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Abstract

A major outbreak of the Ebola virus occurred in 2014 in Sierra Leone. We investigate the

spatial heterogeneity of the outbreak among districts in Sierra Leone. The stochastic dis-

crete-time susceptible-exposed-infectious-removed (SEIR) model is used, allowing for

probabilistic movements from one compartment to another. Our model accounts for hetero-

geneity among districts by making use of a hierarchical approach. The transmission rates

are considered time-varying. It is investigated whether or not incubation period, infectious

period and transmission rates are different among districts. Estimation is done using the

Bayesian formalism. The posterior estimates of the effective reproductive number were sub-

stantially different across the districts, with pronounced variability in districts with few cases

of Ebola. The posterior estimates of the reproductive number at the district level varied

between below 1.0 and 4.5, whereas at nationwide level it varied between below 1.0 and

2.5. The posterior estimate of the effective reproductive number reached a value below 1.0

around December. In some districts, the effective reproductive number pointed out for the

persistence of the outbreak or for a likely resurgence of new cases of Ebola virus disease

(EVD). The posterior estimates have shown to be highly sensitive to prior elicitation, mainly

the incubation period and infectious period.

Introduction

Ebola, also known as Ebola hemorrhagic fever, is a rare and deadly disease caused by an infec-

tion of one of the Ebola virus strains. Ebola can cause diseases in humans and nonhuman pri-

mates (monkeys, gorillas, and chimpanzees) [1]. EVD is mainly transmitted through direct

contact with infected bodily fluids and contaminated materials. At the early stage, the disease

is characterized by initial-flu symptoms, high fever, severe headache followed by pharyngitis

and abdominal pain, whereas the late stage of the disease is marked by vomiting, diarrhea,

rash, and internal and external bleeding [2]. The disease was first identified in Sudan and Zaire

in 1976 where it infected over 284 people with a mortality rate of 53%, and subsequently, few
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months later after the first outbreak, another outbreak emerged in Yambuku, Zaire, affecting

315 and killing 254 people [3].

In March 2014, a major Ebola outbreak emerged in Guinea, being declared by the World

Health Organization as the largest ever documented outbreak in western African region. Later,

the disease propagated to Liberia, Sierra Leone and Nigeria, and as of May it was reported that

27,443 people contracted the disease and about 11,207 died from EVD [4]. Furthermore, it is

also reported that among all countries, Sierra Leone was the worst affected country, with

13,534 confirmed, probable, and suspected cases, as of 23rd May 2014 [5]. In light of this sce-

nario, the government of Sierra Leone declared a State of Emergency on 6 August 2014 which

was followed by 3 day nationwide quarantine on 19-21 September 2014 [6]. The EVD not only

forced restricted measures in Sierra Leone, but also urged the World Health Organization to

declare the Ebola outbreak as an international public health problem of extreme emergency,

turning it into a worldwide problem [4, 7].

The recurrent occurrence of Ebola outbreaks has boosted up the interest in understanding

the dynamic transmission of the disease, and since its first outbreak in 1976 many studies have

been carried out. For instance, Chowell et al. [8] analysed the Congo and Ebola outbreak data

using a deterministic susceptible-exposed-infectious-removed (SEIR) model, coming up with

deterministic ordinary differential equations for all the model parameters taking into account

the effects of public health measures. Althaus [9] studied the Ebola outbreak data from Liberia,

Guinea, and Sierra Leone, using a similar approach as [8], giving country-specific estimates.

Both Chowell et al. [8] and Althaus [9] assume that the transmission rate is constant in the

early days of the epidemic and decays exponentially with intervention measures. Nishiura and

Chowell [10] and Chowell and Nishiura [11] give a review of epidemic modeling performed

during the 2014 outbreak in Sierra Leone, Guinea and Liberia. Santermans et al. [12] present

an extension of the SEIR model which incorporates disease-related mortality by making the

distinction between survivors and non-survivors. Recently, Frasso and Lambert [13] analysed

Ebola outbreak from Sierra Leone using an almost identical approach as Santermans et al.

