that SMS-EGO and ParEGO
outperform random sampling and NSGA-II.

Whereas GP-based approaches model the density function of the resulting
outcomes (performance measures) given a candidate input configuration, Tree-
structured Parzen Estimators (TPE) (Bergstra, Bardenet, Bengio, & Kégl,
2011) model the probability of obtaining an input configuration, given a con-
dition on the outcomes. TPEs naturally handle not only continuous but also
discrete and categorical inputs, which are difficult to handle with a GP. More-
over, TPE also works well for conditional search spaces (where the value of a
given hyperparameter may depend on the value of another hyperparameter),
and has demonstrated good performance on HPO problems for single-objective
optimization (Bergstra, Yamins, & Cox, 2013; Falkner, Klein, & Hutter, 2018;
Thornton, Hutter, Hoos, & Leyton-Brown, 2013). While it can, in theory, also
be applied to multi-objective settings by scalarizing the performance measures,
Chandra and Lane (2016) obtained disappointing results when comparing this
approach with random sampling, GP and Genetic Algorithms for optimizing
an Augmented Tchebycheff scalarized function (Miettinen, 2012) (using fixed
weights) of three performance measures for ANNs: GP performed best, while
TPE performed worst. Unfortunately, the authors reported the performance
based solely on the scalarized value of the three performance measures; they did
not report on any other quality metrics, such as hypervolume. They also didn’t
discuss the reason of the poor TPE performance, such that it remains unclear
whether this is due to the scalarization function, or to the characteristics of
the search space. A (non-scalarized) multi-objective version of TPE has been
proposed by Ozaki, Tanigaki, Watanabe, and Onishi (2020) and is included in
the software Optuna (Akiba, Sano, Yanase, Ohta, & Koyama, 2019).
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Strikingly, the majority of current HPO algorithms routinely ignore the
fact that the obtained performance measures are noisy. The noise can be due
to either the target ML algorithm itself (when it contains randomness in its
procedure, such as a NN that randomly initializes the weights), but even if
there is no randomness involved, there will be noise on the outcomes due to
the use of k -fold cross validation during the training of the algorithm. This
type of cross-validation is common in HPO: it involves the creation of different
splits of the data into a training and validation set. This process is repeated k
times; the performance measures of a given hyperparameter combination will
thus differ for each split. Current HPO algorithms focus simply on the aver-
age performance measures over the different splits during the search for the
Pareto-optimal points; the inherent uncertainty on these performance mea-
sures is ignored. Horn et al. (2017) are one of the few authors to highlight the
presence of noise. The paper assumes, though, that noise is homogenous (i.e.,
it doesn’t differ over the search space), and only focuses on different strate-
gies for handling this noise. These strategies are used in combination with the
SMS-EGO algorithm (Ponweiser et al., 2008), and compared with the rolling
tide evolutionary algorithm (RTEA) (Fieldsend & Everson, 2014) and random
search. The results show that simply ignoring the noise (by evaluating a given
HPO combination only once, and considering the resulting performance mea-
sures as deterministic) performs poorly, even worse than a repeated random
search. The best strategy is to reevaluate the (most promising) HP settings.
According to the authors, this can likely be explained by the fact that the true
noise on the performance measures in HPO settings is heterogeneous (i.e., its
magnitude differs over the search space). Reevaluation of already observed HP
settings is then required to improve the reliability of the observed performance
measures. The interested reader is referred to Jalali, Van Nieuwenhuyse, and
Picheny (2017) for a discussion of the impact of noise magnitude and noise
structure on the performance of (general) optimization algorithms.

Koch et al. (2015) adapt SMS-EGO (Ponweiser et al., 2008) and SExI-EGO
(Emmerich, Deutz, & Klinkenberg, 2011) for noisy evaluations, to optimize
the hyperparameters of a SVM. The authors again assume that the noise is
homogenous, and compare the performance of both algorithms with different
noise handling strategies (the reinterpolation method proposed by Forrester,
Keane, and Bressloff (2006), and static resampling). Both algorithms use the
expected hypervolume improvement (EHI) as infill criterion, though the actual
calculation of the criterion is different (causing Sexi-EGO to require larger
runtimes). The results show that both SMS-EGO and SExI-EGO work well
with the reinterpolation method, yielding comparable results in terms of the
hypervolume.

