
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Relaxation oscillations and canards of a regulated two-gene model

Peer-reviewed author version

DE MAESSCHALCK, Peter; Kiss, G & Kovacs, A (2021) Relaxation oscillations and

canards of a regulated two-gene model. In: Journal of mathematical analysis and

applications (Print),  502 (1)  (Art N° 125144).

DOI: 10.1016/j.jmaa.2021.125144

Handle: http://hdl.handle.net/1942/36297



Relaxation oscillations and canards of a

regulated two–gene model

P. De Maesschalck G. Kiss A. Kovacs

Abstract

We investigate a two–gene system with an autoregulatory feedback
loop using geometric singular perturbation theory. We identify (coex-
isting) relaxation oscillations, singular Hopf bifurcations, homoclinic
loops etc. We also demonstrate a new method to compute the critical-
ity of the singular Hopf bifurcations.

1 Introduction

Gene expression is the vital mechanism to make and maintain living or-
ganisms. This paper contributes to the understanding of a mathematical
model of gene expression, featuring both stable and bistable scenarios. Un-
derstanding such gene expression processes makes the development of novel
treatments of various diseases possible, and exposes the way malfunctioning
gene expression might lead to tumorigenesis [1]. Bistability in gene expres-
sion for instance has been identified as one of the key mechanisms bacteria
employ to cope with environmental challenges, such as antibiotic treatment
[2, 3]. Hence, a deeper understanding is needed to combat different mi-
crobial response mechanisms allowing pathogenic cells to grow slowly at an
elevated concentration of antibiotics (antimicrobial resistance) or to switch
to an evolutionary developed dormant phenotype (antimicrobial tolerance)
[4]. Furthermore, living organisms show cyclic changes in their vital pro-
cesses timed by their internal circadian clocks. The behaviour of circadian
clocks externally affected by cyclic environmental signals, so-called zeitge-
bers. On the other hand, mutations of genes affecting development and
function of circadian clocks could lead to changes in significant features of
those oscillations [5]. Therefore, since relation between the internal clocks
and zeitgebers impacts drastically human health [6], it is important to un-
derstand the nature of oscillations in gene expression. The possibility of
influencing circadian period of cyanobacteria is reported in [7].
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Gene-regulatory circuits have been used in modelling various aspects of
gene expression, see [8, 9] and [10], and the references therein. Our work is
motivated by [11] where the singularly perturbed delay differential equation

ṗ(t) = −kpp(t) +
k1

q(t) + k2
,

εq̇(t) = −kqq(t) +
q2(t)

q2(t) + k4
p(t− τ) + k3

(1)

was proposed as a simplified two-gene model. Here, the parameter ε > 0 sep-
arates the time scales on which proteins p and q are produced by genes P and
Q, respectively. More specifically, in (1) protein p is produced faster than q.
Also, τ > 0 is introduced to incorporate the time needed for transcription,
translation and translocation processes. Furthermore, positive parameters
kq and k4, together with the non–negative parameters kp, k1, k2, k3, de-
scribe the effects of various aspects of gene expression. In [11], the effect
of time delay is investigated on the stability region and the period of the
oscillations. Namely, it was shown – mostly numerically – that periodic
oscillations can exist for a larger set of parameters when time delays are
incorporated compared to the case of the system without delay. Addition
of time delay to the models hence makes them much more realistic. It is
our ambition to use mathematical tools to give a qualitative description of
this time-delayed model, specifically for small delay, but have come to the
understanding that in order to do so we will have to rely on specific prop-
erties of the non-delayed version. (Even if ultimately one resorts to using
numerical methods in the study of the model with delay, one can benefit
from an accurate qualitative description of the version with τ = 0.) We will
more precisely be interested in the onset of the cycles (Hopf bifurcations), as
it will be the starting point to identify parameter regions in the system with
delay where cycles are present. In this manuscript, we therefore investigate
the non–delayed (1), thereby focusing on using qualitative techniques: the
results that we obtain are rigorously proven, with the side-note that for some
computations the aid of a computer algebra program was used. Though we
are fully aware that the behaviour of the model for τ = 0 has limited use by
itself, we will foremost use it as a stepping stone towards the more difficult
case τ > 0, relatively small.

Singularly perturbed ordinary differential equations are used in mod-
elling various real world phenomena - biological processes [12], in particular
- when system variables are evolving on different time scales. Also, the
dynamics of singularly perturbed ordinary differential equations is stud-
ied extensively both theoretically, [13, 14], and numerically, [15, 16]. On

2



the other hand, delay differential equations are also used to formulate de-
scriptive and predictive models of various physical and biological processes
when the evolution of a system is significantly affected by its earlier states,
[17, 18]. However, although many sophisticated mathematical and com-
putational tools have been developed to study these infinite dimensional
dynamical systems, [19, 20], there is no comprehensive geometric theory
to study the dynamics of singularly perturbed delay differential equations.
Hence, we do not attempt to study (1) here, instead, we set τ = 0. Also, we
use the substitution t = s

ε , and then denote s
ε by t to get

ṗ(t) = ε

(
−kpp(t) +

k1
q(t) + k2

)
,

q̇(t) = −kqq(t) +
q2(t)

q2(t) + k4
p(t) + k3.