[12], though they use penalized B-splines to model the transmission rate, and in addition to

that, use the Bayesian inferential framework for estimation.

Despite the vast number of studies in the framework of modeling infectious disease, the vast

majority of studies use deterministic models, mainly susceptible-infectious-removed (SIR) in

which the transition rates between states are estimated based on a system of ordinary differential

equations. Further, oftentimes, such models are fitted to cumulative cases, which are extremely

inter-correlated violating the assumption of independence required from fitting methods such

as ordinary least square or maximum likelihood [14]. King et al. [15] argue that such models

should be avoided, as they tend to overestimate the predictions on the course of the epidemic

and substantially underestimate the uncertainty around the estimates and the predictions. As a

matter of fact, stochastic models which have room for randomness are receiving increasing

attention in modeling infectious disease. Lekone and Finkenstädt [16] describe a stochastic

SEIR-model, as a counterpart of the deterministic SEIR model proposed by Chowell et al. [8].

In this manuscript, we investigate the spatio-temporal heterogeneity among all districts of

Sierra Leone during the 2014 Ebola outbreak. Similar to Lekone and Finkenstädt [16], we use a

stochastic-discrete SEIR model. Existing methodology, oftentimes, when fitting stochastic-dis-

crete-time SEIR model, either consider fitting the model at aggregate national level data or

conduct separate analyses for aggregate county level data. The latter approach, when the num-

ber of counties is considerably large, can be cumbersome. In this article, we use the Bayesian

hierarchical framework to investigate the heterogeneity in the transmission among districts to

better understand and model the disease outbreak. Transmission rates are allowed to be time-

varying.
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The rest of the paper is organized as follows. In the methodology section we present the

data used for this study and with a brief review of the approach by Lekone and Finkenstädt

[16] and its translation into the Bayesian hierarchical framework. In the result section, we pres-

ent the posterior estimates of key epidemiological parameters and also evaluate the temporal

variation of the estimated effective reproductive number. Moreover, we assess the robustness

of the model with respect to the prior distributions. We then end the manuscript with a discus-

sion, including conclusions, and recommendations for further research.

Materials and methods

Data description

The data comprise of cumulative cases of EVD from 3 July 2014 to 27 June 2015 reported by

the Sierra Leone Ministry of Health and Sanitation [5]. Throughout the aforementioned

period, the country reported a total of 12,790 Ebola cases, which is a summation of all con-

firmed, probable, and suspected cases. The weekly number of cases in Sierra Leone is pre-

sented in Fig 1A. Over the course of the epidemic, the country registered its highest peak in

October 2014 reporting a total of 865 cases in a week. After 23 October 2014, the number of

new cases started decreasing, and another peak was observed in April 2015. Fig 1B shows the

final size of the outbreaks in the different districts of Sierra Leone. Among all district, Western

Urban, Port Loko, and Western Rural were the most affected by the epidemic, reporting a total

of 3459, 2108, and 1634, respectively, while Pujehun and Bonthe were the least affected, report-

ing a total of 89 cases each.

In the beginning of the epidemic, the data were recorded every two to three days, and later

on a daily basis. As the data were irregularly reported throughout the outbreak period, for

practicability and for reasons that will be clear later, we worked with weekly data. While the

reported data are cumulative cases of EVD, we use incidence data. In mathematical perspec-

tive, both cumulative and incidence data convey the same information, which is not true in

statistical perspective, as cumulative incidence data are correlated. Furthermore, fitting epi-

demic models to cumulative incidence data can lead to erroneous conclusions—bias, underes-

timation in the epidemiological quantities and forecasts [15, 17] As the reported cumulative

cases are not monotonically increasing curves, we monotonized the cumulative cases using the

PAVA algorithm [18], before computing the newly cases of EVD, to avoid the occurrence of

negative newly cases of EVD.

Fig 1. Data from 2014 Ebola outbreak in Sierra Leone from July 3, 2014 to June 27, 2015. (A) Daily counts of Ebola

weekly counts. The red dotted vertical lines show the starting points of the epidemic in districts where the epidemics

starts later. (B) Total number of Ebola cases by districts.

https://doi.org/10.1371/journal.pone.0250765.g001
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In some districts, the epidemic started later (see vertical lines in Fig 1A for the dates of first

reported case). We assume that there were no cases in districts for weeks where there was no

record of EVD.