4.3 Hybrid HPO algorithms

A limited number of papers have combined aspects of metamodel-based
and population-based HPO approaches: these are referred to in Table 5,
summarizing their main characteristics.
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Smithson et al. (2016) use an ANN as metamodel to estimate the perfor-
mance of the target ML algorithm. The neural network is embedded into a
Design Space Exploration (DSE) metaheuristic, and is used to intelligently se-
lect new solutions that are likely to be Pareto optimal. The algorithm starts
with a random solution, and iteratively generates new solutions that are eval-
uated with the ANN. DSE decides if the solution should be used to update the
ANN knowledge, or should be discarded. Compared with manually designed
networks from the literature, the proposed algorithm yields results with nearly
identical performance, while reducing the associated costs (in terms of energy
consumption).

The algorithm proposed by Martinez-de Pison et al. (2017) combines HPO
with feature selection. Unlike other algorithms (Ekbal & Saha, 2015; J. Guo
et al., 2019; León, Ortega, & Ortiz, 2019), the proposed method considers fea-
ture selection combined with HPO. A GP (with UCB as acquisition function)
with all features is used to obtain the best setting of hyperparameters (accord-
ing to the RMSE). Next, a variant of GA (GA-PARSIMONY, Sanz-Garćıa,
Fernández-Ceniceros, Antonanzas-Torres, Pernia-Espinoza, and Martinez-De-
Pison (2015)) is used to select the best features of the problem with the fixed
hyperparameters obtained in the first step. In this way, the final model has
high accuracy and less complexity (i.e., fewer features), and optimization time
is significantly reduced. In our opinion, however, this approach is still sub-
optimal, as the two optimization problems (HPO and feature selection) are
solved sequentially, instead of jointly. Calisto and Lai-Yuen (2021) use an evo-
lutionary strategy combined with a Random Forest metamodel, to optimize
10 hyperparameters of a CNN. In the beginning of the optimization, the al-
gorithm updates the population of solutions using the evolutionary strategy;
only after some iterations, the selection of the new candidates is guided by the
RF, which is updated each time with all new Pareto front solutions. The final
networks found by the algorithm perform better than (or equivalent to) state-
of-the-art architectures, while the size of the architectures and the search time
is significantly reduced.

Although most NAS algorithms are out of scope for this survey, we include
the work by Lu et al. (2020), as it can be considered as an HPO algorithm. The
algorithm (NSGANetV2) simultaneously optimizes the architectural hyperpa-
rameters and the model weights of a CNN, using a bi-level approach consisting
of NSGA-II combined with a metamodel. The metamodel is used to estimate
performance measures, which are then optimized by an evolutionary algorithm
(such approaches have also been applied successfully non-HPO settings, see
e.g., Dutta and Gandomi (2020); Jin (2011)). In the upper level of the opti-
mization, a metamodel is built using an initial set of candidate solutions. In
each iteration of the upper level, NSGA-II is executed on the metamodel to de-
tect the Pareto-optimal HP settings (configuration of layers, channels, kernel
size and input resolution of the CNN). At the lower level, the weights of the
CNN are trained on a subset of the Pareto-optimal solutions. The metamodel
is then updated with the results of the actual performance evaluations. Four
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different metamodels were studied; Multilayer Perceptron (MLP), Classifica-
tion and Regression Trees (CART), Radial Basis Functions (RBF) and GP.
Given that none of them was consistently better than the others, the authors
propose to select the best metamodel on every iteration. On standard datasets
(CIFAR-10, CIFAR-100 and ImageNet), the resulting algorithm matches the
performance of state-of-the-art NAS algorithms (Lu et al., 2019; Mei et al.,
2020), but at a reduced search cost.



S
p
rin

ger
N
atu

re
2021

L AT
E
X

tem
p
late

A
su
rvey

o
n
m
u
lti-o

bjective
H
P
O

fo
r
M
L

35

Table 5: Overview of hybrid HPO algorithms. (N,D,C refer to numeric, discrete and categorical hyperparameters respectively)

HPO
algorithm

Ref. HP Target ML
algorithm

Performance
measure

Application
field

Compared
against

ANN + DSE Smithson et
al. (2016)

N: 1,
D: 2,
C: 1

MLP - Accuracy
- Computatio-
nal complexity

Image classifi-
cation

Exhaustive search

N: 1,
D: 4,
C: 2

CNN

GP + GA Parsimony Martinez-de
Pison et al.
(2017)

N: 5,
D: 3,
C: -

XGBoost - RMSE
- Complexity

Image classifi-
cation

-

Metamodel + NSGA-II Lu et al.
(2020)

N: -,
D: 4,
C: -

CNN - Accuracy
- MAdds

Image classifi-
cation

NAS algorithms

Random Forest + ES Calisto and
Lai-Yuen
(2021)

N: -,
D: 6,
C: 4

CNN - Segmentation
error
- Number of
parameters

Image segmen-
tation

-
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5 Conclusions and research opportunities

