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Abstract 

Employing a panel (1995-2015) of large R&D spending pharmaceutical firms, we investigate how 

internal basic research increases a firm’s innovative performance. We disentangle two mechanisms 

through which internal basic research affects technology development: (1) as strengthening of the 

firm’s absorptive capacity to build on externally conducted science, and (2) as a direct source of 

the firm’s innovation. We find that the positive relationship between internal basic research and 

innovation performance is significantly mediated by these two mechanisms, with the absorptive 

capacity mechanism relatively more important. The mediation relationships are more pronounced 

in recent years, with basic research as a direct source of innovation increasing in importance. This 

pattern is associated with a decline of corporate investments in basic research over time, and 

suggests that firms have adopted a more judicious and targeted approach to basic research aimed 

at getting more leverage out of a smaller commitment to basic research.  

 

JEL classification: O31, O32. 

  

mailto:bart.leten@kuleuven.be
mailto:stijn.kelchtermans@kuleuven.be
mailto:rene.belderbos@kuleuven.be


2 
 

Introduction 

There is abundant evidence of the important role of basic research in driving innovation, economic 

growth and welfare (Mansfield, 1980; Jaffe, 1989; Griliches, 1986; Adams, 1990; Salter and Martin, 

2001; Toole, 2012). Basic research can be defined as activities that are directed towards the general 

advancement of  knowledge about the physical world without specific commercial objectives 

(Nelson, 1959). These activities expand the knowledge base available for firms to draw upon in 

their technology development activities (Klevorick et al., 1995). The fact that basic research 

addresses fundamental questions that do not aim to solve narrowly defined practical problems has 

led to its characterization as an act of ‘non-local search’, which may give rise to radical 

breakthroughs (Laursen, 2012). Numerous important technical inventions were the result of 

advances in scientific knowledge resulting from basic research.1  

To what extent it is rational for firms to carry out basic research themselves has been 

subject of a long debate among economists. Nelson (1959) argues that firms are reluctant to invest 

in basic research due to high degrees of uncertainty, long time frames to bear fruit, and limited 

opportunities for appropriation. The latter results from the fact that the outcome of basic research, 

i.e. knowledge, is believed to be (at least partly) a public good and therefore freely available to 

other firms, including those that did not invest in basic research themselves (Arrow, 1962). 

Rosenberg (1990), on the other hand, argues that, despite these difficulties, there are rational 

reasons for private firms to conduct basic research with their own money. First, firms that perform 

basic research may benefit from first-mover advantages in terms of access to new scientific 

knowledge, and enhance their technology development activities through  a deeper understanding 

of the phenomena under study, resulting in new innovations. Second, basic research investments 

can help firms to develop the absorptive capacity to monitor, interpret, appraise, and utilize 

findings emanating from basic research conducted outside the firm. 

In reality, firms invest significant amounts of money in basic research. In 2015, US firms 

invested altogether close to $16 billion in basic research, representing 19% of total investments in 
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basic research in the US economy. The relative importance of basic research in total R&D 

expenditures of firms has however declined over time, from 7 percent in 1991 to 5.5 percent in 

2015.2 Several explanations have been put forward to explain this decline (especially in the 1990s 

and 2000s), such as increased opportunities to tap into external basic research conducted by 

universities and start-ups and growing appropriation problems due to increased competition and 

knowledge spillovers (Arora et al., 2018; Arora et al., 2020; Arora et al., 2021).   

Extant literature (Gambardella, 1992; Cockburn and Henderson, 1998; Fabrizio, 2009; 

Della Malva et al., 2015) has shown that firms can improve their innovation performance by 

investing in basic research. Lacking  in  prior studies is however an explanation and analysis of how 

investments in basic research enhance the effectiveness of firms’ innovation efforts. We contribute 

to the literature by disentangling two mechanisms through which investments in basic research 

affect technology development, namely: 1) by strengthening the firm’s absorptive capacity to build 

on externally conducted basic research (we label this building on external basic research), and 2) by 

serving as a direct input to firm innovation (we label this building on internal basic research). We model 

and test these two mechanisms as mediating the relationship between firms’ internal basic research 

endeavours and their innovation performance. We study the relative importance of both 

mechanisms and examine whether their importance has changed over time.  

We rely on a 21-year panel dataset (1995-2015) on the patent and publication activities of 

the largest 50 pharmaceutical firms in the world by R&D expenditures. An empirical contribution 

of our study stems from the use of accurate indicators of basic research. Prior studies (e.g. 

Gambardella, 1992; Cockburn and Henderson, 1998; Fabrizio, 2009) have predominantly used 

either the total number of corporate scientific publications as a proxy for investments in basic 

research, or references to scientific articles in patents as a proxy for the use of basic research 

findings in technology activities.3 However, scientific articles are an imperfect measure of basic 

research because a large share of these articles report on applied research, which in the context of 

the pharmaceutical sector often refers to clinical trials (Hicks et al., 1994). Using information on 
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the journals in which firms’ scientific articles are published and the CHI classification scheme for 

basic versus applied research (Hamilton, 2003), we construct indicators of basic research by relying 

on the subset of scientific articles appearing in journals that report on basic research. More 

specifically, internal basic research is measured using a firm’s publications in basic research 

journals, while building on internal and external basic research in technology development is 

captured by references  in a firm’s patents to internal and external basic research publications. We 

note that we take an inclusive approach to basic research activities conducted by firms, including 

collaborative research leading to articles co-authored by the firm and university or other partners. 

External basic research is research with no focal firm involvement.  

We find that the relationship between basic research and innovation performance is 

significantly, but only partially, mediated by the direct contribution of in-house basic research to 

innovation and the leverage of external basic research in technology development, with a stronger 

weight for the latter absorptive capacity mechanism. The mediation relationships are much more 

pronounced in the last 10 years of the panel, with in particular the mechanism to directly build on 

internal basic research in technology development increasing in importance. While traditionally 

firms invested in basic research mainly to be “plugged in” to the scientific community (Rosenberg, 

1990; Cockburn & Henderson, 1998; Arora et al, 2018), nowadays basic research is increasingly 

used as a direct input to innovation. Interestingly, this pattern is observed against the backdrop of 

declining basic research by firms, which suggests a more targeted approach aimed at getting more 

leverage out of a smaller commitment to basic research. By unpacking two key mechanisms for 

basic research investments to improve firms’ innovation performance, our results provide a more 

detailed understanding of the (changing) rationale for basic research in firms in the context of 

declining corporate basic research investments. 

The Importance of Basic Research for Industrial Innovation 

Basic research has received many definitions (Rosenberg, 1990). We adopt the definition of the 

National Science Foundation (NSF) where basic research is defined as “the systematic study 
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directed towards greater knowledge or understanding of the fundamental aspects of phenomena 

and observable facts without specific immediate commercial applications in mind, although 

research may be in fields of present or potential commercial interest of those performing the 

research activities” (NSF, 2009). Applied to the pharmaceutical industry, basic research aims to 

reveal the mechanisms and processes of diseases, but does not include applied research activities 

such as compound screening, clinical trials and dosage testing (Lim, 2004).  

Basic research conducted by firms is concentrated in two different respects. First, a major 

part of basic research is conducted in a small number of industries such as pharmaceuticals, 

chemicals, electrical machinery and aerospace (Mansfield, 1980; Rosenberg, 1990). These sectors 

are called ‘science-based industries’ in Pavitt’s (1984) classical sector taxonomy. Second, within 

these sectors a handful of firms are responsible for  a large share of basic research. These firms are 

typically large, with broad product and technology portfolios and operating large R&D 

laboratories. Such  firms are more confident that they will be able to put both anticipated and 

unexpected findings from basic research into commercial use (Nelson, 1959).  