Transmission model

To study the dynamic transmission of EVD, we use a stochastic discrete-time SEIR-model pro-

posed by Lekone and Finkenstädt [16] which is a counterpart of a deterministic SEIR-model

used by Chowell et al. [8] and Althaus [9] as shown in Eq (1). The SEIR model assumes that

the population is divided into 4 compartments: the susceptible compartment S, the exposed

compartment E, the infected compartment I and the removed compartment R (which includes

all individuals who either recover from the disease or die). The deterministic model is given by

the following nonlinear ordinary differential equations ([8, 9, 19])

_SðtÞ ¼ � bðtÞSðtÞIðtÞ=N

_EðtÞ ¼ bðtÞSðtÞIðtÞ=N � %EðtÞ

_IðtÞ ¼ %EðtÞ � gIðtÞ

_RðtÞ ¼ gIðtÞ;

ð1Þ

where S(t), E(t), I(t) and R(t) denote the number of susceptible, exposed, infected and recov-

ered individuals at time t, and _SðtÞ, _EðtÞ, _IðtÞ and _RðtÞ their corresponding derivatives with

respect to time. Individuals in the susceptible compartment S enter the exposed compartment

E at rate β(t)I(t)/N, with β(t) the per capita transmission rate and N the population size. Indi-

viduals in the exposed compartment E move to the infectious compartment I at a per capita

rate % and from the infectious compartment enter the removed compartment R at per capita

rate γ.

The stochastic discrete-time SEIR-model relates directly to its deterministic counterpart Eq

(1), but assumes that the transitions from one compartment to another are probabilistic. Let B
(t) record the number of susceptible individuals who become infected, C(t) the number of

cases by date of symptom onset, and D(t) the number of cases who are removed (either die or

recover from the disease) from the infectious compartment within the time interval (t, t + h],

where h represents the difference between the time points at which data are collected. As the

data were not collected on a daily basis, and to facilitate matters, h is set to be equal to 1 week.

The transitions from one compartment to another are shown in Fig 2. Consider that after

being infected, individuals stay in the exposed population for a random duration T1, and then

they are infectious for a random duration T2 before leaving the infectious population. Similar

to Lekone and Finkenstädt [16], it is assumed that both T1 and T2 are independent and identi-

cally distributed according to an exponential distribution with rate % and γ, respectively. Dur-

ing their infectious period, they expose new individuals according to an in-homogeneous

Fig 2. Representation of SEIR-model. Dynamics of the susceptible (S(t)), exposed (E(t)), infectious (I(t)) and

recovered (R(t)) individuals. Solid arrows denote transitions between states. Dotted arrow indicates that transmission

depends on the interactions between (S(t)) and (I(t)).

https://doi.org/10.1371/journal.pone.0250765.g002
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Poisson process with intensity bðtÞ IðtÞN . As a result, the transition probability from one state to

another is given by 1 − exp(−λ(t)h), where λ(t) denotes the transition rate
bðtÞIðtÞ

N , % and γ for

susceptible to exposed, exposed to infectious, and infectious to removed compartment, respec-

tively. This discrete-time stochastic model can be written as the following set of difference

equations ([16]):

Sðt þ hÞ ¼ SðtÞ � BðtÞ

Eðt þ hÞ ¼ EðtÞ þ BðtÞ � CðtÞ

Iðt þ hÞ ¼ IðtÞ þ CðtÞ � DðtÞ

Sðt þ hÞ þ Eðt þ hÞ þ Iðt þ hÞ þ Rðt þ hÞ ¼ N

ð2Þ

with initial condition S(0) = s0, E(0) = e0 and I(0) = i0. The transition from one state to the

other is modeled as

BðtÞ � BinðSðtÞ; PðtÞÞ; CðtÞ � BinðEðtÞ; pCÞ; DðtÞ � BinðIðtÞ; pRÞ ð3Þ

with

PðtÞ ¼ 1 � exp �
bðtÞIðtÞ

N
h

� �

; pC ¼ 1 � expð� %hÞ; pR ¼ 1 � expð� ghÞ: ð4Þ

which resembles a discrete-time-Markov-chain process.

