
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Adaptive Streaming and Rendering of Static Light Fields in the Web Browser

Peer-reviewed author version

LIEVENS, Hendrik; ZOOMERS, Brent; WIJNANTS, Maarten; PUT, Jeroen;

LAMOTTE, Wim; QUAX, Peter & MICHIELS, Nick (2021) Adaptive Streaming and

Rendering of Static Light Fields in the Web Browser. In: Proceedings of the

International Conference on 3D Immersion (IC3D), IEEE,.

DOI: 10.1109/IC3D53758.2021.9687239

Handle: http://hdl.handle.net/1942/36209

ADAPTIVE STREAMING AND RENDERING OF STATIC LIGHT FIELDS IN THE WEB
BROWSER

Hendrik Lievens1,2,3, Maarten Wijnants1,2,3, Brent Zoomers1,
Jeroen Put1,2,3, Nick Michiels1,2,3, Peter Quax1,2,3 and Wim Lamotte1,2

1 Hasselt University – tUL
2 Expertise centre for Digital Media, Wetenschapspark 2, 3590 Diepenbeek, Belgium

3 Flanders Make

ABSTRACT

Static light fields are an image-based technology that allow
for the photorealistic representation of inanimate objects and
scenes in virtual environments. As such, static light fields
have application opportunities in heterogeneous domains, in-
cluding education, cultural heritage and entertainment. This
paper contributes the design, implementation and performance
evaluation of a web-based static light field consumption sys-
tem. The proposed system allows static light field datasets to
be adaptively streamed over the network and then to be visu-
alized in a vanilla web browser. The performance evaluation
results prove that real-time consumption of static light fields
at AR/VR-compatible framerates of 90 FPS or more is fea-
sible on commercial off-the-shelf hardware. Given the ubiq-
uitous availability of web browsers on modern consumption
devices (PCs, smart TVs, Head Mounted Displays, . . .), our
work is intended to significantly improve the accessibility and
exploitation of static light field technology. The JavaScript
client code is open-sourced to maximize our work’s impact.

Index Terms— JavaScript, IndexedDB, WebVR, HTTP
Adaptive Streaming, MPEG-DASH.

1. INTRODUCTION

Manually modeling objects and scenes for inclusion in Aug-
mented Reality (AR) or Virtual Reality (VR) environments -
jointly denoted as eXtended Reality (XR) - using tools like
Blender or Autodesk Maya can be very time-consuming and
thus expensive. Scanning-based solutions like, for example,
those based on Time-of-Flight (ToF) sensors [13], light fields
[14, 3] or photogrammetry [15], allow for XR-compliant con-
tent acquisition directly from the real world with minimal
manual modeling effort involved. All these approaches have
their respective strengths and weaknesses. In this paper, we
focus exclusively on light fields by contributing a Proof-of-
Concept implementation (and performance evaluation thereof)
that allows users to consume static light fields in contempo-
rary web browsers.

A static light field can conceptually perhaps best be ex-
plained by comparing it to traditional 2D images. Whereas
a 2D image captures only the intensity of the light rays that
pass through a physical scene, a light field also captures the
direction in which those light rays travel. A static light field
does so at a particular moment in time, giving rise to a static,
inanimate virtual scene. Dynamic light fields (sometimes also
called light field video) attach a temporal component to the
light field concept, yet are beyond the scope of this article.
Static light fields are a cost-efficient technology to digital-
ize intricate real-world objects with idiosyncratic visual prop-
erties such that these objects can then be rendered in pho-
torealistic visual quality in virtual environments. As such,
static light fields have value-adding applications in various
domains, including education (e.g., visualize welding seams
in manufacturing training), cultural heritage (e.g., visualize
fragile archaeological findings) and entertainment.

In this paper, we present the design, implementation and
performance evaluation of a web-based static light field con-
sumption system. The proposed system includes both a net-
work streaming component (to dynamically deliver the light
field data over the transportation network) and a real-time ren-
dering component (to visually present the static light field to
the user). We discuss the challenges that a web browser ex-
ecution environment poses for handling and rendering static
light field data, together with the mitigation actions that we
adopted to overcome these challenges. The resulting client
source code of our web-based light field consumption client
is publicly available [5]. Finally, our performance evaluation
results provide insights into potential optimization strategies
to maximize rendering performance of static light fields in
web browsers.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the necessary background information and
briefly reviews related work pertaining to the capturing, ren-
dering and network streaming of static light fields. Section 3
gives an overview of the proposed web-based static light field
consumption system. Section 4 details the JavaScript-based
client implementation. Section 5 presents decoding perfor-

mance results for static light field data and discusses the po-
tential impact of these results on the user’s Quality of Expe-
rience (QoE). Finally, we draw our conclusions and suggest
avenues for follow-up research in Section 6.