This paper has reviewed the literature on multi-objective HPO algorithms,
categorizing relevant papers into metaheuristics-based, metamodel-based and
hybrid approaches. Taking a multi-objective perspective on HPO does not only
allow the analyst to optimize trade-offs between different performance mea-
sures, it may even yield better solutions than the corresponding single-objective
HPO problem. For instance, it has been shown that including complexity as
an objective in multi-objective HPO does not necessarily compromise the loss-
based performance of the ML algorithm w.r.t. the task for which it is trained:
particularly, the minimization of the number of features used for training can
improve the performance of the ML algorithm (Binder et al., 2020; Bouraoui
et al., 2018; Faris et al., 2020; Sopov & Ivanov, 2015).

As shown, metaheuristics-based approaches are the most popular. This is
quite striking, as such approaches require the evaluation of a large amount
of HP configurations, and training/testing the target algorithm for any given
HP configuration is usually the most expensive step in the HPO algorithm
(due to, e.g., the k-fold cross validation, the optimization steps required for
the algorithm’s internal parameters, the evaluation of potentially expensive
performance measures such as energy consumption or inference time, etc.).
Table 6 compares the number of expensive HP evaluations required for multi-
ple HPO algorithms included in this survey, according to two parameters: N
(which refers to the initial population size for metaheuristic-based algorithms,
and to the size of the initial design for metamodel-based algorithms) and I (the
number of iterations performed). The order of the rows in the table reflects an
increase in the number of HP evaluations required (for this comparison, pa-
rameters that are specific to given algorithms, such as A,Ns, T, n, and N ′′, are
assumed to take specific values which are mentioned in the table). Clearly, the
number of costly function evaluations in a typical metamodel-based optimiza-
tion is much lower than in a metaheuristics-based algorithm, as usually only a
single new solution is evaluated in each iteration. Nevertheless, the metamodel-
based algorithms by Chin et al. (2020) (row 7 in Table 6) require surprisingly
many evaluations since the authors dedicate additional evaluations to further
improve the solutions found. The metaheuristic-based algorithm by Pathak
et al. (2020) (row 9 in Table 6) can be particularly expensive, as it performs
a chaotic local search to generate N ′′ additional solutions for each solution
present in the population of a given iteration.
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Table 6: Number of expensive HP evaluations required for different algo-
rithms. An initial set of N solutions is used to start the optimization, and stops
after I iterations have been performed. The rows have been ordered accord-
ing to the number of HP evaluations performed when N , I are incremented.
Variables A,Ns, T, n, and N ′′ are specific to the algorithms and are assumed
to take specific values (as mentioned).

ID HPO type HP evaluations Ref.
1 Metamodel-

based /
Hybrid

N + I (Abdolsh et al., 2019; Chan-
dra & Lane, 2016; Garrido &
Hernández, 2019; Hernández
et al., 2016; Horn & Bischl,
2016; Horn et al., 2017; Koch
et al., 2015; Parsa et al., 2019;
Richter et al., 2016; Shah &
Ghahramani, 2016; Smithson
et al., 2016)

2 Hybrid (N+I)+(N+I ∗2) (Martinez-de Pison et al.,
2017)

3 Hybrid N + I ∗ A,A <
N (assuming A =
N/2)

(Lu et al., 2020)

4 Metaheuristic N ∗ I (Gülcü & Kuş, 2021; H. Qin
et al., 2017; Shinozaki et al.,
2020; Tanaka et al., 2016)

5 Metaheuristic N+I∗N ′ (assuming
N = N ′)

(Baldeon & Lai-Yuen, 2020;
Binder et al., 2020; Bouraoui
et al., 2018; Calisto & Lai-
Yuen, 2020; Deighan et al.,
2021; Ekbal & Saha, 2016;
Faris et al., 2020; Juang &
Hsu, 2014; Kim et al., 2017;
Liang et al., 2019; Loni et
al., 2019; Magda et al., 2017;
Mostafa et al., 2020; Ra-
jagopal et al., 2020; Salt et
al., 2019; Singh et al., 2020;
Sopov & Ivanov, 2015; Wang
et al., 2019, 2020; C. Zhang et
al., 2016)

6 Metaheuristic T + N + I ∗ (N ′ +
1) (assuming N =
N ′, T = 20)

(Albelwi & Mah., 2016)

7 Metamodel-
based

I ∗ (N + n) (assum-
ing N = n)

(Chin et al., 2020)

Continued on next page
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ID HPO algo-
rithm

HP evaluations Ref.