(2)

The purpose of this paper is to provide as detailed analytically verified
description of the dynamics of (2) as possible. This analysis can serve as
base in understanding the effects of time delay on the dynamics of (2). The
paper is organised as follows. In Section 2, we study the singular limit
ε = 0 of (2) to derive its bifurcation structure. Also, we obtain results
on the number and stability properties of possible equilibria in terms of
system parameters. In Section 3, we describe the dynamics of (2) in the
(k1, k2) parameter space for ε > 0 sufficiently small. In Section 4, we study
stability properties of periodic orbits, the criticality of the Hopf bifurcation
giving birth to those orbits. By computing the stability of the cycles at
the bifurcation point and confirming the stability properties of the large
relaxation cycles, we can delimit parameter regions for which during the
growth of the cycle from bifurcation point to full relaxation cycle there are
no changes of stability to be expected (that could lead to saddle-node of
limit cycles bifurcations), though at present we have no formal proof of this
fact. See the discussion section for futher remarks.

2 Slow-fast analysis - singular bifurcation diagram

We will use geometric singular perturbation theory to study the system. It
basically consists of identifying two limiting systems associated to (2): the
fast and the slow system. Both give meaningful information at the limit
ε = 0. Geometric singular perturbation theory (GSPT) combines the infor-
mation from both limiting systems to provide a qualitative understanding
of the dynamics of (2) for nonzero values of ε > 0, but keeping ε sufficiently
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small. We will see below that in one parameter region, the application of
GSPT is quite standard, because of the presence of a normally hyperbol-
ically attracting curve; in that case there is a global attractor and there
are no periodic movements. In a second parameter region, the dynamics is
more interesting as the curve of singular points of the fast subsystem looses
normal hyperbolicity at two points. It is the typical framework where one
can spot periodic movements of relaxation oscillation type. The geometric
analysis is more involved now because a thorough analysis is needed of the
points where normal hyperbolicity is lost. In many applications, one typ-
ically refers to [21] to identify the nature of the mentioned points; in this
paper we present an alternative, more direct way, bypassing the need to put
the system in a normal form. It is based on the recent monograph [22].

The analysis below deals with (2), restricted to the first quadrant p ≥ 0,
q ≥ 0.

Remark 1. Linear rescalings of (q, p, t, ε) preserve the structure of the equa-
tions, conditional to an equation to be verified in terms of the scaling factors,
and it is easily seen that the value

κ = 3
k3
kq

√
3/k4 (3)

is invariant under such scalings. (The 3
√

3 factor will reveal to be convenient
later on.) In fact, employing these degrees of freedom, we may assume kp =
kq = 1 and k4 = 3. It means also that we can rewrite k3 as 1

3kqκ. In the proof
of some properties we will use this simplification, we have preferred to avoid
it when presenting results in order to keep the variables and parameters in
the presentation as close as possible to their biologically meaningful origin.

2.1 The fast subsystem

The fast subsystem is obtained by putting ε = 0 in (2). The singular points
of (2), for ε = 0, form the so-called critical set C0 = {(q, p) ∈ R+ × R+ :

f(q, p) = 0}, with f(q, p) = −kqq + q2

q2+k4
p+ k3. In fact, the critical set is a

graph, called the critical curve, given by p = p1(q), where

p1 : R+ → R, q 7→ (kqq − k3)(q2 + k4)

q2
.

Note that

(i) limq→∞ p1(q) =∞;
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(ii) limq→0+ p1(q) = −∞;

(iii) We will restrict the domain of p1 to [qmin,∞[, in order for the image
of p1 to be inside R+. We have

qmin = k3/kq.

(In view of Remark 1 we may assume qmin = 1
3κ.)

The phase plane analysis for (2) in the (q, p)-plane is hence easy for
ε = 0: the dynamics is in horizontal direction away from or towards the
critical set. In fact, it is the sign of the nontrivial eigenvalue

Dqf(q0, p0), (q0, p0) ∈ C0

that distinguishes the attracting behaviour from the repelling behaviour. At
points (q0, p0) ∈ C0 for which this eigenvalue is nonzero, the system is said
to be normally hyperbolic. In the other case, eg. the value is zero, the point
is called a contact point of the system (because the tangent vector of the
critical curve at that point is horizontal and has a first-order contact with
the horizontal fibers of the unperturbed dynamics).

Remark 2. The stability properties of the points on C0 are related to the
sign of

Dqf |C0 = −2k3k4 − k4kqq + kqq
3

k4q + q3
, (4)

and equivalently to the sign of the numerator of this expression. Fortunately
the bifurcation diagram of roots of such a cubic is well-known. Consider a
cubic equation

x3 +Bx+ C = 0, (5)

and let ∆ = −4B3 − 27C2 be the discriminant of this cubic polynomial.
Then ∆ > 0 corresponds to the case of three distinct real roots, ∆ < 0 to
the case of one real root and two distinct complex conjugated roots. When
∆ = 0 and (B,C) 6= (0, 0), there are exactly two real roots, one of them
with multiplicity 2, when ∆ = B = C = 0, there is a single real root with
multiplicity 3. A general cubic equation x3 + Ax2 + Bx+ C = 0 can easily
be transformed to a similar form with vanishing x2 coefficient, but in view
of the expression for Dqf above, we will not need to do so in this paper and
we can directly use the form (5). In the case of positive discriminant, we
mention Viètes formula for the roots

x = 2

√
−B
3

cos

(
1

3
arccos

(
3C

2B

√
−3

B

)
+

2πn

3

)
, n = −1, 0, 1.
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The following is a sufficient condition for the existence of a unique, bio-
logically meaningful equilibrium.

Proposition 1. Let k3, k4 and kq be given such that

κ > 1,

where κ is defined in (3). Then, for any given k1, k2 and kp, C0 is normally
hyperbolic everywhere. That is,

Dqf |C0 6= 0.