For private firms, basic research is a process of learning of the physical world that generates 

knowledge on which they can draw  in their technology development activities (Klevorick et al., 

1995; Matutes et al., 1996; Malo, 2009; Toole, 2012). Mansfield (1995 & 1998) examined the 

importance of basic research for firms’ innovation activities by surveying samples of US firms 

across different industries. He found that, during the period 1975-1985, 11% of firms’ new 

products and 9% of new processes could not have been developed (or with substantial delay) in 

the absence of basic research conducted by universities. These numbers were higher for the period 

1986-1994 (respectively 15% and 11%), suggesting that basic research increased in importance for 

industrial R&D. A possible reason for the increasing importance of basic research may be found 

in the increasing complexity of products and production processes in most industries (Rycroft and 

Kash, 1999). Another indication of the growing reliance of industrial innovation activities on 

(basic) scientific knowledge can be found in the analysis of citations to scientific literature in patent 
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documents (Narin et al., 1997; Arora et al., 2018; Marx and Fuegi, 2020). Analysing citations to 

scientific publications in USPTO patents between 1947 and 2020, Marx and Fuegi (2020) found 

that while USPTO patents before 1980 had less than one citation to science on average, this 

number increased to more than four citations per patent in 2020. 

Several patent-level studies have examined the effect of the use of scientific research 

findings, measured by citations to scientific literature in firm patents, on the value of firm 

innovations, measured by forward citations of patents. Fleming and Sorenson (2004) identified a 

positive relationship between patent value and citations to scientific literature in fields where 

technology development is complex. Nagaoka (2007) similarly found a positive relationship 

between Japanese firms' patent citations to scientific literature and the forward citations these 

patents receive in both the IT and pharmaceutical sectors. Using data on patents of US approved 

drugs, Sternitzke (2010) found that radical innovations build more on basic scientific knowledge 

than incremental innovations.  

A related set of studies examined the use of science at the firm level rather than at the 

patent level and has suggested that the most robust relationship with firm innovation is at the 

broader firm level. For a sample of Belgian firms, Cassiman et al. (2008) did not find support for 

an association between citations to basic scientific research and innovation performance at the 

patent level, but found such an association at the firm level, using measures of formal linkages to 

science and firm engagement in scientific research.  Branstetter and Kwon (2004) conducted firm-

level analyses and found that firms citing more science in their patents achieve a higher innovation 

performance, as measured by their citation-weighted patent output. While this literature has 

confirmed that firms draw on, and benefit from, basic research, it has not juxtaposed the use of 

external versus internal basic research, or to what extent drawing on basic research is driven by a 

firm’s own basic research efforts. 

A parallel stream of research has focused on the role of in-house basic research 

investments in strengthening corporate innovation performance. Gambardella (1992) and 
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Cockburn and Henderson (1998) found that pharmaceutical firms that perform more basic 

research (measured by the number of firm publications) produce a greater number of patented 

inventions. Using a sample of both pharmaceutical and biotechnology firms, Fabrizio (2009) found 

a positive association between in-house basic research and the quality of firms’ patents. In contrast, 

Lim (2004) found no effect of in-house basic research on the patent performance of 

pharmaceutical firms, and even a negative effect for semiconductor firms, but his analysis could 

not control for differences in firms’ R&D inputs, which may partly explain the differences in 

results. Della Malva et al. (2015) observed that pharmaceutical firms pursuing basic science are 

more likely to produce breakthrough inventions. Again,  this effect plays out at the firm level rather 

than the technology level, consistent with the view of ‘science as a map’ to guide processes of 

search across domains rather than affecting breakthroughs within more narrowly defined 

technological domains. Although this literature has established a positive  relationship between in-

house basic research and firm innovation performance, extant studies have not examined the 

mechanisms through which these performance benefits occur. 

In conclusion, while prior work has devoted ample attention to the role of (basic) scientific 

research in corporate innovation, both in terms of the engagement in basic research and in the 

usage of basic research, it has not examined the key mechanisms and conduits through which basic 

research investments can affect technology development. In this paper, we examine two key 

mechanisms and argue that basic research investments can improve a firm’s innovation 

performance by strengthening the firm’s absorptive capacity to build on externally conducted 

science, and by serving as a direct input into firm innovation. Following the findings of prior 

studies, we consider basic research at the broader firm level. We consider investments in in-house 

basic research as an antecedent to the use of basic research in technology development, suggesting 

that the relationship between in-house basic research and firm innovation performance is mediated 

by the use of internal and external basic research.   
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Hypotheses 

Informed by prior conceptual and empirical contributions, we first formulate a baseline hypothesis 

on the association between performing in-house basic research and innovation performance. We 

then formulate two mediating hypotheses on the mechanisms through which the firm can leverage 

basic research in its technology development (H2 and H3). 

Benefits of Internal basic Research for Innovation Performance (baseline hypothesis) 

Firms that perform basic research can benefit from the scientific knowledge that is generated by 

these research activities in several ways. First, basic scientific knowledge can serve as a map of the 

technological landscape, which guides firms towards the most promising applied research 

directions (Rosenberg, 1990; Fleming and Sorenson, 2004). Internal basic research capabilities may 

also act as an admission ticket to R&D partnering with universities and public research 

organizations (Belderbos, 2004; Liebeskind et al., 1996; Cockburn and Henderson, 1998; Murray, 

2004; Belderbos et al., 2016). Internal basic research demonstrates the scientific competences firms 

need in order to enter into relationships of information exchange with public sector scientists 

(Hicks, 1994). Collaboration with university scientists often leads to extensive debate and exchange 

of ideas (Almeida et al., 2011). This provides firms with access to tacit knowledge of university 

scientists, which is not provided in journal articles (Arora and Gambardella, 1990), and which 

allows them to build faster on recent basic research findings by accessing university research that 

is not yet published (Fabrizio, 2009). 

Internal basic research may also act as a powerful recruiting tool, since the scarce, highest 

quality researchers (‘stars’) are reluctant to work for firms in which they are not allowed to do basic 

research and publish scientific findings (Henderson and Cockburn, 1994; Hicks, 1999; Narin & 

Breitzman, 1995). Publishing is one of the most important means for scientists to establish their 

reputation (Stephan, 1996), and corporate scientists have even been found to accept lower wages 

in exchange for the permission to conduct and publish scientific research (Stern, 2004). From the 

perspective of an innovating firm, the scarcity of high-quality (star) scientists 4  implies that 
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accessing the best human capital through hiring is of strategic importance (Hess and Rothermael, 

2011; Zucker et al., 2002; Furukawa and Goto, 2006). Finally, by investing in basic research, firms 

build up the necessary capabilities to monitor, evaluate and exploit basic research that is conducted 

elsewhere. Firms need to invest in an absorptive capacity to build on scientific  knowledge 

(Rosenberg, 1990; Cohen and Levinthal, 1989).  

Overall, the preceding arguments suggest a positive association between basic research 

investments and innovation performance, formalized in the following baseline hypothesis:  

Hypothesis 1 (baseline): Performing basic research internally has a positive association with firms’ 

innovative performance.   

Internal Basic Research to Improve the Absorption of External Basic Research in 

Technology Development  

External basic research findings are not a free input to firms’ own research activities (Rosenberg, 

1990). As Cohen and Levinthal (1990) have noted, learning is a cumulative, incremental process 

that is influenced by capabilities that are already present at the individual and organizational level. 