From this model, one can see that the transitions from one state to another are governed by

the binomial distributions in Eq (3). Lekone and Finkenstädt [16] assume that the time-vary-

ing transmission rate β(t) is constant until the point when control measures are introduced

and thereafter decreases exponentially. This is a very popular assumption in the literature of

susceptible-infectious-removed (SIR) and SEIR-model. However, this assumption seems to be

rather restrictive as not only intervention measures play a role in reducing the appearance of

new exposures. As an alternative, we propose to model the transmission rate β(t) as a step

function, i.e,

bðtÞ ¼
XK

k¼1

bk1Ak
ðtÞ; ð5Þ

where K> 0, βk are transmission rates over some intervals Ak, and 1A is the indicator function

of A. We assume that the interval Ak spans a period of one month, that is, for each month the

transmission rate is constant. Alternatively, instead of taking equally fixed spaced periods of 30

days, one could estimate the number of change points, i.e, the points at which the transmission

rate changes. Nevertheless, such formulation brings more complexity into the model [20].

Another assumption of the model in Lekone and Finkenstädt [16] is that the population

mixed homogeneously (each individual is equally likely to contract the disease). This assump-

tion is very common in SIR and SEIR models. Nevertheless, this assumptions is known to be

unrealistic as mixing in the population depends on many factors, such as age (children usually

have more effective contacts than adults), susceptibility to disease, position in space and the

activities and behaviors of individuals [21, 22]. In order to relax this assumption, we will inves-

tigate a stochastic discrete-time multi-population version of Eqs (2) and (3). Let Sj(t), Ej(t), Ij(t)
and Rj(t) denote the total number of susceptible, exposed, infectious, and recovered in district

j, respectively (j = 1, 2, . . ., n). Similarly Bj(t), Cj(t) and Dj(t) denote the number of susceptible

individuals that become infected, the number that become cases and the number of cases who
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are removed in district j, respectively. The stochastic multi-population SEIR model is given by

the following set of difference equations:

Sjðt þ hÞ ¼ SjðtÞ � BjðtÞ

Ejðt þ hÞ ¼ EjðtÞ þ BjðtÞ � CjðtÞ

Ijðt þ hÞ ¼ IjðtÞ þ CjðtÞ � DjðtÞ

Sjðt þ hÞ þ Ejðt þ hÞ þ Ijðt þ hÞ þ Rjðt þ hÞ ¼ Nj:

ð6Þ

Here it is also assumed that in each district the movements from one state to another are gov-

erned by the binomial distribution given in Eq (3), but now with district-specific parameters

βj(t), %j and γj. Likewise, as in the single population discrete time stochastic model, interest lies

in estimating the district-specific transmission rates bjðtÞ ¼
PK

k¼1
bjk1Ak

ðtÞ, incubation periods

(1/%j), and infectious periods (1/γj).
We make use of a hierarchical (random-effects) approach for the time- and district-specific

parameters of interest. This not only helps to borrow information from neighboring time peri-

ods or regions, it also helps in avoiding the over-fitting due to numerous parameters [23]. For

the district-specific transmission rates βj(t), it is assumed that βjk also have district-specific

mean and variability, that is,

bjk � N ðmbj; s2
bjÞ:

Note that in this formulation, we allow exchange of information overtime, rather than geo-

graphically. Likewise, independent normal random effects for the district-specific incubation

period and infectious period are chosen:

1=%j � N ðm1=%; s
2
1=%
Þ

and

1=gj � N ðm1=g; s
2
1=g
Þ:

One should keep in mind that, contrary to the district-specific transmission rates, where the

smoothing is done overtime, for the incubation period and infectious period the smoothing is

done spatially. This is a very flexible model, allowing all parameters to be district-specific. We

will investigate whether or not there is heterogeneity in these parameters across districts, or

whether it is plausible to assume that these parameters are constant across districts. Therefore,

two additional models are considered. First, we simplify the model by assuming that the incu-

bation period and infectious period are no longer district-specific but common across the dis-

tricts. Further, the model is modified by assuming that the district-specific transmission rates

not only exchange information temporally but also geographically, that is, bjk � N ðmb; s2
b
).