Proof. Using (4), we have to find solutions of kqq
3 − k4kqq + 2k3k4 = 0.

Clearly, our assumption corresponds to the case ∆ < 0 in Remark 2, with
(B,C) = (−k4, 2k3k4kq

). From Remark 2 we get that there is a unique real

(and simple) solution. Note that the left hand side of the cubic equation
changes sign between q = 0 and q = −∞, so by the intermediate value
theorem the unique solution must be obtained for q < 0.

Proposition 2. Let k3, k4 and kq be given such that

0 ≤ κ < 1. (6)

Then there are exactly two points (q`, p`), (qr, pr) ∈ C0 where normal hyper-
bolicity is lost. These points are so-called contact points of contact order 2,
meaning that

Dqf |C0 = 0, D2
qqf
∣∣
C0
6= 0.

at the points. Furthermore, the two points split the critical curve C0 in three
normally hyperbolic parts

Cal0 = C0 ∩
{

(q, p) ∈ R+ × R : qmin ≤ q < q`
}
,

Cr0 = C0 ∩
{

(q, p) ∈ R+ × R : q` < q < qr
}
,

Car0 = C0 ∩
{

(q, p) ∈ R+ × R : q > qr
}
.

Here, Cal0 and Car0 are normally hyperbolically attractive, and Car0 is normally
hyperbolically repelling.

Proof. Similarly to the proof of Proposition 1, we relate the condition in the
proposition to ∆ > 0 in Remark 2, indicating 3 distinct real solutions of
the cubic equation kqq

3 − k4kqq + 2k3k4 = 0. Also similar is the fact that
at least one of the three solutions is for q < 0. We use the explicit form of
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the solutions from Viètes formula (reminding that (B,C) = (−k4, 2k3k4kq
)):

define

q = 2

√
k4
3

cos

(
φ+

2πn

3

)
, n = 0, 1,−1, with φ :=

1

3
arccos (−κ) .

Notice that our assumption on κ implies that φ is a real angle between π/6
and π/3. So

φ0 := φ ∈
[
π
6 ,

π
3

]
, φ1 := φ+ 2π

3 ∈
[
5π
6 , π

]
, φ−1 := φ− 2π

3 ∈
[
−π

2 ,−
π
3

]
.

The root corresponding to n = 1 hence is the one with negative q. Noticing
also that cosφ0 > cosφ−1, we define q` to be the solution corresponding
to n = −1 and qr to be the solution corresponding to n = 0; this way
0 < q` < qr.

Observe now that it is also possible to solve the equation Dqf = 0

w.r.t. k4. We then find k4 =
kqq3

kqq−2k3 . When q ≤ qmin = k3/kq, the expression
for k4 becomes negative. This easy computation actually shows that under
the condition of this proposition, we necessarily have q` > qmin.

To exclude the possibility of flex points on the critical curve, we will
prove that the presence of a solution of the system {f = Dqf = D2

qqf = 0}
implies that κ = 1. We have

Dqf = −kq +
2k4pq

(q2 + k4)2
, D2

qqf =
2k4p(k4 − 3q2)

(q2 + k4)3
.

It is a bit cumbersome to solve this set of 3 equations; as a guideline to the
reader, we mention that it is best to consider {Dqf = D2

qqf = 0} as a system
of equations in {q, k4}, solve it by hand and substitute the solution in f = 0.
Solving this third equation and substituting it back in the expression for k4
leads to concluding that κ = 1. As a consequence, under the condition κ < 1,
at all contact points that were found above, the second order derivative is
nonzero. Since D2

qqf → −∞ as q → ∞, the branch Car0 is attracting. It
implies the stability properties along the other branches, keeping in mind
that q` and qr are contact points of contact order 2.

Remark 3. Following Remark 1, we have

k3 =
κkq
3
, κ = − cos(3φ), q` = 2 cos(φ− 2π/3), qr = 2 cosφ

so we might as well use (k1, k2, φ) as bifurcation parameters instead of the
parameters (k1, k2, k3) (remember that we have kp = kq = 1 and k4 = 3).
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Reducing the fast system

In the language of vector fields, we have

X =

(
−kqq +

pq2

q2 + k4
+ k3

)
∂

∂q
+ ε

(
−kpp+

k1
q + k2

)
∂

∂p
.

Following [22] we write X = F.Z + εQ with

F = kqq
3 − (k3 + p)q2 + k4kqq − k3k4, Z =

−1

q2 + k4

∂

∂q
,

and

Q =

(
−kpp+

k1
q + k2

)
∂

∂p
.

Remark 4. Clearly there are multiple ways to decompose X into FZ + εQ:
a factor can be multiplied to F provided one divides Q with the same factor.
This will not cause any difficulties.

In the next section, we will use this decomposition to further analyse the
slow-fast system.

2.2 The slow subsystem

Traditionally, the slow subsystem is derived in the following way. One first
rescales time in (2) to find

p′(s) =

(
−kpp(s) +

k1
q(s) + k2

)
,

εq′(s) = −kqq(s) +
q2(s)

q2(s) + k4
p(s) + k3,

and then considers the unperturbed system by setting ε = 0 to get

0 = −kqq(s) +
q2(s)

q2(s) + k4
p(s) + k3,

p′(s) = −kpp(s) +
k1

q(s) + k2
.