Individuals learn through a process whereby new events are stored in their memories by 

establishing linkages with pre-established concepts and ideas. An organization’s ability to learn 

depends, at least in part, on the ability of its individual members to learn, as organizational learning 

involves the joint contributions of individual members to solve problems (Helfat, 1994). The 

ability of organizations to learn from external research findings depends on the commonality 

between the organizations’ internal knowledge base and the external research findings that firms 

intend to build on in their technology activities (Teece et al., 1997).  

Firms that want to take advantage of research conducted outside their organizations need 

to invest in an ‘absorptive capacity’ in the sense of accumulating knowledge and skills to identify, 

understand and utilize externally generated knowledge (Cassiman and Veugelers, 2006; Lokshin et 

al., 2008). The creation of an ‘absorptive’ capacity for external basic research findings involves the 

employment of a cadre of scientists and granting them the freedom to perform basic research 
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(Rosenberg, 1990; Pavitt, 1991). These scientists can function as ‘gatekeepers’ to bridge the 

external scientific community and corporate technologists (Allen, 1977). Based on the absorptive 

capacity argument, firms that perform more basic research will be better equipped to build on and 

benefit from external basic research in their technology activities. According to Arora et al. (2018) 

the absorptive capacity function of basic research has become more important over time due to a 

“thickening of the supply side of basic research” with universities and small firms actively looking 

for opportunities to transfer basic research findings to large firms.  

In sum, firms may reap the benefits of performing basic research in-house through a 

greater capability to build on external basic science in their technology development efforts. This 

suggests the following mediation hypothesis: 

Hypothesis 2: The positive association between internal basic research and firm’s innovative performance is 

partially mediated by an enhanced capability of the firm to build on external basic research in technology 

development. 

Basic Research Serving as a Direct Input into Technology Development 

Investments in basic research do not only function as a gateway to findings of externally conducted 

basic research, but can directly feed into a firm’s technology development (Arora et al., 2021). 

Firms that perform basic research may also generate a first mover advantage in terms of access to 

unique scientific knowledge (Rosenberg, 1990). Just like external basic research findings cannot be 

assimilated in a costless fashion, internally performed basic research does not seamlessly enter a 

firm’s technology development. In order to benefit from its investments in basic scientific 

research, a firm needs to process, recombine and translate the scientific knowledge before it can 

be applied in technology development (Furman & Stern, 2011). Firms can actively facilitate this 

process by creating reward structures that stimulate scientists to direct their scientific search 

towards more applicable ends (Lerner and Wulf, 2007) and to actively transfer basic scientific 

knowledge to technical personnel (Gassman & von Zedtwitz, 1999).  
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In the context of the pharmaceutical industry, conducting basic scientific research 

internally will facilitate dealing with the crucial ‘translation’ from basic laboratory work to clinical 

trials (Woolf, 2008; Bhogal and Balls, 2008). Such ‘translation’ is found to be crucial for drug 

development success, and will be more effective if the R&D organization engaging in it is also 

involved in the discovery of the drug compound. Drug development often fails because of 

insufficient attention given to research on effectiveness, dosage, and transportation inside the 

human body (Pisano, 2006). Being part of the same firm fosters close and frequent interactions 

that build trust between the basic research scientists and clinical scientists (Hoegl and Proserpio, 

2004), which has been found to play a key role in the willingness of researchers to share their 

knowledge and experience (Szulanski, 1996; Mooradian et al., 2006) and hence facilitates the 

translation of basic research into technology development. If firms can effectively build on internal 

basic research at the forefront of scientific development, they are likely to capitalize on their first 

mover advantage in knowledge in the creation of valuable innovations (Fabrizio, 2009).  

It follows that a second channel through which firms may reap the benefits of performing 

basic research in-house is through greater opportunities to build on internal basic science in their 

technology development efforts. This suggests the following mediation hypothesis: 

Hypothesis 3: The positive association between internal basic research and firm’s innovative performance is 

partially mediated by an enhanced capability to build on internal basic research directly in technology 

development. 

Empirical Analysis 

Before we describe the characteristics of the dataset, it is useful to give attention to the context of 

our analysis: the role of basic research in the global pharmaceutical industry. We focus on the 

pharmaceutical industry, since this is a science-based industry where basic research plays an 

important role in innovation (McMillan et al., 2000; Pavitt, 1984; Pisano, 2010). Patents in drugs 

and medicine classes cite significantly more scientific articles than patents in other classes (Narin 

et al., 1997) and cite basic scientific research more heavily (Narin and Olivastro, 1992). The strong 
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reliance of pharmaceutical firms on basic research becomes also apparent from the case histories 

of the discovery of 21 important drugs documented by Cockburn and Henderson (1998). 

Fundamental insights in basic research played a role in the discovery of sixteen of these drugs. 

Using data on the U.S. National Institutes of Health (NIH) biomedical research awards from 1955 

to 1996, Toole (2012) found a positive effect of public basic research on pharmaceutical drug 

discovery. Moreover, the link between basic research and drug discovery has increased over time 

(Lim, 2004). Pharmaceutical firms have moved away from randomly screening a large number of 

potentially useful compounds against a certain disease, towards a more systematic approach called 

‘rational drug design’. This approach involves building on knowledge about the biochemical 

mechanisms causing a disease, in order to identify and develop chemical or biological compounds 

that inhibit the biochemical mechanisms causing a disease (Pisano, 1997).  

Basic research has become part of the drug discovery process in most pharmaceutical 

firms. Based on case studies of US pharmaceutical firms, Gambardella (1992) has however shown 

that pharmaceutical firms pursue different strategies with respect to the importance given to basic 

research. For example, while Merck invested strongly in basic research in the 1980s and used this 

knowledge to further build on externally generated basic research findings, Bristol-Myers invested 

significantly less in internal basic research during the same period. Using publication data from 

1989, Hicks (1994) showed differences in engagement in basic research across Japanese 

pharmaceutical firms, with Takeda investing substantially more in scientific research than Kyowa 

Hakko Kogyo and Ajinomoto.  

Sample and Dependent Variable 

We constructed a panel dataset on the patent and publication activities of the 50 largest R&D 

spending pharmaceutical firms in the world. In  the pharmaceutical industry there are two different 

types of firms: large pharmaceutical firms and, usually smaller, biotechnology firms. We focus on 

the top R&D spending pharmaceutical firms in the world because they dominate R&D 

expenditures, patenting and publishing efforts in the industry. In line with prior studies, we expect 
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substantial heterogeneity in R&D strategies and the importance given to basic research among 

pharmaceutical firms. In contrast, biotechnology firms often originate from scientific research at 

universities and public research institutions such that the degree of involvement in basic research 

will be a less distinctive characteristic, while the smaller scale operations may render it more 

difficult to construct reliable basic research indicators over time. 

The sample firms are selected as the top R&D spending pharmaceutical firms from the 

‘2004 EU Industrial R&D Investment Scoreboard’. This scoreboard lists the top 500 corporate 

investors in R&D whose parent is located in the EU, and the top 500 companies whose parent is 

located outside the EU (mainly US and Japan), based on corporate R&D expenditures in 2003. 

The sample firms, together with their home countries, are listed in the appendix. The sample firms 

are observed for a maximum period of 21 years (1995-2015). The panel is unbalanced because 

some firms are formed by a large merger after 1995 (e.g. AstraZeneca was created  by the merger 

of Astra and Zeneca in 1999, and is included in the dataset from 1999 onwards) or have been 

acquired by other firms in the sample period (e.g. Schwarz Pharma was acquired by UCB in 2006, 

and is included in the dataset until 2005) and because in a few cases R&D data are not available 

for the entire period. 