2. BACKGROUND AND RELATED WORK

2.1. Capturing and Compressing Static Light Fields

Static light fields are typically captured as a collection of 2D
images (called source views), each covering the physical ob-
ject or scene from a different vantage point. However, storing
each source view as a separate image quickly leads to enor-
mous file sizes. Therefore, compression of static light field
datasets is an active research domain. While specialized com-
pression schemes for static light fields are being researched
(e.g., JPEG Pleno [4], Steered Mixture-of-Experts [22]), an-
other option is to apply commodity video compression to the
collection of source views [11, 23]. While this latter ap-
proach typically suffers from lower compression efficiency
compared to specialized compression schemes, it has the ad-
vantage that it can exploit software and hardware that is com-
monly available in consumer devices (e.g., dedicated video
decoding chipsets on GPUs). Given that the perspective change
between spatially adjacent source views is typically small,
especially for dense datasets, multiview extensions to tradi-
tional video codecs (e.g., MVC for H.264/AVC [10], MV-
HEVC [1]) are being considered for light field compression in
academic research; unfortunately, these multiview extensions
lack wide-spread implementation in consumer-grade hardware.
As an important goal of our research is to maximize the de-
ployability and accessibility of static light fields, we exploit
the widely adopted (non-multiview) H.264/AVC video codec
for static light field compression purposes (see later). A full
survey on light field coding strategies is provided by Conti et
al. [2].

2.2. Rendering Static Light Fields

The visualization of a light field can be achieved by switching
between the densely captured 2D images. The change in per-
spective around the recorded object will determine which 2D
image needs to be decoded and rendered in the 3D virtual en-
vironment. This approach achieves a high-quality and photo-
realistic visualization of the object because it relies solely on
real recorded images, without the need of underlying geome-
try and appearance modeling [17]. The 2D image is projected
onto a proxy geometry, which is an approximation of the ge-
ometry of the 3D object. In its most simple form, the proxy
geometry can be approximated with a 3D plane, however im-
proving the geometrical resemblance of the proxy geometry
will increase the quality of the visualization. More complex
rendering approaches will generate new virtual viewpoints by
tracing rays for each pixel and extract and interpolate the cor-
rect color values from neighboring captured viewpoints [7,

9, 12, 16]. The quality and the rendering speed of the light
field is highly depended on underlying light field representa-
tion and the selected coding and compression scheme [2]. De-
bevec et al. [20] proposed an end-to-end recording and render-
ing system for omnidirectional static light fields. The result is
a real-time immersive viewing experience in VR with 6D of
freedom. They achieve this by proposing a custom decoder
that only works on high-end consumable hardware. Other
techniques focus on improved view interpolation for the vir-
tual viewpoints, based on advanced view synthesis or deep
learning techniques [6, 19]. Although those recent advance-
ments achieve high quality, they often require dedicated hard-
ware and custom decoders that only work well on high-end
consumable hardware. This is not readily available in a web
context. In this paper we return to a more classic approach of
image based rendering that relies solely on the 2D recorded
images. This maps well to both the widespread available
video codecs as well as to the standard graphics pipeline avail-
able in the web. The proposed image-based rendering visual-
ization will act as a proof of concept and its quality can be
easily improved in the future once web-based implementa-
tions of view synthesis techniques become available.

2.3. Adaptive Network Streaming of Static Light Fields

Like any other media type, static light field datasets can be
distributed over the transportation network using an opaque
bulk download (which might or might not be progressive).
This approach however lacks flexibility (e.g., no options to
respond to fluctuating network conditions), leads to high start-
up latencies (in the case of non-progressive downloads), and
might overload storage-constrained consumption clients (e.g.,
stand-alone Head Mounted Displays like the Oculus Quest
have limited storage space which will quickly overflow if in-
tegral static light field datasets need to be installed on it).
A more flexible solution therefore is to resort to the HTTP
Adaptive Streaming (HAS) paradigm (and its standardized
MPEG-DASH implementation), which in recent years has be-
come the de facto standard to deliver audiovisual content over
the Internet (e.g., Netflix, YouTube, . . .) [21]. In HAS, the
to-be-streamed media content is segmented in chunks that
can be streamed and consumed independently of each other.
These chunks can additionally be provided in multiple quali-
ties, such that a client-side Adaptive BitRate (ABR) controller
can decide at run-time (e.g., based on prevailing network con-
ditions) in which quality to fetch individual segments.