This dynamical system is only defined along the normally hyperbolic parts of
the critical curve p = p1(q). Given the fact that the curve is a parameterized
curve by the parameter q, it is better to write it as

p = p1(q(s)),

p′1(q(s))q
′(s) = −kpp(s) +

k1
q(s) + k2

.
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Proposition 3. The slow flow, which is restricted to C0 \{(q`, p`), (qr, pr)},
is

q′ =
−kp(kqq − k3)(q2 + k4)(q + k2) + k1q

2

q2(q + k2)
× q3

kqq3 − k4kqq + 2k3k4
. (7)

Proof. Straightforward computations.

The rest of the subsection is concerned with the study of singular points
in the slow dynamics, under the condition κ < 1. The quartic equation for
the singularities

−kp(kqq − k3)(q2 + k4)(q + k2) + k1q
2

has at least one root on ] −∞, qmin[ and at least one root on ]qmin,∞[, as
can be learned from the intermediate value theorem. So the number of roots
on q > qmin lies between 1 and 3.

Lemma 1. Given q2 ∈ ]q`, qr[, there is a double singularity of the slow
dynamics at q = q2 along the parameter values

(k1, k2) =
(
kp
q2

(q22+k4)
2(k3−kqq2)2

k4kqq2−kqq32−2k3k4
, q2

k3k4−k3q22+2kqq32
k4kqq2−kqq32−2k3k4

)
. (8)

For other values of q2 or away from that parameter locus, singularities of
the slow dynamics are simple. Both k1 and k2 tend to +∞ as q2 approaches
q` or qr. The double singularity is actually a triple singularity at some
q = q3(k3). Fixing all parameters but k1 and k2, the locus in the (k1, k2)-
plane of double singularities of the slow dynamics is a union of two graphs of
k1 (with positive slope), on [k31,∞[, and both graphs meet at the point where
the triple singularity is located.

Proof. It is a tedious exercise to find the double roots of the slow dynamics
in (7), leading to (8). Since the sign of k1 is the same as the sign of k4kqq2−
kqq

3
2 − 2k3k4, the latter expression should be positive, which corresponds

to the denominator in the expression for k2. So also the numerator in the
expression for k2 should be positive, and this is only true along the middle
(repelling) branch.

A computation shows the presence of a triple root at q = q3 for any
choice of q3 ∈]qmin,

√
k4/3[ at the parameter values

(k1, k2, k3) =
(
kpkq
k4

(q23+k4)
3

k4−3q23
,
√

3
k4

q23(q3+
√
3k4)√

3k4−3q3
, kq

√
3
k4

q23(
√
3k4−q3)√

3k4+3q3

)
.
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One can verify that

∂k3
∂q3

=
6
√

3kq√
k4

q3
k4 − q23

(
√

3k4 + 3q)2
> 0.

So we can invert k3 = k3(q3) and write it as q3 = q3(k3). Denote by k31 the
k1-value at that specific point. Let us now turn our attention again towards
the double singularities. Notice that in the expression (8), we have

∂k1
∂q2

= −2kpkq
(q22+k4)(q2−qmin)

q22(k4kqq2−kqq32−2k3k4)2
×

(kqq32+
√
3k4kqq22−

√
3k4k3q2+k3k4)(kqq32−

√
3k4kqq22+

√
3k4k3q2+k3k4).

All factors except for the last two are clearly nonzero. The second to last is
also nonzero: to see this one Taylor expands the expression about q = qmin:

kqq32+
√
3k4kqq22−

√
3k4k3q2+k3k4=kq(q2−qmin)

3+(
√
3k4kq+3k3)(q2−qmin)

2

+
k3(
√

3k4kq+3k3)

kq
(q2−qmin)+k3

k4k
2
q+k23

k2q
.

The last factor in ∂k3
∂q3

does have a zero, precisely at q2 = q3(k3), which can
be checked by plugging the expression for the triple point into the expression
of ∂k3

∂q3
. It is a simple zero and the only one: the derivative w.r.t. q2 of this

last factor has a Taylor expansion about q = qmin with all strictly positive
coefficients (we need to use κ ≤ 1 here).

This analysis shows that the double-singularity curve, parameterized by
q2, can be split in two components: one for q` < q2 < q3(k3) and one for
q3(k3) < q2 < qr. Both components can be expressed as a graph k2 = k2(k1)
(and q2 = q2(k1), with k1 ≥ k31. Finally, a lengthy computation shows that

∂k2
∂k1

=

∂k2
∂q2

∣∣∣
q2=q2(k1)

∂k1
∂q2

∣∣∣
q2=q2(k1)

= kp
q22 + k4
q22

(q2 − qmin)

∣∣∣∣
q2=q2(k1)

> 0.

It shows that the slope of both curves is strictly positive. By checking (with
some computations) that the derivative w.r.t. q2 of the right-hand side of
this expression is negative, we conclude that the graph that corresponds to
q` < q2 < q3(k3) lies above the graph that corresponds to q3(k3) < q2 <
qr.
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2.3 Analysis of the contact points

The dynamics near contact points depends on the nature of the contact
point. We distinguish jump points, slow-fast Hopf points (or turning point),
slow-fast Bogdanov-Takens points, . . . The classification of contact points is
based on the so-called contact order (order of contact between the fast fibers
and the critical curve) and singularity order (order of zero of the slow dy-
namics). These notions can be observed after putting the system in normal
form, but we present here ready-to-use formulas that do not require the sys-
tem to be put in normal form and that can be used directly to distinguish
a jump point from a slow-fast Hopf point. We make use of the language of
vector fields as before and write X = FZ + εQ.