Our measure of the innovative performance of the firms is based on patent data. There 

are numerous advantages of the use of patent indicators (Pavitt, 1985; Basberg, 1987; Griliches, 

1990): patents contain detailed information on the owners and prior art of patented inventions; 

patent data are objective in the sense that they have been processed and validated by patent 

examiners; and patent data are easily available from patent offices and cover long time series. Like 

any indicator, patent indicators are also subject to a number of drawbacks: not all inventions are 

patented and those that are patented vary in their technical and economical value (Trajtenberg, 

1990; Lanjouw et al., 1998; Gambardella et al., 2008). The first problem can be addressed by limiting 

patent analyses to industries with high patent propensities and studying firm-level patent time 

series. The majority of inventions in the pharmaceutical industry are patented (Arundel and Kabla, 
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1998; Campbell, 2005) and firm-specific patent application policies are likely to be relatively stable 

over time.  The ‘value’ problem can be taken care of by weighting patent counts by the number of 

forward patent citations received by these patents (Trajtenberg, 1990; Harhoff et al., 1999; Hall et 

al., 2005). Both approaches are followed in this paper.  

Since company names in patent databases are not unified and patents may be applied for 

under names of subsidiaries or divisions of a parent firm, we collected patent data at the 

consolidated parent firm level. Therefore, we searched, for each parent firm, for patents under the 

name of the parent firm as well as all their majority-owned subsidiaries. For this purpose, we relied 

on information from Orbis Historical and M&A data from Thomson Reuters SDC Platinum and Zephyr 

by Bureau van Dijk, complemented with corporate annual reports, yearly 10-K reports filed with 

the SEC in the US. For Japanese firms, we also used information on foreign subsidiaries published 

by Toyo Keizai in the yearly ‘Directories of Japanese Overseas Investments’. The consolidation 

was conducted on a yearly basis to take into account changes in the group structure of sample 

firms due to acquisitions, mergers, green-field investments and spin-offs. Acquisitions, and their 

patent stocks, are considered part of a parent firm from the year the acquisition transaction has 

been completed. 

Patent data are taken from the PATSTAT database (version May 2018). The innovative 

performance of the sample firms (dependent variable) is measured as the number of PATSTAT 

patent families that are filed by a parent firm in a year, weighted by the number of forward patent 

citations received by those patents over a fixed time window of 4 years. In particular, in the 

pharmaceutical industry, patents and patent citations are a relevant indicator of innovative 

performance and are closely linked to market valuation (Deng et al., 1999, Harhoff et al., 2003, Hall 

et al., 2005, Nagaoka, 2005). Magazzini et al. (2012) show that patents protecting chemical 

compounds that successfully get through clinical trials receive significantly more citations than 

patents pertaining to compounds that fail in initial trials (but often get a second life in another 

application), while patented compounds that do not make it to such trials receive no or much 
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smaller numbers of citations. The number of forward patent citations is calculated on a fixed 4-

year time window in order to have a comparable citation window for all patents (Hall et al., 2005; 

Trajtenberg, 1990). Forward patent citations are calculated on the PATSTAT database and have 

been de-duplicated at the family level to avoid double counting. 

Internal Basic Research  

We use information on scientific publications authored by the sample firms and published in peer 

reviewed international journals to assess firms’ engagement in basic research. Prior work has 

argued that publication counts represent investment levels in (basic) science and proxy for the 

extent to which company scientists are linked to the scientific community (Gambardella, 1992, 

1995; Cockburn and Henderson, 1998). In addition, publication rates are a timely measure of 

pharmaceutical firms’ involvement in basic research, since the turn-around time of publications in 

pharmaceutical fields is short (Kaplan et al., 2003).  

Publication data are extracted from yearly updates of the Science Citation Index database 

of Clarivate Analytics. Publication data is collected at the consolidated parent firm level, following 

a similar approach as the one followed for the collection of patent data. This approach consists of 

identifying all publications on which the parent firms, or their subsidiaries, are listed as author 

affiliations. The consolidation exercise is conducted annually. In line with studies of Hicks et al. 

(1994) and Cockburn and Henderson (1998) we find that pharmaceutical firms publish extensively: 

the sample firms published on average 228 publications per year in the SCI database over the 

period 1991-2015. We collected bibliographic information (journal name, volume, pages etc.) for 

all the publications on which the 50 sample firms are listed as one of the authors’ affiliations. We 

take an inclusive approach to basic research activities conducted by firms, counting all publications 

of the focal firms, single authored or co-authored with other firms, universities, or research 

institutes. Co-authorship indicates a clear involvement in the basic research, which is expected to 

yield the benefits discussed in the theory, such that internal basic research should not be 

understood as restricted to basic research performed exclusively by the firm. 
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We classified a publication as ‘basic research’ based on the journal in which it is published. 

The  CHI journal classification scheme classifies each of the SCI journals in one of four research 

levels, in a spectrum ranging from very applied, targeted research to basic research. For biomedical 

journals the four different research levels are called ‘clinical observation’ (level 1), ‘clinical mix’ 

(level 2), ‘clinical investigation’ (level 3) and ‘basic biomedical research’ (level 4).5 Journals that are 

classified in level 4 are considered as reporting basic research findings. Applying the CHI 

classification scheme, about 29% of the SCI publications of the sample firms are published in basic 

research journals and are used in the construction of the basic research variables.  

To allow for a time lag between internal basic research and firms’ innovative performance 

in year t, internal  basic research is measured over the prior 4-year period. The variable internal basic 

research is calculated as the sum of firm publications in basic research journals in the past 4 years 

(t-4 to t-1) by the firm or its subsidiaries in year t. We have log transformed this variable to improve 

the interpretation as an elasticity in the analyses.6  

Mediators: Building on Internal and External Basic Research 

Our two mediating variables measure the extent to which firms build on internally performed and 

externally conducted basic research in their technology activities, and are based on references to 

publications in basic research journals in the prior art of firms’ patents. The prior art section of a 

patent contains references to prior patents and non-patent literature, including scientific 

publications. References to scientific publications include publications by the firm itself as well as 

publications by external parties. The legal purpose of the references is to indicate which parts of 

the knowledge described can be claimed by the patent and which parts have been claimed by prior 

patents and non-patents. For instance, Strumsky and Lobo (2015) state that “prior art citations […] 

are made to delineate a patent’s claims of inventive originality and bound the scope of legal protection sought by the 

proposed invention”. Patent references restrict the scope of patent claims to novelty and represent a 

link to the pre-existing knowledge base upon which patents have been built (Criscuolo and 

Verspagen, 2008; Czarnitzki et al., 2020; Jaffe et al., 2004; Marx and Fuegi, 2020). This feature has 
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been used by prior studies (e.g. Narin et al., 1997; Fleming and Sorenson, 2004; Cassiman et al., 

2008; Belderbos et al., 2017; Arora et al., 2018; Arora et al., 2021) to justify the use of patent 

references as an information source on the knowledge base of patent applicants.  

One critique on this particular use of patent references is that the prior art section of 

patents includes not only references provided by patent applicants but also those added later by 

patent examiners during their search for relevant prior art (Alcacer and Gittelman, 2006). 