Seminal research to map the MPEG-DASH specification
to the adaptive streaming of static light fields has been con-
ducted by Wijnants et al. [23]. In this paper, we adopt this
mapping and extend it by not only considering the source
view essence but also source view metadata (i.c., background
masks to allow for efficient and accurate alpha compositing
of static light fields in larger 3D scenes, see Figure 6).

3. SYSTEM OVERVIEW

A high-level description of the proposed web-based system
for the adaptive streaming and rendering of static light fields
is as follows. The light field datasets are stored on a plain
HTTP server (e.g., Apache, nginx, . . .) and are transferred
to the web browser via MPEG-DASH adaptive streaming. To
facilitate this process, the composing source view images of
a light field dataset are spatially subdivided and then video
encoded (using H.264/AVC1) in multiple qualities to enable
adaptive streaming. This leads to multi-quality MPEG-DASH
Media Segments which each hold a predefined number of spa-
tially adjacent source views. The spatial clustering scheme to
subdivide source views into MPEG-DASH segments is con-
figurable and can have a substantial impact on both video
compression efficiency [23] and on rendering performance
(see Section 5). In case background masks are available for
a particular dataset, these mask images are encoded as a sep-
arate video and treated identically to the actual source view
essence in terms of MPEG-DASH-compatible content prepa-
ration. This leads to the source view essence and its associ-
ated background mask to be represented by separate Adapta-
tionSets in the MPEG-DASH MPD manifest describing the
static light field.

The processing and rendering loop of our system behaves
as follows. To be able to render the static light field, a number
of files first need to be downloaded from the content server:
a file containing info about the camera that was used to cap-
ture the source views, a file containing the adaptive streaming
metadata (i.e., the MPEG-DASH MPD file), and the setup
data including the LFS center and rotation of the object (see
Section 4). Once this data is locally available, a plane is
shown in the 3D scene on which the light field source views
will be projected. At each render pass, this plane will be up-
dated based on the current location and viewing angle of the
virtual camera. This potentially involves updating the source
view that is shown on the plane, updating the rotation of the
plane so that it keeps on pointing towards the virtual camera,
and applying the alpha mask that corresponds to the currently
shown source view (if available). To decide which source
view must be projected on the plane, we determine which
source view has the smallest angle to the virtual camera when
the center of the static light field is taken as the center of an
imaginary sphere. By using the angle between two points in-
stead of the distance between them, we have no issues when
the virtual camera distance to the static light field is large or
when the source views are not perfectly aligned on a sphere
(which could result in one perspective being closer because it
is further outside compared to its neighboring perspective).

1Although newer video codecs exists, most notably H.265/HEVC
and H.266/VVC, these codecs lack pervasive (hardware-accelerated) web
browser support. In contrast, H.264/AVC is broadly implemented in hard-
ware and is supported by all major contemporary web browsers.

4. CLIENT IMPLEMENTATION

The Proof-Of-Concept implementation consists of a static light
field element, which can be placed in a three.js scene at will.
The creation of this element requires different factors which
will be discussed in detail throughout this section.

A first step towards achieving a static light field element is
getting the required content. As mentioned before, this hap-
pens via MPEG-DASH adaptive streaming. In the implemen-
tation, fetching these segments can happen in 1 of 2 ways.
The first way makes use of a strategy which fetches segments
in a specified order while no other segments are required by
the user. This strategy can be swapped with any other strat-
egy that conforms to the interface. Currently this interface
consists of one function which gets halted when the user re-
quires a specific segment and continues when said segment
is fetched. The second way fetching can happen has already
been mentioned, being a fetch of a segment that is needed by
the user. This fetch strategy can, in the same way as the ABR-
strategy, be swapped with another strategy. For this Proof-Of-
Concept implementation, we implemented an ABR-strategy
which first fetches all segments in the lowest quality available,
then fetches all segments in the next higher quality and keeps
working its way up until all segments have been fetched in the
highest quality available. This strategy is not optimized for
realistic usage, but it allows us to test multiple factors within
our implementation. To visualize which segments have been
fetched or which segments are being fetched, we use small
orbs to represent the different source views of the light field
dataset (see, for example, Figure 1). The color of these orbs
changes based on the highest quality that has been fetched or
is being fetched.