Proposition 4 ([22]). For a contact point of contact order 2, the expression
Q(F ) (eg. applying the vector field Q as a Lie derivative of the function F )
is nonzero if and only if the contact point is a jump point. In the other case,
the expression [Z,Q](F ) (eg. applying the Lie Bracket of Z and Q to the
function F ) is strictly negative if and only if the contact point is a slow-fast
Hopf point.

Remark 5. (1) A similar coordinate-free criterion for slow-fast Hopf points
can be found in [23]. (2) The formula can be explained as follows: near a
contact point, the expressions F and Z(F ) form a regular coordinate system,
F corresponding to the fast variable and Z(F ) to the slow variable. The
vector field Q can be seen as the slow vector field, and in that sense it is
natural to expect that Q(F ) can be used to characterize the singularity at
the fold. Similarly Q(Z(F )) can be seen as the “slow derivative” of the slow
variable Z(F ). In most expressions Z(Q(F )) = 0, so Q(Z(F )) = [Z,Q](F ).

So let us compute Q(F ), Z(F ) and [Z,Q](F ):

Q(F ) =

(
−kpp+

k1
q + k2

)
∂

∂p

(
kqq

3 − (k3 + p)q2 + k4kqq − k3k4
)

=

(
kpp−

k1
q + k2

)
q2,

Z(F ) =
−3kqq

2 + 2k3q − k4kq + 2pq

q2 + k4
,

and

[Z,Q](F ) = Z(Q(F ))−Q(Z(F ))

= − k1q
2

(q2 + k4)(q + k2)2
< 0.
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We conclude that the contact points are either jump points (eg. when
Q(F ) 6= 0) or slow-fast Hopf points (when Q(F ) = 0). Using the expression
for Q(F ) above and writing p = p1(q) in it we find

Proposition 5. Let (q∗, p∗) be a contact point, i.e. ∗ ∈ {`, r}. Then the
contact point is a jump point whenever

k1 6= k∗1 := kp
((q∗)2 + k4)(q

∗ + k2)(kqq
∗ − k3)

(q∗)2
.

(Recall that the expression of q∗ does not depend on k1.) The locus k1 = k`1
will be denoted by SH`; the locus k1 = kr1 will be denoted by SHr. (The
acronym stands for singular Hopf; at this point we have only established the
presence of singular contact points, see the next section for details.)

The slow-fast Hopf parameter curves SH` and SHr are given by k1 = k`1
(with q = q`) and k1 = kr1 (with q = qr). Note that q` and qr do not depend
on k1 or k2. Notice also that

∂k∗1
∂k2

= kpkq
(q∗)2 + k4

(q∗)2
(q∗ − qmin) > 0

so both curves are also curves k2 = k∗2(k1) with positive slope. By checking
the derivative w.r.t. q∗ of this expression it can be seen that the slope of the
SH` curve is smaller than the slow of the SHr curve.

Following Remark 2 and choosing k4 = 3 and kp = kq = 1, we find

kr1 = 1
12

(cos(3φ)+6 cosφ)(4 cos2 φ+3)(2 cosφ+k2)
cos2 φ

at q = qr and

k`1 = 1
12

(cos(3φ)+6 cos(φ−2π/3))(4 cos2(φ−2π/3)+3)(2 cos(φ−2π/3)+k2)
cos2(φ−2π/3)

at q = q`.

Proposition 6. There is a locus SH`r

k2 = k∗2(k3) = 2
kqq

`qr(q` + qr) + k3(k4 − q`qr)
kq(qr − q`)2

.

When k2 = k∗2, the values k`1 and kr1 coincide. For k2 < k∗2 we have k`1 < kr1
and vice-versa for k2 > k∗2. Along k2 = k∗2 we have k`1 = kr1. Alternatively,
the SH`r curve can be parameterized by φ.
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Note: it is not so hard to show that q`qr < k4, implying that k∗2 > 0.

Proposition 7. The SH`r point lies inside the SN-wedge. The upper SN
branch intersects SH` exactly once at a point SN` (and it does not intersect
SHr). The lower SN branch intersects SHr exactly once at a point SNr (and
it does not intersect SHr).

Proof. Outside the SN wedge there is only one singular point, so definitely
SH`r lies inside. Since we know the slope of both Hopf curves is different,
the union of their graphs is a topological cross, and the triple point T lies in
the quadrant to the left of the crossing, between the two curves. Since to the
left of T , the parameters are outside the wedge, it implies that both Hopf
curves must intersect the SN curve at least once to the left of the crossing of
the Hopf curves. Let us now compute the slope of the parametric SN-curve.
The slope is given by

∂k2
∂q

/
∂k1
∂q

=
q2

kp(q − qmin)(q2 + k4)
.

We can learn two things from this expression: (1) when evaluated at q = q∗,
with ∗ ∈ {`, r}, it coincides with the slope of the curve k1 = k∗1 (or more
precisely, this curve written as a graph expressing k2 in terms of k1). Also as
q goes from q` to qr, this slope changes monotonically. Recall also that q` and
qr are independent of k1 and k2. So it means that the SN curve is nowhere
parallel to the Hopf curves. Rolle’s theorem excludes multiple intersections
in that case. The fact that the upper branch of SN does not intersect the
SHr curve originates from the same reasoning: the upper branch has a slope
that is always higher than that of the SHr curve. The argument is similar
for the non-intersection of the lower branch of SN with SH`.