8 Metaheuristic (N+I ∗N ′)+(Ns+
I ∗ Ns′) (assuming
N = N ′ = Ns =
Ns′)

(Ekbal & Saha, 2015)

9 Metaheuristic N+I∗(N ′∗N ′′) (as-
suming N = N ′ =
N ′′)

(Pathak et al., 2020)

Our research leads us to different recommendations for future work. Firstly,
current results have demonstrated that using ensembles of optimal HP config-
urations can yield improvements (Ekbal & Saha, 2015, 2016; Sopov & Ivanov,
2015; C. Zhang et al., 2016). Yet, this evidently increases the number of HP
evaluations required. In future research, it may be promising to look at ensem-
bles of multiple metamodels (Cho et al., 2020; Wistuba et al., 2018), multiple
acquisition functions (Cowen-Rivers et al., 2020), or even multiple optimization
procedures (J. Liu, Tunguz, & Titericz, 2020).

Secondly, it is quite surprising that hybrid HPO algorithms remain scarce;
the use of metamodels helps to drastically reduce the computational costs
related to the metaheuristic approaches (row 3 in Table 6), such that large
numbers of inexpensive evaluations can be performed. One would expect that
such a hybrid algorithm combines the best of two worlds, providing low com-
putational cost combined with a heuristic search that avoids the (often nasty)
optimization of an infill criterion. Unfortunately, the few hybrid approaches
present in this survey did not extensively compare their results with other
state-of-the-art approaches. This may provide a useful avenue for future re-
search. Thirdly, it is recommended to use individual performance measures
as objectives in HPO settings, rather than an aggregate measure such as the
F-measure (combining recall and precision for classification problems (Ekbal
& Saha, 2015, 2016)) or the Area Under the Curve measure (AUC), which
combines the False Positive rate and the True Positive rate. Such aggregated
measures reflect a fixed relationship between the individual measures, which
may result in solutions that perform really well on the aggregated measure
(for instance, the F-measure), but are suboptimal for the individual measures
(recall and precision). Moreover, the aggregation of multiple performance mea-
sures into a single objective by means of scalarization should be done carefully,
as not all scalarization methods (e.g., weighted sum) allow to detect all parts
of the Pareto front. The Augmented Tchebycheff function (Miettinen, 2012),
for instance, is recommended when the front contains non-convex areas. The
nonlinear term in the scalarization function ensures that these areas can be
detected, while the linear term ensures that weak Pareto optimal solutions are
less rewarded (see Miettinen and Mäkelä (2002) for a further discussion on
scalarization functions).



Springer Nature 2021 LATEX template

A survey on multi-objective HPO for ML 39

It is equally surprising that, apart from the work of Koch et al. (2015) and
Horn et al. (2017), the uncertainty in the performance measures is commonly
ignored in HPO optimization. These two algorithms have mainly explored the
impact of different noise handling strategies on the results of existing algo-
rithms, while it may be more beneficial to account for the noise by adjusting
the metamodels used, and/or the algorithmic approach. Furthermore, they as-
sume homogenous noise, which is likely not the case in practice. Stochastic
algorithms (such as (Binois, Huang, Gramacy, & Ludkovski, 2019; Gonzalez,
Jalali, & Van Nieuwenhuyse, 2020)) can potentially be useful to determine the
number of (extra)replications dynamically during HPO optimization, thus en-
suring that computational budget is spent in (re-)evaluating the configuration
that yields most information. To the best of our knowledge, such approaches
have not yet been studied in the context of HPO optimization.

Finally, recent research has shown potential benefits in studying cheaply
available (yet lower fidelity) information, obtained for instance by evaluating
only a fraction of the training data or a small number of iterations. Low fi-
delity methods such as bandit-based approaches (L. Li, Jamieson, DeSalvo,
Rostamizadeh, & Talwalkar, 2017) have been mainly applied in single-objective
HPO; to the best of our knowledge, there are no studies in multi-objective
HPO. Also, early stopping criteria (Dai, Yu, Low, & Jaillet, 2019) could be
considered to ensure a more intelligent use of the available computational bud-
get. Previously, this has been applied in single-objective optimization (Kohavi
& John, 1995; Provost, Jensen, & Oates, 1999) by considering the algorithm’s
learning curve. The training procedure for a given hyperparameter config-
uration is then stopped when adding further resources (training instance,
iterations, training time, etc) is predicted to be futile. Likewise, early stopping
criteria have been used to reduce the overfitting level of the ML algorithm
(Makarova et al., 2021). To the best of our knowledge, none of these strategies
has been applied in multi-objective HPO algorithms.
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Hutter, F., Lücke, J., Schmidt-Thieme, L. (2015). Beyond manual tuning of
hyperparameters. KI-Künstliche Intelligenz , 29 (4), 329–337. (https://
doi.org/10.1007/s13218-015-0381-0)