Similar to segments being saved in memory, some seg-
ments that have been decoded are stored in cache which al-
lows for fast access. But before a segment can be decoded, we
fetch the required m4s file from local memory and concate-
nate it to the corresponding initialization mp4 file which is
saved in code. This concatenation is then passed to the video
decoder (via the experimental WebCodecs API [18]) which
decodes the frames into ImageBitmap objects and places these
objects in cache. The contents of this cache can also be visu-
alized using the same orbs as mentioned in the previous para-
graph.

The just mentioned WebCodecs API is instrumental to our
approach. Without it, there is no way of precisely accessing
the individual frames which jointly constitute a video frag-
ment in a web browser context. While frame-precise access is
typically not needed for watching traditional video content, it
is an absolute necessity in our implementation, as each frame
corresponds with a specific light field source view.

With all needed data available in cache, some steps are
required to create a realistic feeling to the user. The first
step is to render the required texture, which has been saved
in cache, to a plane. In this step, several other things occur

such as the application of the background mask (if available)
and the deprojection of the image. In the future, also inter-
polation between different source views could be considered
(for those scenarios where the user’s viewport falls in between
multiple source view perspectives). We apply these things in
custom shaders which allows for more control of what hap-
pens than standard three.js. The deprojection plane is also
rotated to face towards the camera and it is possible to ap-
ply a small correction to the plane if needed. This correction
can fix irregularities in the original dataset which can occur
through small errors in the setup used to create the dataset.
Next to fixing these small irregularities, it is also possible to
provide a light field sphere (LFS) center which specifies the
actual center point of the object. Rotating around this center
point instead of around the null-point leads to a more accurate
representation of reality. Rotation can also be applied to the
object to change its standard orientation in a given scene.

The system as described thus far allows for viewing the
light field from one viewpoint at a time (cf. consumption on
a 2D monitor). Our implementation however also allows for
VR usage. VR does not change the architecture of our light
field element tremendously. If we look at VR as 2 different
perspectives, we can treat each perspective as a separate one
which results in it behaving exactly the same way as without
VR. The only difference being that we have to be careful with
what gets rendered when. We solved this by making use of
a callback provided by three.js which gets called right before
an object gets rendered. Since a view as seen from each eye
is treated as a different render pass, this allows for per-view
rotation and texturing of the plane (e.g., it is often needed to
show a different source view for the left versus right eye).

Up to now we have explained how content is acquired and
how it is managed client-side. However, to create an inter-
active experience, we need a way to show correct light field
perspectives on screen while allowing movement to the user.
In our implementation, we chose to use three.js since it pro-
vides out-of-the-box support for XR and it allows for ease-of-
use while still being very flexible. The final product is thus a
three.js element that allows for placement in a scene at will.
The only parameters required from the user are a position in
the scene, and a string representation of the dataset that is
needed from a server. Next to these mandatory input values,
there are other parameters that can be specified by the user.
These parameters include the back-end URL, a maximum of
decoded segments in cache and debugging parameters. Given
these values, the element will setup everything needed to cre-
ate a static light field in an interactive three.js scene.

Next to the possibility to show a static light field in three.js,
the code was implemented to support objects on which a mask
can be applied to filter out parts of the frame. The mask
frames consist of pixels whose RGB values denote the alpha
value that needs to be applied to the corresponding pixel in
the frame holding the light field source view (see Figure 6).

5. PERFORMANCE EVALUATION

5.1. Experimental Set-Up

The desktop computer, used for the bulk of the evaluation,
is equipped with an intel i9 9900k processor, a NVIDIA RTX
3080 graphics processor, 32GB of DDR4 system memory and
has a 1TB NVME SSD. The system runs Windows 10 version
21H1 and Google Chrome version 93.0.4577.82 was used to
perform the experimentation.

Even though the implementation fully supports ABR strate-
gies, we will not include these in our tests. The evaluation
solely deals with segments that have been downloaded and
stored (still as encoded blobs) in the web browser’s cache to
explicitly evaluate the client-side decoding and rendering per-
formance.