2.4 Singular bifurcation diagram

With the information from the previous sections we can explain the bifur-
cation diagram in Fig. 1 to a large extent. Under the assumption κ < 1,
the critical curve has two extremes, a left one and a right one, so in this
regime the shape of the critical curve does not bifurcate. However, the in-
tersections of the critical curve with the isocline ṗ = 0, which determine the
singular points of the slow vector field, does behave differently upon varying
parameters.

First we distinguish two parameter curves k1 = k`1 and k1 = kr1, along
which respectively the left and the right contact point is singular. We denote

13



Figure 1: Singular bifurcations in parameter space (k1, k2), keeping κ (or
equivalently k3) fixed.
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Figure 2: Singular Hopf curves separate 4 regions with distinguished be-
haviour

these loci by SH` and SHr. (The acronym stands for singular Hopf; at this
point we have only established the presence of singular contact points, see the
next section for details.) Their intersection is denoted as SH`r in Figure 1;
it is a point.

3 Behaviour away from SH` and SHr

In the (k1, k2)-plane, and for fixed other parameter values, the singular Hopf
curves SH` and SHr form a cross and define 4 regions, see Fig. 2

(R1) Relaxation oscillation region: below SH` and above SHr.

(R2) Bistability region: below SHr and above SH`.

(R3) 2 Monostability regions: either above both or below both curves.

Proposition 8. Given parameters (k1, k2) in the relaxation oscillation re-
gion (R1). Then for ε > 0 sufficiently small there is one limit cycle which is
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Figure 3: Behaviour in the relaxation-oscillation region, for sufficiently small
ε > 0. The behaviour near the unstable branch of the critical curve depends
on whether (k1, k2) lies in or out the SN-wedge, but it is of little importance
for the global dynamics

Figure 4: Behaviour in the bistability region, for sufficiently small ε > 0.

stable and which surrounds 1–3 singularities counted with multiplicity. (See
Figure 3.)

Proof. This is a classic application of a result in singular perturbations. In
this parameter region, the slow flow only has singular points on the middle
branch, and the two contact points are jump points. It is a hyperbolically
attracting slow-fast cycle, called a “common” cycle in [24]. Of course, earlier
works dealt with these kind of oscillations as well, see [25] or [26] for example.

Proposition 9. Given parameters (k1, k2) in the bistability region (R2).
Then for ε > 0 sufficiently small there are no limit cycles and there are 3
singularities. Two are stable nodes and one is of saddle type. (See Figure 4.)
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Figure 5: Behaviour in the monostability regions, for sufficiently small ε > 0.

Proof. It is elementary to construct an ε-family of trapping regions surround-
ing the three singular points, in a way that the dynamics in the (q, p)-plane
is globally attracted towards the inside of this region. Inside the region it is
elementary to conclude the results.

Proposition 10. Given parameters (k1, k2) in a monostability region (R3).
Then for ε > 0 sufficiently small there are no limit cycles and there is a
stable singularity. At most two other singularities are present, of saddle
type or unstable node type.(See Figure 5.)

Proof. Similar to the reasoning in the proof of Proposition 9.

3.1 Slow-fast Hopf bifurcations

Proposition 11 ([22]). Let Xλ = FλXλ + εQλ have a contact point of
contact order 2, for all λ close to some λ0. If the contact point is a slow-fast
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Hopf point for λ = λ0 (see Proposition 4 for a criterion), and if furthermore

∂

∂λ
Qλ(Fλ)

∣∣∣∣
λ=λ0

6= 0

then a slow-fast Hopf bifurcation takes place w.r.t. λ at λ0.

It is clear that both k1 and k2 can play the role of such a bifurcation
parameter λ along the bifurcation curves SH` and SHr. Moreover, although
this is not explicitly proved in [22], the fact that∣∣∣∣∣ ∂

∂k1
Q(F )|q=q` ∂

∂k2
Q(F )|q=q`

∂
∂k1

Q(F )|q=qr ∂
∂k2

Q(F )|q=qr

∣∣∣∣∣ 6= 0

allows to prove the simultaneity of both bifurcations along SH`r.

3.1.1 Slow-fast Hopf bifurcations outside the wedge formed by
SN

Outside the wedge formed by SN, there is only one singular point, which
is the slow-fast Hopf point. What we then observe, say on a point of SH`,
is a classical so-called canard explosion: a rapid increase of amplitude of
the limit cycle, accompanied by a quick change in the shape: from canard
without head to canard with head, much like in the classical Van der Pol
case, see Fig. 6.

Unlike in the Van der Pol case, the limit cycle here may not be unique,
and need not necessarily be stable. The stability at the onset of the bi-
furcation will be studied in Section 4, and it will become clear from that
analysis that bifurcations in the criticality are present. To control the sta-
bility and possible unicity of limit cycles further on during the canard explo-
sion, i.e. when the limit cycle approaches a canard cycle of certain height,
one needs to compute a so-called slow divergence integral. It is beyond the
scope of what we wanted to do in this paper.

3.1.2 Slow-fast Hopf bifurcations inside the wedge formed by SN

Inside the wedge, and along SH` or SHr, there is at least one singular point
on the middle branch of the critical curve. What we then observe, say on a
point of SH`, is a so-called truncated canard explosion. The stability at the
onset of the canard explosion is again studied in Section 4, where we will
see that the bifurcation is always subcritical, meaning an unstable cycle is
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Figure 6: Canard explosion: quick change from small cycle to big cycle, with
intermediate shape changes from headless canard to canard with head. (a)
canard explosion along SH`, (b) canard explosion along SHr.
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Figure 7: Truncated canard explosion: quick change from small cycle to big
cycle, ending at a canard-type homoclinic orbit. (a) homoclinic near SH`,
(b) homoclinic near SHr.

born. We claim — without proof — that the unstable behaviour of the cycle
is maintained along the canard explosion up until the end point. The end
of the truncated canard explosion is where the unstable cycle grows into a
saddle homoclinic, the saddle being the singularity near the middle branch
of the critical curve. See Figure 7.