The former and the latter are termed as Model 2 and Model 3, respectively.

The effective reproductive number

Of major interest is the basic reproduction number generally denoted by R0. It is defined as

the average number of new cases generated by a single infectious individual throughout her/

his infectious period when introduced into a totally susceptible population [24]. The basic

reproduction number (R0) is of vital importance to assess the future outcome of the epidemic

—if R0� 1, the epidemic will die out, and if R0 > 1, the epidemic will take off. However, the
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basic reproduction number, as defined by Diekmann et al. [24], only applies to the beginning

of the epidemic.

Therefore, we rather consider the effective reproductive number, Rt, defined as the expected

number of secondary cases per primary case over the course of the epidemic [10]. The effective

reproduction number is of extreme importance as it accounts for external influences on trans-

mission such as variations in human behavior and introduction of intervention measures. For

model Eqs (1) and (2), Lekone and Finkenstädt [16] and Chowell et al. [8] define the effective

reproduction number as follows:

Rt ¼
bðtÞ
g

SðtÞ
N
: ð7Þ

If one considers that the size of the outbreak is negligible as compared to the total popula-

tion size, i.e, S(t)� N, the effective reproduction number can be approximated by Rt� β(t)/γ.

This approximation is also valid for model Eq (6).

Inference and model building

The multi-population discrete time stochastic model Eq (6) is fitted to weekly incidence data.

From this model, only the time series C(t) (the number of cases by date of symptom onset) is

observable. The absence of information on exposure, as well as on recovery hinders the estima-

tion process through maximum likelihood. Therefore, the Bayesian paradigm implemented

through MCMC methods is implemented. This approach allows one to numerically integrate

over the probability distribution of the unobserved processes [16, 25]. The unobserved data on

exposure B(t) and on recovery D(t) are imputed using the conventional Metropolis-Hastings

algorithm [26]. Moreover, the Bayesian framework paradigm allows to encompass parameter

uncertainty and incorporate prior information in the estimates of transmission rate, incuba-

tion period, and infectious period.

The formulation of the Bayesian paradigm depends on the elicitation of the prior distribu-

tions on the parameters. Because of limited information in incidence data about the infectious

period and incubation period, and the unobserved components in the SEIR model, informa-

tive priors will have to be used on these parameters to enhance valid model estimation. There-

fore, informative hyper-priors on the mean transmission rate μβj, mean incubation period μ1/%,

and mean infectious period μ1/γ are chosen based on previous studies on Ebola. The following

priors were chosen mbj � N ð1:4; 0:00142Þ, m1=% � N ð1:29; 0:007Þ, m1=g � N ð1; 0:00064Þ. The

variance parameters are given an inverse gamma prior, IG(100, 1). These elicited priors are in

line with other studies on Ebola outbreaks [13, 16, 27, 28]. Furthermore, for Model 2, it is no

longer assigned an hyper-prior to the distribution of incubation period and infectious period

but instead it is considered that 1=% � N ð1:29; 0:007Þ and 1=g � N ð1; 0:00064Þ, and for

Model 3 it is assumed that mb � N ð1:4; 0:00142Þ, with the same priors on the incubation

period and infectious period as Model 2. Note that, to address identifiability issues, the elicited

prior distribution for the mean transmission rate and the infectious period are tighter than

those specified by Lekone and Finkenstädtand [16], and Frasso and Lambert [13]. The initial

numbers for the model were taken as follows: Sj(0) = Nj − Ej(0) − Ij(0). To find compatible val-

ues of Ej(0) and Ij(0) with the observed incidence data, uniform vague priors were assigned to

the number of exposed and infected individuals at the start of the epidemic, Ej(0) * U(0,

1000) and Ij(0) * U(0, 20), and thus, allowing them to be estimated from the data.