5.2. Decoding Performance Break-Down

To fully be able to understand the system’s performance, a
deeper dive into the actual render and update loop is required.
There are a few factors that greatly impact the application’s
performance, both implementation wise as well as the chosen
dataset to visualize.

When the user is moving, a corresponding view-point will
need to be decoded. The system relates this view-point to
the MPEG-DASH segment that contains the corresponding
source view and requests for that segment to be decoded by
the hardware-accelerated video decoder that is exposed to the
browser, in this case the chip present on the NVIDIA graph-
ics card. The encoded blob is transferred from host-space to
the video decoder. Note that a segment contains multiple,
spatially related, view-points and thus a single decode pass
results in multiple decoded source views.

The Firetruck dataset (see Figure 1) was used to eval-
uate the decoding performance. It consists out of 15 con-
centric rings, each containing 120 views for a total of 1800
views. The dataset is encoded in H.264 in both 3840x2160
with a bit rate of 24Mbps and 1920x1080 with a bit rate of
12Mbps. It is split into segments, each containing 30 spa-
tially related source views, where the first frame is an I-frame
(intra), and the 29 subsequent frames are P-frames (predic-
tive). The light field is packaged into rectangles, containing
6 horizontal and 5 vertical viewpoints. The virtual camera
follows a pre-defined path horizontally around the light field,
triggering numerous decodes. Table 1 contains the average
decoding times for a single segment, containing 30 light field
source views in this case. Table 2 shows the average frame
time for a single render pass as well as the average frames per
second for both quality representations.

Of course, this is only one piece of the puzzle. Another
factor that impacts the application’s performance is the way
that these decoded frames are transformed to a WebGL tex-
ture. Currently there exists no way for the decoded frame to
stay in GPU memory and needs to be transferred back to the

Dataset Decode time (segment)
Firetruck 1920x1080 107.81 ms
Firetruck 3840x2160 266.28 ms

Table 1. Decoding time for a single MPEG-DASH segment
in the Firetruck dataset, expressed in milliseconds. A single
segment contains 30 views: 6 horizontally and 5 vertically.

Dataset Avg. Frame Time Avg. Frames Per Second
Firetruck 1920x1080 3.59 ms 278.27 FPS
Firetruck 3840x2160 8.87 ms 112.66 FPS

Table 2. Rendering performance of the Firetruck dataset.

dataset Avg. Bitmap time Overhead
Firetruck 1920x1080 10.96 ms 10.96 %
Firetruck 3840x2160 17.12 ms 6.43 %

Table 3. The average time it takes per segment to move de-
coded light field source views from the video decoder to a
bitmap in host-space. The overhead represents the percentage
of time this takes w.r.t. to the total decoding time, as presented
in Table 1.

host, where it is converted to a bitmap, which is then again up-
loaded to the GPU in a WebGL context to be rendered. The
creation of the bitmap and the transfers necessary to facilitate
this impose a significant but unavoidable overhead on the sys-
tem. As can be seen in Table 3, the creation of these bitmaps
can result in an overhead of up to 11 %. Note that the 4K
dataset has a smaller overhead. This indicates that the time to
create bigger bitmaps rises less rapidly compared to the time
it takes to decode bigger light field source views.

5.3. Segment Layout Comparison

Not only the application’s implementation dictates its perfor-
mance, also the way datasets are structured and consumed
have a (significant) impact on overall application fluidity. To
demonstrate this, the aforementioned Firetruck dataset has
been packaged in three different ways, as shown in Figure
1. The three packaging strategies are:

3x10 Segments hold 3 views horizontally, 10 views verti-
cally.

10x3 Segments hold 10 views horizontally, 3 views verti-
cally.

6x5 Segments hold 6 views horizontally, 5 views vertically.

All three packaging strategies are evaluated using the ex-
act same set-up. The virtual camera follows a pre-determined
path, which is shown in Figure 2. Sideways movement is
followed by upwards motion simulating the user’s interest to
look at the object from above. Then the user moves sideways
again and ends the path by moving down to the vertical cen-
ter to conclude the experience. During this interaction, every

Fig. 1. The three packaging strategies. From left to right:
3x10, 10x3, and 6x5. The orange dot represents the currently
rendered view-point.