The proof of existence of canard-type homoclinics can for example be
found in [27]. Note that because the saddle singularity is on the unstable
branch, this causes the nearby periodic orbits of canard type to be hyper-
bolically unstable, this can be deduced from the results in [27].

3.1.3 Slow-fast Hopf bifurcations on SN∩(SH` ∪SHr)

On the SN-locus, a saddle-node type singularity is found in the slow dynam-
ics. Just like in the previous case, a homoclinic canard-type orbit is found;
we again refer to [27] for details on a method of proof.

4 Criticality of the singular Hopf bifurcations

In case of a slow-fast Hopf point, it still has to be determined which critical-
ity the Hopf bifurcation has (sub-critical versus super-critical, or degenerate
Hopf). The relaxation parameter regime in Fig. 2 is delimited by two sin-
gular Hopf curves. Of course it is important to realize that the figure is
made for ε = 0. If one were to picture the full diagram with a vertical ε
axis on top of the picture, a singular Hopf curve would be the vertex of an
exponentially small wedge inside which canard cycles are observed. These
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cycles are not necessarily stable. In fact the stability of small such cycles
is governed by the criticality of the Hopf bifurcation. In most occasions in
this model the criticality will point out that the canard cycles are unstable
from the onset. In that case, one automatically finds saddle-node of limit
cycles as one approaches the boundary of the exponentially small wedge.
Dynamically it means that inside the relaxation-type cycle there is a region
delimited by an unstable canard-type cycle. The canard cycle separates the
basin of attraction of the relaxation cycle from the basin of attraction of the
singular (focus) point. It may be relevant in applications to point out that
in these models the relaxation cycle is not a global attractor in all cases,
but that in some spurious “canard” cases, part of the phase space will not
be attracted to the cycle.

One method to compute the criticality is to bring the system in normal
form and compute the first Lyapunov coefficient using [21], but it reveals
that the normal form computation is not so easy. We have opted to use
the intrinsic formula for the Lyapunov coefficient found in [28]. Of course,
computations are unavoidable also in this case, but they are manageable.
Let us describe the result of [28] using the decomposition X = FZ+ εQ. To
that end, a first ingredient is the scalar

A =
Z3(F )

Z2(F )2
.

Here, Z2(F ) and Z3(F ) are iterated evaluations of the Lie derivative of F
w.r.t. the vector field Z; the additional superscript 2 in the denominator is
just a square. Second ingredient is

G = Ω(Q,Z).Ω(∇F,∇(ZF )).

Here, ∇ is the gradient of a function, in our case ∇F = (∂F∂q ,
∂F
∂p ), because

we chose to work in the (q, p)-plane. It is shown in [28] that it does not
matter in which coordinates the gradient is being computed. Ω is an area
form in general, but in our case it is just the determinant of a matrix where
the two vectors are written as columns. (Should one want to compute the
gradient in different coordinates, then the area form needs to be adapted
accordingly.) Third ingredient is the unique vector field V that satisfies

V (F ) = 0, V (Z(F )) = 1.

Theorem 1. [28] If at a slow-fast Hopf point at which a slow-fast Hopf
bifurcation takes place, the value of

σ :=
1

2
V 2(G)− V (G)A

21



is strictly positive, then the Hopf bifurcation is subcritical, when it is neg-
ative, the bifurcation is supercritical. When σ = 0, a degenerate slow-fast
Hopf bifurcation takes place of at least degeneracy order two.

Computing A

We have

Z(F ) =
−3kqq

2 + 2k3q − k4kq + 2pq

q2 + k4
,

Z2(F ) = 2
k3q

2 + 2k4kqq + pq2 − k3k4 − k4p
(q2 + k4)3

,

Z3(F ) = 4
2k3q

3 + 5k4kqq
2 + 2pq3 − 4k3k4q − k24kq − 4k4pq

(q2 + k4)5
.

At a singular contact point 3 conditions are satisfied:

F = 0, Z(F ) = 0, Q(F ) = 0.

Instead of solving the equations w.r.t. the phase variables it reveals conve-
nient to solve the system w.r.t. (p, k1, k3):

p =
kq(q

2 + k4)
2

2k4q
, k1 =

kpkq(q + k2)(q
2 + k4)

2

2k4q
, k3 =

kqq(k4 − q2)
2k4

. (9)

Evaluating the expressions at a singular contact point simplifies them:

Z(F ) = 0, Z2(F ) = −kq
k4 − 3q2

q(q2 + k4)2
Z3(F ) = −12kq

k4 − q2

(q2 + k4)4
.

This leads to the following expression for A:

A = −12q2
k4 − q2

kq(k4 − 3q2)2
.