Therefore, patent applicants may not know part of the references cited in the prior art of their 

patents (Brusoni et al., 2005). However, surveys of USPTO patent inventors (Jaffe et al., 2004; 

Fleming and Sorenson, 2004; Tijssen et al., 2000) have shown that inventors are aware of a 

significant part of the patents and scientific articles that are cited in the prior art of their patents, 

including references made by patent examiners. Among all references on patents, references to 

scientific articles are more frequently added by patent applicants themselves (Narin and Noma, 

1985; Jaffe et al., 1998; Marx and Fuegi, 2020), which explains a relatively high degree of familiarity 

of patent inventors with scientific articles cited on their patent documents. Fleming and Sorenson 

(2004) and Tijssen et al. (2000) report, in their respective surveys, that patent inventors are aware 

of 62% and 84% of the cited articles in their patents. Using data on EPO patents and responses 

to the Community Innovation Survey (CIS) for a sample of French firms, Duguet and MacGarvie 

(2005) find a positive correlation between the number of references in firms’ patents and the 

intensity to which firms have sourced external knowledge. Using information from the Carnegie 

Mellon Survey for a sample of US firms, Arora et al. (2021) find that firms whose patents cite 

scientific literature also reported that science contributed to their R&D projects. Furthermore, 

Arora et al. (2021) observed that the scientific fields that contributed most to firms’ R&D projects 

are also the fields most cited in firms’ patents. We consider this sufficient evidence to take scientific 

references on patents as an (imperfect) indicator of the scientific knowledge base that firms were 

able to build on in their drug development activities.  
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Non-patent references were extracted from the PATSTAT database for all the patents of 

the sample firms. We have used non-patent references to scientific articles in basic research 

journals in the calculation of our firm-level mediating variables building on internal basic research and 

building on external basic research. These references are identified via a text-matching algorithm and 

the CHI list of all research journals (applied/basic) in the SCI database. Specifically, non-patent 

references (NPRs) to scientific articles in the SCI database are identified by examining  the 

presence of SCI journal names (6,400 journals) in the text strings of the NPRs on the patents. 

About 30% of these non-patent references referred to publications in scientific journals (SCI 

database); 37% of these scientific non-patent references referred to publications in basic research 

journals. These numbers are comparable with numbers found in prior studies on non-patent 

references (Harhoff et al., 2003; Callaert et al., 2006). 

We separated NPRs referring to basic research publications of the firm itself from 

references to external basic research by using information on the journal name, volume, year and starting 

page of the publication to which a scientific NPR refers. An NPR was considered to refer to a basic 

research publication of the firm itself when the journal name, volume, year and starting page in 

the NPR text were identical to one of the publications authored by the firm in the period 1991-

2015.7 On average, 2.8% of the citations to publications in basic research journals referred to 

publications of the citing firm. The basic scientific references that do not refer to publications of 

the citing firm are classified as external basic research.  

The variable building on internal basic research is calculated as the number of citations to basic 

research publications of the firm itself in patents applied for by the firm (or its subsidiaries) in the 

past 4 years. The 4-year prior period allows for a time lag between the exploitation of external 

basic research and firms’ innovative performance in year t. Consistent with the inclusive approach 

to the measurement of in-house basic research conducted by the firm, this variable includes 

publications that the firm co-authored with external partners. The variable building on external basic 

research is defined in a similar way as the number of citations to external basic research publications 
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in patents applied for by the firm (or its subsidiaries) in the past 4 years.8 Both mediating variables 

have been log transformed, after adding a value equal to one. 

Control Variables 

Our empirical models control for a number of (time varying) firm-level factors that are likely to 

influence  firms’ innovative performance. First, we control for differences in the scale of the firms’ 

R&D expenditures, by including the one-year lagged R&D expenditures (expressed in natural 

logarithm) in the regressions. Hall et al. (1983) studied the time lag between R&D and patent 

applications, and found that most of the effect of R&D on patents happens within the first year 

after the R&D expenses are made. The data on firms’ R&D expenditures are collected from 

corporate annual reports and financial databases (Worldscope and Compustat) and are measured 

in millions of US dollars.  

Second, we distinguish firms’ overall propensity to publish from their engagement in basic 

research activities, by controlling for the ratio of total firm publications to basic research 

publications, measured over the prior 4-year period.9 

Third, we include an indicator for the level of technology diversification in a firm’s patent 

portfolio, such that both the scale and scope of R&D activities of firms are controlled for (Arora 

et al., 2009; Henderson and Cockburn, 1996; Nesta and Saviotti, 2005; Leten et al., 2007). 

Technology diversification is measured as the ‘spread’ of firm patents over the past 4 years over 

technology classes. Technology class information on patents is derived from the IPC classes 

assigned to patents. We distinguish between 120 different 3-digit IPC classes to construct the 

diversification measure. The technology diversification variable is calculated as a Blau index (minus 

the Herfindahl index): it takes higher values when the level of technology diversification increases. 

We tested for both linear and quadratic relationships between technology diversification and 

innovative performance. The relationship turned out to be distinctly linear in our sample and we 

therefore only included a linear term of technology diversification in the reported analyses.  
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Fourth, we control for the extent to which firms focus on biotechnology in their technology 

development. Prior research (e.g. Birkinshaw et al. 2018) has documented that pharmaceutical 

companies have adopted different strategies in terms of the timing of entry and the commitment 

to biotechnology, resulting in different innovation performance outcomes. A firm’s focus on 

biotechnology is measured as the share of biotechnology patents in a firm’s four-year patent 

portfolio. To identify biotechnology patents, we rely on the Fraunhofer-INPI-OST technology 

classification that assigns patent IPC classes to 30 different technology fields, including 

biotechnology.  

Fifth, we include an indicator that captures the involvement of firms in R&D collaborations. 

By collaborating with external parties, firms can get access to complementary knowledge 

(Belderbos et al., 2021; Du et al., 2014; Faems et al., 2005; Belderbos et al., 2004) and may improve 

their innovative performance. We identify collaborations using the Thomson Reuters RECAP 

database, which includes information on transactions (including collaborations) in the life sciences 

industry. Our measure of collaborations is constructed at the consolidated firm level and includes 

cooperation on R&D and co-development activities. The variable R&D collaboration is constructed 

as the log of the ratio of the number of collaborations in the prior 4 years and the size of the firm’s 

R&D expenditures in year t-1 to make it independent of the scale of a firm’s R&D activities. 

Finally, the empirical models include 20 year dummies (with 1995 as base category) to 

account for time-specific factors affecting the innovative performance of the sample firms.  

Methods 

Count data models are preferred to standard linear regression models for our analysis, as they 

explicitly take into account the non-negativity and discreteness of the dependent variable (a 

citation-weighted patent count). We use negative binomial count data models, which control for 

over-dispersion of the dependent variable (Cameron and Trivedi, 1998). We use firm fixed effects 

estimators in all regression models to control for unobserved, time-invariant firm characteristics 

that could affect innovative performance, such as R&D management capabilities. We estimated 
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fixed effects negative binomial models by including dummy variables for all firms, as suggested by 

Allison (2012).10 Besides including fixed effects, our empirical specification has other features that 

alleviate concerns of potential endogeneity and bias stemming from unobserved heterogeneity. 

First, the temporal ordering of the variables in the model - where past publication and scientific 

patent citation counts are included to explain current performance – avoids reverse causality, 

where higher innovation performance and the ensuing higher availability of R&D resources may 

lead to increased investments in basic research. Second, we include time-varying firm 

characteristics as control variables (R&D expenses, propensity to publish, technology 

diversification, biotech focus, R&D collaboration) that are likely to pick up important 

developments in corporate R&D resources and capabilities.  

We estimate the first stage of the mediation model in which building on internal basic research 

and building on external basic research are dependent variables with fixed effects ordinary least squares 

regressions. To test for mediation, we estimate a structural equation model (SEM) that allows for 

correlation between the two mediation routes. To relax the assumption of multivariate normality 

of the Baron and Kenny (1986) test for measuring indirect effects, we bootstrap the standard errors 

using 400 repetitions (Cole and Maxwell, 2003).  