Fig. 2. Segment layout comparison: involved virtual camera
path, containing both horizontal and vertical motion.

render pass is timed. The measurement contains the com-
plete render loop, consisting of IndexedDB read operations,
video decoding, texture application, and projection. The ac-
tual frame times are the average of 5 individual test runs per
strategy. The test is concluded after 1000 rendered frames.

Figure 3 shows the average frame times for the 3x10 pack-
aging strategy. The graphs also include a red line at the 11.11
ms mark, representing the 90Hz threshold, which is a typical
rendering target for VR consumption. At the start there is a
significant spike, attributed to the fact that the application is
still starting and is performing some bookkeeping and caching
operations. This is followed by a period of jittery behaviour.
The explanation for this behaviour is rather simple when look-
ing at Figure 1 and Figure 2 again. The comparatively small
width of this packaging strategy in conjunction with the hor-
izontal movement at the beginning of the virtual camera path
triggers numerous segment decodes. These are clearly visible
in the graph. However, when the first vertical part of the path
is reached (around frame 500), the frame times stabilize due
to the fact that the entire upwards motion is contained in a
single segment, thus eliminating decodes along the way. This
pattern is then repeated again for the final horizontal (jitter)
and vertical (stable) part of the camera path.

As expected, when changing the packaging strategy to
contain more horizontal bias, one can clearly see the more
stable behaviour in the beginning of the graph in Figure 4.
Note that there is a tiny amount of peaking behaviour around

Frame Number

5

10

50

100

100 200 300 400 500 600 700 800 900 1000

Frame Time (ms) 90Hz Threshold

Average Frame Time (ms) - 3x10 Packaging

Fig. 3. Average Frame Times for the 3x10 packaging strategy.

Frame Number

5

10

50

100

100 200 300 400 500 600 700 800 900 1000

Frame Time (ms) 90Hz Threshold

Average Frame Time (ms) - 10x3 Packaging

Fig. 4. Average Frame Times for the 10x3 packaging strategy.

rendered frame 220-270 due to the camera crossing a hori-
zontal segment boundary. The initial upwards motion causes,
as expected, a lot of stuttering because of the severe lack of
vertical view-points present in the segments. This pattern also
repeats itself again for the final horizontal (stable) and vertical
(jitter) part of the camera path.

The third strategy, 6x5, contains a rather balanced amount
of horizontal and vertical view-points. Figure 5 no longer
shows very distinct periods of jittery behaviour, however spikes
are still visible because decoding operations remain required
when crossing horizontal or vertical boundaries. The main
benefit of this strategy is that the stuttering is spread out more
uniformly,

The key take-away from this evaluation is that packaging
strategies and the consumption path are tightly bound. Hor-
izontal motion benefits from wider, smaller segments, while
vertical motion benefits from narrower, taller segments. If the
consumption pattern is not known, a segment that contains a
decent balance of width and height ensures an overall more
uniform rendering performance.

Frame Number

5

10

50

100

100 200 300 400 500 600 700 800 900 1000

Frame Time (ms) 90Hz Threshold

Average Frame Time (ms) - 6x5 Packaging

Fig. 5. Average Frame Times for the 6x5 packaging strategy.

Fig. 6. The left view is the captured light field data. The
center view is a binary mask to overlay on the light field data.
Unnecessary data is blended, based on the transparency of the
pixels in the mask, while the black pixels are cropped away.
The right view shows the result of the masking operation.

5.4. Masking Overhead Evaluation

Our implementation supports static light field datasets that
contain alpha mask metadata (Figure 6). When applying such
alpha masks, the irrelevant information in the source view im-
age gets cropped away by performing a blending operation in
a pixel shader. The end result is thus a light field that only
shows the object of interest and none of the background that
might be captured in the source view images. This is espe-
cially useful for bringing real-life objects in the virtual world
without expensive geometry scanning techniques.

To assess whether this technique, involving an additional
decoding step and a blending operation, deteriorates render-
ing performance, a comparative evaluation was performed. In
this set-up a 1920x1080 hemispheric dataset, Pliers, is con-
sumed by a virtual camera following a fixed path. This path
again consists out of 1000 total rendered frames, and the re-
sults are averaged over 5 runs. In the first scenario, the system
reads the segment containing the corresponding masks from
IndexdDB, decodes it and applies the masks, while in the sec-
ond scenario, these masking segments are discarded.