Iredi, S., Merkle, D., Middendorf, M. (2001). Bi-criterion optimization with
multi colony ant algorithms. International conference on evolutionary
multi-criterion optimization (pp. 359–372). (https://doi.org/10.1007/
3-540-44719-9 25)

https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/SSCI.2016.7850221
https://doi.org/10.1007/978-3-319-54157-0_21
https://doi.org/10.1007/978-3-319-54157-0_21
https://doi.org/10.1109/MCI.2013.2264233
https://doi.org/10.1109/MCI.2013.2264233
https://doi.org/10.1109/TNNLS.2019.2939157
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.1007/3-540-44719-9_25
https://doi.org/10.1007/3-540-44719-9_25


Springer Nature 2021 LATEX template

48 A survey on multi-objective HPO for ML

Jalali, H., Van Nieuwenhuyse, I., Picheny, V. (2017). Comparison of kriging-
based algorithms for simulation optimization with heterogeneous noise.
European Journal of Operational Research, 261 (1), 279–301. (https://
doi.org/10.1016/j.ejor.2017.01.035)

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., . . . Wang, Y. (2017).
Artificial intelligence in healthcare: past, present and future. Stroke and
vascular neurology , 2 (4), 230–243. (https://doi.org/10.1136/svn-2017
-000101)

Jiang, J., Han, F., Ling, Q., Wang, J., Li, T., Han, H. (2020). Efficient network
architecture search via multiobjective particle swarm optimization based
on decomposition. Neural Networks, 123 , 305–316. (https://doi.org/
10.1016/j.neunet.2019.12.005)

Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1 (2), 61–
70. (https://doi.org/10.1016/j.swevo.2011.05.001)

Jing, W., Lin, J., Wang, H. (2020). Building nas: Automatic designation of
efficient neural architectures for building extraction in high-resolution
aerial images. IMAGE AND VISION COMPUTING , 103 . (https://
doi.org/10.1016/j.imavis.2020.104025)

Jones, D.R., Schonlau, M., Welch, W.J. (1998). Efficient global optimization
of expensive black-box functions. Journal of Global optimization, 13 (4),
455–492. (https://doi.org/10.1023/A:1008306431147)

Juang, C.-F. (2002). A tsk-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms. IEEE Transactions
on Fuzzy Systems, 10 (2), 155–170. (https://doi.org/10.1109/91.995118)

Juang, C.-F., & Hsu, C.-H. (2014). Structure and parameter optimiza-
tion of fnns using multi-objective aco for control and prediction. 2014
ieee international conference on fuzzy systems (fuzz-ieee) (pp. 928–933).
(https://doi.org/10.1109/FUZZ-IEEE.2014.6891545)

Keshtkaran, M.R., & Pandarinath, C. (2019). Enabling hyperparameter opti-
mization in sequential autoencoders for spiking neural data [Proceedings
Paper]. H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alche Buc,

https://doi.org/10.1016/j.ejor.2017.01.035
https://doi.org/10.1016/j.ejor.2017.01.035
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1016/j.neunet.2019.12.005
https://doi.org/10.1016/j.neunet.2019.12.005
https://doi.org/10.1016/j.swevo.2011.05.001
https://doi.org/10.1016/j.imavis.2020.104025
https://doi.org/10.1016/j.imavis.2020.104025
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/91.995118
https://doi.org/10.1109/FUZZ-IEEE.2014.6891545


Springer Nature 2021 LATEX template

A survey on multi-objective HPO for ML 49

E. Fox, & R. Garnett (Eds.), Advances in neural information processing
systems 32 (nips 2019) (Vol. 32).

Kim, Y., & Chung, M. (2019, NOV). An approach to hyperparameter
optimization for the objective function in machine learning. ELEC-
TRONICS , 8 (11). (https://doi.org/10.3390/electronics8111267)

Kim, Y., Reddy, B., Yun, S., Seo, C. (2017). Nemo: Neuro-evolution with mul-
tiobjective optimization of deep neural network for speed and accuracy.
Icml 2017 automl workshop.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simu-
lated annealing. science, 220 (4598), 671–680. (https://doi.org/10.1126/
science.220.4598.671)

Knowles, J. (2006). Parego: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 10 (1), 50–66. (https://
doi.org/10.1109/TEVC.2005.851274)

Koch, P., Wagner, T., Emmerich, M.T., Bäck, T., Konen, W. (2015). Efficient
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