To evaluate the joint posterior distribution, a chain of 500k iterations with thinning of 100

was considered. Posterior estimates were computed after discarding a burn-in of 100k itera-

tions. Adequacy of model fit was assessed by means of the Deviance Information Criterion
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(DIC) [29], where a lower DIC provides a good balance between model fit and complexity.

Moreover, stochastic simulations were used to assess the performance of the selected best can-

didate model, by means of DIC. Evaluation of the posterior distribution was done using JAGS

version 4.3.0. JAGS was run using the package jagsUI [30] from R, a statistical computing soft-

ware [31]. The code used to evaluate the posterior distribution is available at https://github.

com/RachidMuleia/Sierra_Leone_Data/blob/master/SEIR_epidemic_model_code.

Results

District specific posterior estimates

Three scenarios were considered. The first scenario is the most flexible, allowing all model

parameters to vary across the districts (incubation period, infectious period, mean transmis-

sion rate and variance of the transmission rate). In the second scenario, the model is gradually

simplified model, assuming incubation period and infectious period common across the dis-

tricts. Then, the model is further simplified by considering that the mean transmission rate is

not district-specific but common, allowing the districts to exchange information in the estima-

tion of the transmission rate. Among all the models, Model 3 outperforms all the other models,

reporting the lowest DIC 7290.034. Next follows Model 2, with the second lowest DIC

8284.402. Model 1, considered being the most flexible, based on DIC, appears to result in the

worst fit DIC = 8977.134. Hence, we see that it is more plausible to assume a common incuba-

tion and infectious period. This is also confirmed by the agreement of the posterior estimates

under Model 1 and Model 2 (see S1 and S2 Tables). Therefore, inference follows considering

Model 3. Additional discussion on the plausibility of Model 3 is presented in the Appendix.

Table 1 shows the posterior summary statistics for mean transmission rate (μβ), incubation

period (1/%), infectious period (1/γ), and the variance of the transmission rate ðs2
b
Þ. From this

table, it is observed that the posterior mean transmission rate is estimated at 1.21 weeks−1

(95% CI: 1.14—1.28). It is also observed that the incubation period is estimated to be 2.30

weeks (95% CI: 2.20–2.43) and the infectious period is estimated at 1.07 weeks (95% CI: 1.03—

1.11). It is worth emphasizing that the posterior estimate of the mean transmission rate and

the infectious period are a reflection of the information contained in the prior distribution, as

the available incidence data contain only limited information about these parameters. This is

exactly why these parameters are informed by the information from literature.

The Bayesian inference also allowed us to estimate the effective reproductive number (Rt) at

each iteration. The posterior temporal variation of Rt, for each of the 14 districts, is displayed

in Fig 3. It can be seen that the reproductive number ranges from below 1 to 5.2. Additionally,

it is apparent that the effective reproductive number is consistent with the data as illustrated in

Fig 3. Nevertheless, it can be seen that in districts with less data, the posterior effective

Table 1. Posterior summary statistics for Model 3 on district specific data.

Quantiles

Parameters Mean SD 2.5% 50% 97.5%

Mean transmission rate (μβ) 1.21 0.04 1.14 1.21 1.28

Incubation period (1/%) 2.30 0.05 2.20 2.30 2.40

Infectious period (1/γ) 1.07 0.02 1.03 1.07 1.11

Transmission rate variance (s2
b
) 0.42 0.04 0.34 0.41 0.51

The posterior summary statistics are computed from a chain of 500k iterations after a burn-in of 100k iterations. This model assumes that the mean transmission rate,

the incubation period and the infectious period are common for all the districts.

https://doi.org/10.1371/journal.pone.0250765.t001
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reproductive number shows substantial uncertainty. We observe that in Bo, Bonthe, Pujehum

and Moyamba the effective reproductive is below 1.0, almost through the entire period. This

suggests that in these districts there was no major Ebola outbreak, that is, the outbreak could

not sustain itself. In the districts Bombali, Western Area Rural, Western Area Urban and Port

Loko, we observe, in the early weeks of the epidemic, an increase of the effective reproductive

number, and sometimes a decrease is observed in December. Furthermore, around April and

July 2015, in almost all districts (Bo, Bombali, Bonthe, Kono, Moyamba, Tonkolili and West-

ern Area Urban) we observe a rise in the effective reproductive number, a pattern that accom-

panies the data. The rise of the effective reproductive number in the late weeks of the epidemic

could be associated to resurgences of new cases of EVD.