The results, as seen in Table 4, show a fairly small dif-
ference in the attained frames per second. A possible expla-
nation is that the segments, containing the masks, are rather

Dataset Without Masking With Masking
Pliers 1920x1080 138.63 FPS 131.90 FPS

Table 4. Rendering performance comparison between mask-
ing and non-masking (in average Frames Per Second).

efficient to decode as most frames only contain black and
white pixels resulting in a lower bitrate. Another candidate
that is imposing a cost on the application’s performance is
the creation of the aforementioned bitmaps. When masking,
a bitmap needed for both the light field source view and its
mask, thus effectively doubling the time spent on bitmap op-
erations. Still, the cost of the additional mask bitmapping
seems small. All in all, the frame rate of the visualization of
the Pliers dataset with masking is more than suitable for VR
consumption.

6. DISCUSSION AND CONCLUSIONS

The presented system is a proof of concept, containing only
the bare necessities to adaptively stream and render a static
light field in the web browser. As such, the performance re-
sults presented in Section 5 represent the worst-case scenario
(from a system optimization perspective). That being said,
the attained performance is still surprisingly decent. This is
especially true when considering the bulk of the evaluation
was performed with highly demanding 4K datasets in a web-
based environment, utilizing an experimental video decoding
API.

As it stands, the implementation does not take the user’s
consumption profile into account. Segments are only sched-
uled to be decoded when the user’s viewport has already en-
tered the spatial area that is covered by this segment. There
is a lot of value in predicting the user’s future movement by
extrapolating past movement. Doing so would allow the sys-
tem to pre-fetch and pre-decode segments that will be needed
in the (near) future. This, in theory, should allow for even
more stable behaviour when interacting with the light field.
To make matters even more interesting, historical consump-
tion data of the light field, averaged over multiple users, could
reveal prototypical consumption patterns and provide clues on
how to most efficiently pack view-points into segments.

Other performance benefits could be found when elimi-
nating the unnecessary transfers between host-space and graph-
ics device-space. The proposed WebGPU standard [8] boasts
support for so called GPUExternalTextures, which keep the
decoded video data on the graphics device. As prior evalu-
ation has shown, this rather simple change can improve the
decoding and rendering speed with up to 11% (see Table 3).

The performance evaluation presented in this paper was
carried out on contemporary desktop hardware, which has
shown to possess enough horsepower to run this system at
acceptable frame-rates. The nature of the target platform, i.e.
the web browser, however intrinsically opens the door to het-

erogeneous consumption devices, such as mobile devices or
stand-alone AR or VR head-mounted displays. The explicit
evaluation of the system on these devices is not in scope for
this paper, yet it has been technically validated that out-of-
the-box deployment is a given on these types of devices if
they support a version of Google Chrome with the Experi-
mental Web Platform features flag enabled.

Last, but not least, the modularity of the implementation
also has clear benefits. One can include a light field visualiza-
tion on a web page, e.g. a product showcase, but also include
it in other 3D (web) applications, e.g. a scene consisting out
of both classical 3D geometry and multiple light fields.

All in all, we have shown that a web-based static light field
renderer is not only technically feasible, but also performs
well in different circumstances. We envision that further de-
velopment, experimentation and evaluation of this technology
can lead the way to more accessible exploitation of static light
field technology, especially on the web.

7. REFERENCES

[1] Waqas Ahmad, Roger Olsson, and Marten Sjöström. In-
terpreting Plenoptic Images as Multi-view Sequences
for Improved Compression. In Proceedings of the IEEE
International Conference on Image Processing (ICIP
2017), pages 4557–4561, Sept 2017.

[2] Caroline Conti, Luı́s Ducla Soares, and Paulo Nunes.
Dense light field coding: A survey. IEEE Access,
8:49244–49284, 2020.

[3] Abe Davis, Marc Levoy, and Fredo Durand. Un-
structured Light Fields. Computer Graphics Forum,
31(2pt1):305–314, May 2012.

[4] Gustavo De Oliveira Alves, Murilo Bresciani De Car-
valho, Carla L. Pagliari, Pedro Garcia Freitas, Ismael
Seidel, Marcio Pinto Pereira, Carla Florentino Schueler
Vieira, Vanessa Testoni, Fernando Pereira, and Eduardo
A. B. Da Silva. The JPEG Pleno Light Field Cod-
ing Standard 4D-Transform Mode: How to Design an
Efficient 4D-Native Codec. IEEE Access, 8:170807–
170829, 2020.