Descriptive Statistics 

Summary statistics and correlation coefficients are reported in Table 1. Correlation coefficients 

are calculated as within-firm correlations, consistent with the fixed-effects estimators used in the 

empirical analysis. The correlations provide some prima facie evidence of the hypothesized 

relationships. There is a positive correlation (a correlation coefficient of 0.21) between internal 

basic research and a firm’s innovative performance (baseline hypothesis 1). Internal basic 

research positively correlates with both building on internal basic research and building on external basic 

research, which in turn each have a positive correlation with firm’s innovative performance.  

-------------------------------------------------- 

Insert Table 1 about here 
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-------------------------------------------------- 

Figure 1 reports the evolution in internal  basic research as well as firms’ building on 

internal and external basic research over the period 1995-2015 for the set of firms that are observed 

every year. In line with the operationalization of the variables used in the regression models, the 

reported numbers are based on 4-year stocks of publications and scientific references. Firms’ 

investments in internal basic research were high at the beginning of the time period (277 

publications in 1995), remained stable during the first half of the period, but started to decline 

monotonically from 2005 onwards to reach 150 publications in 2015. In contrast to the declining 

trend in internal basic research, the sample firms strongly increased the extent to which they build 

on both internal (from 8 to 128 citations) and external basic research (from 200 to 3,107 citations) 

in their technology development. The strong increase in the number of internal and external basic 

research citations is mainly the result of a strong increase in the number of scientific citations in 

firms’ patents, since the size of firms’ 4-year patent stock only increased by 35% between 1995-

2015. The overall pattern of a decreasing intensity of in-house basic research coupled with an 

increase in the extent to which companies build on basic research in technology development is 

consistent with the evidence reported by Arora et al. (2018) and Arora et al. (2021) for large, cross-

sectoral samples of US firms.  

--------------------------------------- 

Insert Figure 1 about here 

--------------------------------------- 

Empirical Results 

The results of the fixed effects models of the relationship between internal basic research, building 

on internal and external basic research and firms’ innovative performance are reported in Table 2. 

Model 1 includes the control variables only and shows that R&D expenditures, technology diversification 

and biotech focus are positively associated with performance and are statistically significant at the 1% 
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level. The coefficients of the collaboration and propensity to publish variables are not significant at the 

10% level.  

------------------------------ 

Insert Table 2 about here 

------------------------------ 

In model 2, we test our baseline hypothesis 1 by adding the variable internal basic research. A 

log-likelihood ratio test indicates that the model fit improves significantly by adding this variable 

(chi²=44.74, p=0.000). In line with hypothesis 1, we find a positive and significant association 

between internal basic research and firms’ innovative performance. The strength  of the relationships 

can be derived directly from the estimated coefficient (0.231), which can be interpreted as an 

elasticity. This implies that a one percent increase in performing basic research is associated with 

a 0.231 percent increase in firm’s innovative performance.  

To test for the mediation effects suggested by hypotheses 2 and 3, we estimate a 

generalized structural equation  model (SEM), allowing for correlation between the error terms of 

the two mediation equations. Models 3a and 3b test whether internal basic research is significantly 

related to building on internal basic research and building on external basic research. The coefficient of internal 

basic research is positive and significant in both models. This shows that firms that perform more 

basic research in-house also build more on internal and external basic research in their technology 

development. Furthermore, we observe that firms that focus more on biotechnology build more 

on internal and external basic research in their technology activities. While technology 

diversification has a positive association with building on external basic research, it has a negative 

association with building on internal basic research. Model 3c assesses whether the mediator variables 

(building on internal basic research and building on external basic research) are significantly related to a firm’s 

innovative performance, controlling for the direct effect of internal basic research. The coefficients 

of both mediators are positive and significant. The coefficient of internal basic research declines when 

we add the mediators (relative to model 2), but it remains significant in the full innovation 
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performance model 3c, with an elasticity equal to 0.16. Given that internal basic research has a positive 

association with building on internal basic research and building on external basic research (models 3a-3b) 

and given that building on internal and building on external basic research are both associated positively 

with firm’s innovative performance when controlling for internal basic research, we can confirm our 

two mediating hypotheses 2 and 3. As the coefficient of internal basic research is still positive and 

significant in model 3c, the mediation is partial. 

To assess the effect size of mediation relative to the direct effect of internal basic research, we 

examine the magnitude of effects using elasticities as a scale-free measure. The simultaneous 

estimation with the SEM model allows for a direct test of the significance of the two mediation 

paths. The estimated elasticities reflecting the proportional changes in firm’s innovative 

performance as a result of a proportional change in internal basic research mediated by respectively 

building on internal basic research and building on external basic research are 0.011 (statistically significant 

at the 10% level, p=0.066) and 0.065 (statistically significant at the 1% level, p=0.000), while the 

elasticity corresponding to the direct effect of internal basic research is 0.156.11 Hence, 33% of the 

total effect of internal basic research is jointly mediated by building on internal basic research and building 

on external basic research. This result indicates that explicitly building on own research and leveraging 

external basic research in the technology process jointly account for one third of the total benefit 

of a firm’s investment in basic research.  

We further examined whether the relative importance of the two mediation mechanisms 

has changed over time. For this purpose, we estimated separate coefficients for the basic research 

variables for the first half (period 1: 1995 to 2005) and second half (period 2: 2006 to 2015) of the 

observation period. The results are reported in Table 3. We observe in model 2 that the association 

between internal basic research and firm’s innovative performance is weaker in period 2 than in period 

1. While in both time periods the relationship between internal basic research and firm’s innovative 

performance is mediated by both building on internal basic research and building on external basic research, 

the mediation effects are stronger in period 2 (full mediation) than in period 1 (partial mediation). 
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The magnitude of the first mediation mechanism (building on external basic research) is comparable in 

both periods, but the second mediation mechanism (building on internal basic research) becomes much 

stronger in the second period. While in the first period, mediation through building on internal basic 

research accounts for only 13.1% of the mediation effect (statistically insignificant at the 10% level, 

p=0.104), this share increases to 35.8% in the second period.  

------------------------------ 

Insert Table 3 about here 

------------------------------ 

Conclusion and Discussion 

This paper examines how firms can improve their innovation performance by engaging in basic 

research. We distinguish between two main mechanisms through which basic research can affect 

technology development: 1) by serving as direct input into own technology development, and 2) 

by developing an absorptive capacity to tap into external basic research. We model and test the 

relative importance of these two mechanisms by estimating a mediation model using panel data  

on the patents and scientific publications of 50 large R&D spending pharmaceutical firms. We find 

that a positive relationship between firms’ engagement in basic research and innovation 

performance is significantly, but only partially, mediated by these two mechanisms, with the role 

of leveraging external basic research in this mediation process more prominent.  

Interestingly, we find that the mediation relationships are much more pronounced in the 

recent years of the panel, with in particular the role of innovation building on own scientific efforts 

increasing. This pattern is associated with a marked decline in basic research efforts of the firms 

in recent years, while the incidence of citations to basic research in firms’ patents has continued to 

rise. It is perhaps the high cost and complexity of maintaining a science-based research 

organization (Arora et al., 2018), that has led the world's leading pharmaceutical firms to reduce 

their involvement in internal basic research, while increasing the focus on the connection between 

basic research and technology development. Firms increasingly run a tight ship and view scientific 
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research less as a way to merely remain “plugged in” to the scientific community (Cockburn & 

Henderson, 1998; Rosenberg, 1990; Arora et al., 2018). Investments in basic research are 

increasingly considered as a way to generate unique scientific knowledge that can be used in the 

own technology development process. By trying to get more leverage out of their basic research 

investments, firms have responded to trends of increasing competition and rising R&D costs 

(Danzon et al., 2005; Pammolli et al., 2011; Cockburn, 2006).  