Assessing the fit

To assess the fit of our model, we do not only use the DIC but we also perform a stochastic

simulation using the obtained posterior distribution. The fit is assessed by comparing the sim-

ulated incidence data with the observed curves of EVD. The simulated incidence data are

obtained by first randomly sampling 100 vectors of the marginal posterior distribution, (βj(t),
1/%, 1/γ, E(0), I(0)), and then simulate one epidemic for each sampled vector. The simulated

curves together with the observed incidence data, for the district-specific model, are displayed

in Fig 4. To have a clear depiction of the simulated data and the observed incidence data, they

are plotted in logarithm scale—log10(x + 1). From this figure, it can be observed that the model

manages to predict the course of the epidemic very well, with some digressing patterns for dis-

tricts with few cases of EVD (Bonthe, Koinadugu, Kambia and Pujehun). This suggests that

the multi-population SEIR model does not provide a good fit for districts with sporadic cases

of EVD. In fact, Getz et al. [32] studied the adequacy of SEIR model for the EVD outrbeak in

Sierra Leone when the epidemic has a spatial structure and noted that the model fails to pro-

vide a good fit for districts with few cases of EVD, and as a remedy, they opt to ignore districts

with few or sporadic cases of EVD.

Nationwide posterior estimates

Besides the district-specific analysis, we have also conducted a nationwide analysis. This analy-

sis is performed considering the least complex model, that is, Model 3. Similar prior

Fig 3. Effective reproductive number (black solid line) with its 95% credible interval. The horizontal dashed red

line corresponds to Rt = 1. The vertical dashed red line indicates where exactly the epidemic starts. These results

correspond to the model with informative priors. The curves were produced based on Model 3. The model assumes

constant mean transmission rate, constant incubation and constant infectious period across the districts.

https://doi.org/10.1371/journal.pone.0250765.g003
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distributions as in the district-specific scenario have been assumed. Posterior estimates of μβ,
1/%, 1/γ, and s2

b
are reported in Table 2. It can be seen that μβ is estimated at 1.22 weeks−1. The

incubation period and the infectious period are estimated at 1.66 weeks and 1.08 weeks,

respectively. It can be clearly noted that the posterior estimates of these parameters are approx-

imately equal to the means of their respective prior distributions. This is due to the fact that

only limited information is contained in the incidence data about the mean transmission rate

and the infectious period. Moreover, it can be observed that the posterior estimates of the

mean transmission rate and the infectious period of the nationwide model are very similar to

their counterparts in the district specific analysis. This is expected, as the information on these

parameters come predominantly from the elicited prior distribution. With regards to the incu-

bation period, it is observed that the model on nationwide data provides smaller posterior

estimates.

The nationwide analysis also allowed us to compute the posterior curve for the effective

reproductive number. Fig 5A shows the posterior estimate of Rt. It can be observed that the

reproductive number, in the entire outbreak period, varies from below 1.0 to 2.5. In the dis-

trict-specific analysis, it was noted that the interval was much wider as compared to the nation-

wide analysis. This could be attributed to the fact that, in the district-specific analysis, the data

is rather sparse. Moreover, the curve of the effective reproductive number illustrates a repro-

ductive number greater than one before November. This result was also observed in most of

the districts in the district-specific analysis, mainly in districts with larger outbreak. The graph

further reveals that the pattern of the effective reproductive number is consistent with the

Fig 4. Stochastic simulation of the incidence data obtained from the joint posterior distributions of (βj(t), 1/%, 1/

γ, E(0), I(0)). The simulated data and the observed incidence data are displayed on the logarithm scale. The solid blue

curve represents the observed incidence data and the solid gray curves represent the simulated incidence data.

https://doi.org/10.1371/journal.pone.0250765.g004

Table 2. Posterior summary statistics for Model 3 on nationwide data.