[5] EDM-Research. SLF4Web v0.1.0. https://
zenodo.org/badge/latestdoi/432214902,
2021.

[6] John Flynn, Michael Broxton, Paul Debevec, Matthew
DuVall, Graham Fyffe, Ryan Overbeck, Noah Snavely,
and Richard Tucker. Deepview: View synthesis
with learned gradient descent. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[7] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski,
and Michael F. Cohen. The lumigraph. In Proceedings
of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’96, page
43–54, New York, NY, USA, 1996. Association for
Computing Machinery.

[8] GPU for the Web Community Group. WebGPU
specification. https://gpuweb.github.io/
gpuweb/, 2021.

[9] Aaron Isaksen, Leonard McMillan, and Steven J.
Gortler. Dynamically reparameterized light fields. In
Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’00, page 297–306, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[10] Péter Tamás Kovács, Zsolt Nagy, Attila Barsi, Vamsi Ki-
ran Adhikarla, and Robert Bregović. Overview of the
applicability of H.264/MVC for real-time light-field ap-
plications. In 2014 3DTV-Conference: The True Vision -
Capture, Transmission and Display of 3D Video (3DTV-
CON), pages 1–4, 2014.

[11] Péter Tamás Kovács, Alireza Zare, Tibor Balogh, Robert
Bregović, and Atanas Gotchev. Architectures and
Codecs for Real-Time Light Field Streaming. Jour-
nal of Imaging Science and Technology, 61(1):10403–
1–10403–13, Jan 2017.

[12] Akira Kubota, Aljoscha Smolic, Marcus Magnor,
Masayuki Tanimoto, Tsuhan Chen, and Cha Zhang.
Multiview imaging and 3DTV. IEEE Signal Process-
ing Magazine, 24(6):10–21, 2007.

[13] Elise Lachat, Helene Macher, Marie-Anne Mittet,
Tiemo Landes, and Pierre Grussenmeyer. First Experi-
ences With Kinect v2 Sensor for Close Range 3D Mod-
elling. The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences,
XL-5/W4:93–100, 2015.

[14] Marc Levoy and Pat Hanrahan. Light Field Rendering.
In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’96, pages 31–42, New York, NY, USA, 1996. ACM.

[15] Shenhong Li, Xiongwu Xiao, Bingxuan Guo, and Lin
Zhang. A Novel OpenMVS-Based Texture Recon-
struction Method Based on the Fully Automatic Plane
Segmentation for 3D Mesh Models. Remote Sensing,
12(23), 2020.

[16] Steven Maesen, Patrik Goorts, and Philippe Bekaert.
Omnidirectional free viewpoint video using panoramic

light fields. In 2016 3DTV-Conference: The True Vi-
sion - Capture, Transmission and Display of 3D Video
(3DTV-CON), pages 1–4, 2016.

[17] Leonard McMillan and Gary Bishop. Plenoptic model-
ing: An image-based rendering system. In Proceedings
of the 22nd Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’95, page
39–46, New York, NY, USA, 1995. Association for
Computing Machinery.

[18] Media Working Group. WebCodecs W3C Working
Draft. https://www.w3.org/TR/webcodecs/,
2021.

[19] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing scenes as neural radiance fields for
view synthesis. In Proceedings of the 16th European
Conference on Computer Vision, ECCV ’20, 2020.

[20] Ryan S Overbeck, Daniel Erickson, Daniel Evange-
lakos, Matt Pharr, and Paul Debevec. A system for ac-
quiring, processing, and rendering panoramic light field
stills for virtual reality. ACM Transactions on Graphics
(TOG), 37(6):1–15, 2018.

[21] Iraj Sodagar. The MPEG-DASH Standard for Multi-
media Streaming Over the Internet. IEEE MultiMedia,
18(4):62–67, April 2011.

[22] Ruben Verhack, Thomas Sikora, Glenn Van Wallen-
dael, and Peter Lambert. Steered Mixture-of-Experts for
Light Field Images and Video: Representation and Cod-
ing. IEEE Transactions on Multimedia, 22(3):579–593,
2020.

[23] Maarten Wijnants, Hendrik Lievens, Nick Michiels,
Jeroen Put, Peter Quax, and Wim Lamotte. Standards-
Compliant HTTP Adaptive Streaming of Static Light
Fields. In Proceedings of the 24th ACM Symposium
on Virtual Reality Software and Technology, VRST ’18,
2018.