A key managerial implication of our research is that firms should take a combined 

approach by investing in in-house basic research aimed at bringing this research to fruition in 

development, and by leveraging these investments through an informed search for external basic 

research. Leveraging of internal and external basic research in technology development represents 

a substantial share of the added value of investments in basic research, hence firms are well advised 

to use their basic research capabilities as a stepping stone to develop technologies on the basis of 

external basic research. Regarding the direct effect of basic research as an input to technology 

development, the implication is that a proper alignment between basic research and development 

activities is important. Innovative performance may further increase if firms manage to reduce 

frictions that hinder such alignment. This is consistent with the notion of Rosenberg (1990) that 

corporate basic research is likely to be sterile and unproductive if it is conducted in a separate unit 

isolated from the rest of the firm’s R&D activities. Following this logic, the effectiveness of internal 

basic research is expected to increase if it is conducted in close interaction with the work and 

interests of the firms’ engineers. Close exchange between researchers and developers that facilitates 

the exchange of knowledge (Nonaka, 1994), for instance through the organization of 

multidisciplinary teams, may be important to achieve such alignment. At the same time, we note 

that the fact that building on in-house basic research in development activities is only a partial 

mediation mechanism to arrive at innovation performance cautions against an overemphasis on 

alignment by cutting investments in basic research drastically. Notwithstanding the increasing role 

of the direct effect of conducting basic research in-house, we found that the indirect effect of basic 
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research through the improved leveraging of external basic research in technology development 

has relatively stronger performance consequences. A possible explanation is that building on 

external basic research beyond collaboration with external partners – the definition of ‘external’ in 

our analysis – implies a more distant form of knowledge sourcing which may result in more novel 

and valuable knowledge recombination, leading to more highly cited patents.  

 Our study contributes to the literature on corporate investments in basic research by 

disentangling and comparing two key mechanisms through which engagement in basic research 

can improve firms’ innovative performance (Rosenberg, 1990; Gambardella, 1992; Cockburn & 

Henderson, 1998; Della Malva et al., 2015; Arora et al., 2018; Arora et al., 2021) and by 

demonstrating that the relative importance of both mechanisms has changed over time. Further, 

our study adds to the literature on search strategies for innovation (Nelson, 1982; Fabrizio, 2009; 

Fleming and Sorenson, 2004) by confirming the important ‘guiding’ role of science in the search 

process for innovation. By investing in basic research, firms can leverage both internal and external 

scientific knowledge as a ‘map’ for technology developments. Finally, our study adds to the 

literature on external learning and ‘scientific’ absorptive capacity (Cassiman and Veugelers, 2006; 

Lokshin et al., 2008; Zarah and George, 2002; West and Bogers, 2014; Belderbos et al., 2016; 2017) 

by demonstrating the importance of internal basic research investments to learn from external 

basic research findings. The observation that basic scientific knowledge is not freely available to 

all firms, but only to those who have the right background knowledge and skills, is consistent with 

Rosenberg’s (1990) perspective on the economics of basic research. Building up and maintaining 

this 'scientific' absorptive capacity is not easy or inexpensive to accomplish. It has major 

organizational consequences, as it involves hiring (top)-scientists and granting them the freedom 

to conduct basic research (Pavitt, 1991).  

 Our research has a number of limitations, which suggest fruitful directions for further 

research. First, our findings on the role of basic research relate to firms in the pharmaceutical 

industry and one should be careful to generalize our findings to firms in other sectors. The 
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pharmaceutical industry is exceptional with respect to the relevance of basic research for 

technology development activities (McMillan et al., 2000; Rosenberg, 1990) and with respect to 

appropriability conditions due to a high efficacy of patenting (Lim, 2004). However, we suspect 

that our results do have relevance for firms in other science-based industries in which basic 

research and technology development are closely linked, such as electrical machinery/ICT and 

aerospace (Pavitt, 1984; Klevorick et al., 1995). One difference with the ICT and aerospace sectors 

is that in the life sciences, technologies tend to be ‘discrete’, with a single patent often providing 

effective legal protection for a new drug. In pharmaceuticals, citation-weighted patents are 

therefore strongly correlated with successful drug development (Chiou et al., 2017). In the ICT and 

aerospace sectors where technologies are ‘complex’, patent thickets and strategic patenting occur 

more frequently (Cohen et al., 2000; Czarnitzki et al., 2020), such that (citation-weighted) patent 

output may be a less powerful measure of innovation performance. It would be interesting to 

investigate whether the relationships between basic research and firms’ innovative performance 

that we have uncovered hold up to scrutiny in other industries.  

Second, since our analysis has shown that the role of internal basic research as direct input 

for technology development has increased in recent times, one could examine – given the 

decreasing basic research investments of firms – more in detail the enabling organizational 

characteristics for a close alignment between in-house basic research and technology development 

to occur. One way to examine these more detailed intra-organizational patterns is through case 

studies. Another way may be to analyse collaboration and citation patterns of corporate scientists 

and engineers, using, for example, information that is available in firms’ patent and publication 

data.  

Third, the partial mediation of the two mechanisms through which internal basic research 

improves innovation performance does suggest that there are other possible advantages of 

conducting basic research. Engagement in basic research may act as an admission ticket to R&D 

partnering with universities (Liebeskind et al., 1996; Cockburn and Henderson, 1998), or as a 
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recruiting tool for high quality ‘star’ scientists (Henderson and Cockburn, 1996; Hicks, 1999). 

Further research could examine these additional mechanisms and their relative importance 

compared to the two mechanisms that were studied in this paper.  

Finally, our work ties into the debate on science-based drug development: to increase the 

efficiency of the drug development process and to more accurately predict the chance of success 

before entering expensive clinical trials, in which industry experts have emphasized the importance 

of leaning more explicitly on scientific insights (Kola & Landis, 2004; Cook et al., 2014; Hay et al., 

2014; Waring et al., 2015; Chiou et al., 2016). Most notably, mismatches between the drug 

compound, disease, clinical techniques and target patient group are issues that can be potentially 

foreseen and even resolved when drug candidates are strongly grounded in scientific research. 

While our paper considers patents as the outcome rather than the subsequent drug development 

process, such as the chance that a patented molecular compound enters clinical trials or its eventual 

development success, a natural extension of our analysis would be to study the relation between a 

patented compound’s scientific origins, the firm’s involvement in producing the underlying 

science, and its ability to build on it in technology development.  
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Tables 

Table 1: Summary statistics and pairwise correlations (n=793) 

 

 

  

Variable Mean St. Dev. Min Max (1) (2) (3) (4) (5) (6) (7) (8)
(1) Innovation performance 1,019.65 1,751.40 0 15,948
(2) Internal basic research† 275.93 422.79 0 2,294 0.21
(3) Build on internal basic research† 54.56 197.53 0 2,662 0.10 0.13
(4) Build on external basic research† 1,742.33 3,277.92 0 33,914 0.05 0.18 0.60
(5) R&D 1,468,690 2,208,968 2,076 11,000,000 -0.07 0.12 0.41 0.64
(6) Propensity to publish 4.36 4.99 0 82 -0.10 -0.05 0.06 -0.01 0.25
(7) Technology diversification -0.31 0.11 -1 -0.08 -0.03 0.04 -0.06 0.18 0.08 0.00
(8) Biotech focus 0.14 0.12 0 0.65 0.13 0.27 0.09 0.17 -0.15 -0.02 0.24
(9) R&D collaboration† 7.41 15.38 0 162.23 0.08 0.12 0.08 0.16 0.12 0.07 0.08 0.13
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Table 2: Performing and Building on Basic Research: Empirical Results 

 

and fixed effect ordinary least squares regressions (models 3a-3b). 