Computing G

Next, we compute G. Using ∇ = ( ∂∂q ,
∂
∂p), we first calculate

Ω(∇F,∇ZF ) =

∣∣∣∣∣ 3kqq2−2k3q+k4kq−2pq 2
−k3q2−2k4kqq−pq2+k3k4+k4p

(q2+k4)2

−q2 2q
q2+k4

∣∣∣∣∣
= −2q

−3kqq
4+3k3q

3−2k4kqq
2+3pq3+k3k4q−k24kq+k4pq

(q2+k4)
2

= 2k4
−2kqq

3 + 3k3q
2 + k3k4

(q2 + k4)2
,
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where we have replaced p in the last expression by the value for p that solves
F = 0. We may do so since G is defined up to O(F ). We also need

Ω(Q,Z) =

∣∣∣∣∣ 0 − 1
q2+k4

−kpp+ k1
q+k2

0

∣∣∣∣∣
=
−k2kpp− kppq + k1

(q + k2)(q2 + k4)
.

We have not substituted p here because it actually makes the formula more
complicated. So from the above considerations we find

G = Ω(∇F,∇ZF )Ω(Q,Z)

= 2k4
−2kqq

3 + 3k3q
2 + k3k4

(q2 + k4)2
.
−k2kpp− kppq + k1

(q + k2)(q2 + k4)
.

Computing the vector field / differential operator V

It is elementary to check that

V := (q2+k4)2

2k4(−2kqq3+3k3q2+k3k4)

(
q2 ∂

∂q + (3kqq
2 − 2k3q + k4kq − 2pq) ∂∂p

)
is the unique vector field for which V (F ) = 0 and V (Z(F )) = 1. Note that
V , evaluated at a contact point, eg. using (9), simplifies to

V =
q(q2 + k4)

kq(k4 − 3q2)

∂

∂q
.

Similarly,

V 2 = V ◦ V =
2q(q2+k4)(k24+3k4q2−6q4)

k2q(k4−3q2)3
∂
∂q −

(q2+k4)2

kqq(k4−3q2)
∂
∂p + q2(q2+k4)2

k2q(k4−3q2)2
∂2

∂q2
.

Computing the first Lyapunov constant σ

Using the expression for V at a contact point, we easily find

V (G) = −kpkq
q(q2 + k4)

2k4(q + k2)
.

And a bit more involved computation (preferably aided by some computer
algebra program) leads to

V 2(G) = kp
k22k

3
4+k2k

3
4q+k

2
4(k4−6k22)q2−4k2k24q3+k4(9k22+k4)q4
k4(k4−3q2)2(q+k2)2

+ kp
21k2k4q5+7k4q6−6k2q7−9q8

k4(k4−3q2)2(q+k2)2 .
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k3 k3

k2 k2

Figure 8: (k3-families of) special points on SH` (left) and SHr (right). The
dotted line is SH`r. The dashed curve is SN (the inside of the wedge is
to the left of it). The solid line is the zero set of σ, i.e. the degenerate
Hopf point. Below of the solid line, the Hopf bifurcations are supercritical,
elsewhere the Hopf bifurcations are subcritical.

Putting all things together we find

σ = kp
σ̄(k2, k4, q)

2(q + k2)2(k4 − 3q2)2

where

σ̄(k2, k4, q) := k4(k4 − 3q2)2k22 + q(6q6 + 21k4q
4 − 16k24q

2 + k34)k2

+ (3q8 + 7k4q
6 − 11k24q

4 + k34q
2).

In Figure 8, we show the zero set of σ. From the picture it can be seen
that any degenerate Hopf point lies outside the SN wedge. For all values of
k3 there is a change in criticality along the SHr branch, also for sufficiently
large values of k3 this happens on the SH` branch.

Remark 6. On the majority of the SH` and SHr branches, the Hopf bifur-
cations render unstable cycles. It means that for the relaxation cycle in the
nearby relaxation-oscillation region will collapse together with the rapidly
growing canard cycle in a saddle-node of limit cycles (SNLC) bifurcation.
As one moves along SH` or SHr in increasing k2 direction, starting from
the double Hopf point, the amplitude of the SNLC will grow up to the SN
locus. The detailed study of the SNLC bifurcation involves computing slow
divergence integrals and go beyond the scope of this paper.
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5 Discussion

In this paper, using geometric singular perturbation theory, we described
the dynamics of (2) in the (k1, k2) parameter space. In particular, we iden-
tified a region where the model possesses co-existing stable equilibria. Also,
we established the existence of relaxation oscillations, stable limit cycles
surrounding singularities. Last but not least, we gave a detailed description
of the transition process starting with small periodic orbits and resulting in
relaxation oscillations. It is important to remark that although this tran-
sition is developing in a very narrow range of the bifurcation parameter, it
may have long lasting effects. For instance, if dynamics affecting parameters
are changing slowly, for instance as a result of prolonged ageing processes,
the system can spend a considerable amount of time in the canard explo-
sion regime. Therefore, it is crucial to understand the dynamical properties
of these small oscillations. When determining stability properties of canard
solutions, to avoid the challenging and lengthy computations of normal form
reduction, we used a novel method presented in [28].

The stability of relaxation cycles, if present, are clear from the analysis:
they are always (strongly) stable. It is much less clear for the canard cycles.
This paper shows the extent to which one can compute the stability of
such cycles analytically in a realistic manner: we have obtained a formula in
closed form expressing the stability of the Hopf bifurcation, but it reveals not
possible without reverting to numerics to track the saddle-node of canard
limit cycles further away from the Hopf point. To do so one would have
to compute the so-called slow-divergence integrals, but computations were
found to be too cumbersome. From the criticality computations we are
nevertheless able to infer that in the canard region the relaxation cycle is
not globally stable as the interior of the coexisting unstable canard cycle is
attracted to the singular point instead.
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