Model 1 Model 2
Innovation 

performance
Innovation 

performance
a) Build on internal 

basic research
b) Build on external 

basic research
c) Innovation 
performance

Internal basic research 0.231*** 0.198*** 0.310*** 0.156***
(0.044) (0.054) (0.075) (0.038)

Build on internal basic research 0.057**
(0.026)

Build on external basic research 0.210***
(0.038)

R&D 0.205*** 0.082 -0.067 0.080 0.063
(0.057) (0.058) (0.068) (0.062) (0.059)

Propensity to publish -0.000 0.003 -0.015** -0.017* 0.007
(0.007) (0.007) (0.006) (0.010) (0.004)

Technology diversification 1.322*** 1.401*** -1.701*** 1.227*** 1.113**
(0.463) (0.423) (0.377) (0.457) (0.494)

Biotech focus 1.051*** 0.463 2.031*** 3.712*** -0.289
(0.386) (0.342) (0.552) (0.691) (0.378)

Collaboration 0.033 0.021 -0.023 0.007 0.020
(0.021) (0.023) (0.029) (0.028) (0.022)

Firm fixed effects included included included included included
Year fixed effects included included included included included
Constant 5.030*** 5.463*** 2.091** 2.829*** 4.742***

(0.766) (0.754) (1.047) (0.862) (0.701)
Var(êbuild on int. BR )

Var(êbuild on ext. BR )

Cov(êbuild on int. BR ,  ê build on ext. BR )

Observations 793 793
Firms 50 50
Log likelihood -5,156.492 -5,134.118

0.107***

Model 3

0.442***
(0.024)

0.319***
(0.028)

(0.016)
793
50

-6,542.561
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Table 3: Performing and Building on Basic Research: Comparing Periods 1 (1995-2005) and 2 (2006-2015) 

 

and fixed effect ordinary least squares regressions (models 3a-3b). 

Model 1 Model 2
Innovation 

performance
Innovation 

performance
a) Build on internal 

basic research
b) Build on external 

basic research
c) Innovation 
performance

Internal basic research - period 1 0.242*** 0.157** 0.325*** 0.205***
(0.041) (0.062) (0.075) (0.046)

Internal basic research - period 2 0.186*** 0.329*** 0.263*** 0.062
(0.041) (0.063) (0.071) (0.048)

Build on internal basic research - period 1 0.056**
(0.028)

Build on internal basic research - period 2 0.102**
(0.047)

Build on external basic research - period 1 0.179***
(0.045)

Build on external basic research - period 2 0.229***
(0.051)

R&D 0.205*** 0.072 -0.026 0.066 0.034
(0.057) (0.056) (0.070) (0.063) (0.059)

Propensity to publish -0.000 0.002 -0.014* -0.018 0.005
(0.007) (0.005) (0.008) (0.012) (0.005)

Technology diversification 1.322*** 1.162*** -0.883** 0.935** 0.892*
(0.463) (0.400) (0.438) (0.454) (0.455)

Biotech focus 1.051*** 0.513 1.869*** 3.770*** -0.133
(0.386) (0.344) (0.602) (0.651) (0.331)

Collaboration 0.033 0.016 -0.007 0.001 0.013
(0.021) (0.022) (0.033) (0.028) (0.023)

Firm fixed effects included included included included included
Year fixed effects included included included included included
Constant 5.030*** 5.512*** 1.831* 2.922*** 4.998***

(0.766) (0.697) (0.954) (0.843) (0.749)
Var(êbuild on int. BR )

Var(êbuild on ext. BR )

Cov(êbuild on int. BR ,  ê build on ext. BR )

Observations 793 793
Firms 50 50
Log likelihood -5,156.492 -5,130.157

0.114***

Model 3

0.422***
(0.022)

0.317***
(0.027)

(0.015)
793
50

-6,506.007
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Figures 
Figure 1: Time Trend of Internal basic Research and Building on Internal and External Basic Research 
 

 

For expositional clarity, the variable “building on external basic research” is scaled by a factor 10. 
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Appendix: List of Sample Firms 

 
 

  

Company Names Country Company Names Country
Pfizer USA Mitsubishi Pharma Japan
GlaxoSmithKline UK Shionogi Japan
Johnson & Johnson USA UCB Belgium
Aventis France Sepracor USA
AstraZeneca UK Ono Pharmaceutical Japan
Roche Switzerland Taisho Pharma Japan
Novartis Switzerland Kyowa Hakko Kogyo Japan
Merck Co USA Allergan USA
Bristol Myers Squibb USA Ajinomoto Japan
Eli Lilly USA Shire UK
Wyeth USA Lundbeck Denmark
Abbott Laboratories USA Tanabe Seiyaku Japan
Schering Plough USA Teva Pharmaceutical Industries Israel
Boehringer Ingelheim Germany Dainippon Pharmaceutical Japan
Sanofi Synthelabo France Schwarz Pharma Germany
Takeda Pharmaceuticals Japan Kissei Pharmaceutical Japan
Schering Germany Santen Pharmaceutical Japan
Sankyo Japan Watson Pharmaceuticals USA
Merck KGAA Germany Ivax USA
Yamanouchi Pharmaceutical Japan Mochida Pharmaceutical Japan
Novo Nordisk AS Denmark Pliva Croatia

Fujisawa Pharmaceutical Japan Mylan Laboratories USA
Eisai Japan Recordati Italy
Daiichi Pharmaceutical Japan Krka Slovenia
Altana Germany Galen UK
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Notes 

 
1 A famous example is the development of the transistor at the Bell Telephone Laboratories in 1948 

as a result of basic research activities of company scientists on the workings of semiconductor 

materials (Nelson, 1962).  
2  This percentage was even lower, at 3 percent, in 2006. Data on US R&D expenditures are based on 

tables 2-4, National Science Foundation, National Center For Science and Engineering Statistics. 

National Patterns of R&D Resources: 2017-2018 Data Update. NSF 20-307. Alexandria, VA. 

Available at https://ncses.nsf.gov/pubs/nsf20307. 
3 Two exceptions are the studies by Lim (2004) and Della Malva et al. (2015) who measured firms’ 

engagement in basic research by publications in basic research journals rather than all journals.  
4 The highly skewed distribution of scientists’ research output is a robust finding in the economics of 

science literature, starting with Lotka (1926), and has been linked to institutional factors as well as 

ability (Kelchtermans & Veugelers, 2012).  
5 An example of a journal that is classified in level 1 is the Journal of the American Medical Association. The 

Journal of Biological Chemistry is an example of a journal that is classified in level 4 (Hamilton, 2003). 
6 A value equal to one has been added before the logarithmic transformation. 
7 A similar approach to match scientific non-patent references to publications has been adopted by 

Marx and Fuegi (2020). While we rely on four matching parameters (journal name, volume, year, 

starting page), Marx and Fuegi (2020) use two additional parameters (author names, article titles). 
8 We count publications as frequently as they are cited in patents, since each citation indicates that a 

firm has built on science in technology development. Similar results are obtained when each cited 

publication is counted only once, even if its citation occurs multiple times in the 4-year patent 

portfolio. 
9 The ratio is set to zero if the firm had no basic research publications in the prior 4 years. 
10 As an alternative way to model overdispersion, we used a Poisson model with firm dummies and 

robust standard errors estimated using a quasi-maximum likelihood. This gave  very similar results.  
11 The elasticity (0.011) of innovative performance to performing basic research mediated by building on 

internal basic research is calculated by multiplying the coefficient of performing basic research (0.198) in model 

3 and the coefficient of building on internal basic research (0.057) in model 3c. A similar approach is 

followed to measure the elasticity (0.065) of innovative performance to performing basic research mediated 

by external basic research by multiplying the numbers 0.310 and 0.210.  
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