Quantiles

Parameters Mean SD 2.5% 50% 97.5%

Mean transmission rate (μβ) 1.22 0.04 1.15 1.22 1.30

Incubation period (1/%) 1.66 0.07 1.53 1.66 1.79

Infectious period (1/γ) 1.08 0.02 1.03 1.08 1.12

Transmission rate variance (s2
b
) 0.0403 0.0050 0.0313 0.0400 0.0512

The posterior summary statistics are computed from a chain of 500k iterations after a burn-in of 100k iterations.

https://doi.org/10.1371/journal.pone.0250765.t002
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observed data. As a matter of fact, the epidemic starts declining around December, hence it

can be observed that, from December onward, the effective reproductive number is below one.

This suggests that the models nicely describes the epidemic. As in the district-specific scenario,

we also assess the fit of the model on the nationwide data by running stochastic simulations.

The simulated incidence data together with the observed Ebola incidence data are presented in

Fig 5B. The simulated epidemic curves are consistent with the observed data, suggesting that

the parameters are reasonably well estimated.

Sensitivity analyses

To assess the robustness of our estimates with respect to the specification of prior distribution,

a sensitivity analysis is conducted on Model 3 and on the nationwide model. Weakly informa-

tive priors are assigned on the μβ, 1/% and 1/γ, by slightly increasing the variance of the previ-

ously specified prior; that is, mb � N ð1:40; 0:0142Þ, m1=% � N ð1:29; 0:07Þ and

m1=g � N ð1; 0:0064Þ. The results from these analyses are shown in Table 3, and in S3 and S4

Figs. From the table, a considerable change in the posterior parameter estimates for both dis-

trict-specific and nationwide model is observed. The results further suggest that a “loose” prior

distribution leads to a larger incubation period and larger infectious period. It can also be

noted that the posterior estimates for the district-specific model and the nationwide model are

quite similar, except for the variance of the transmission rate. Additionally, it is noted that

there are no substantial changes in the patterns of the effective reproductive number. However,

considerable uncertainty is observed, mainly in districts with few cases of EVD. Furthermore,

it is seen that posterior estimates of the effective reproductive number, under weakly informa-

tive priors, are slightly larger than those under informative priors. The larger amount of uncer-

tainty observed under weakly informative priors is expected because of the unobserved

components in the SEIR model (see S3 and S4 Figs). Note that the effective reproductive num-

ber obtained from the nationwide model does not show substantial uncertainty to the extent

as that obtained from the district specific model. This suggests that sufficient amount of data is

necessary for producing precise estimates.

We also investigated the plausibility of the assumption of a time dependent transmission

rate. To test this assumption, we assess the performance of our model when constant transmis-

sion rate is assumed, limiting the analysis to the nationwide data. The assumption of constant

Fig 5. Effective reproductive number and simulated incidence of EVD. (A) Posterior effective reproductive number

(black solid line) for the nationwide data with its 95% credible interval(shaded area). The horizontal red line

corresponds to the epidemic threshold, Rt = 1. The black dots correspond to the observed cases of Ebola. (B) Stochastic

simulation of the incidence data from the marginal posterior distribution of (β(t), 1/%, 1/γ, E(0), I(0)).

https://doi.org/10.1371/journal.pone.0250765.g005
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transmission rate applies only to the beginning of the epidemic (see Ganyani et al. [33]).

Therefore, the model with constant transmission rate is fitted to the EVD outbreak data con-

sidering only the first 17 weeks of the epidemic (at week 17 the outbreak reaches its peak).

When a constant transmission rate is assumed, we notice that R0 is estimated as 1.33. One can

also notice that the incubation period is slightly larger as compared to the incubation period

under the assumption of a time-dependent transmission rate. Regarding the infectious period,

the posterior estimate does not vary considerably. In fact, the posterior estimate for the infec-

tious period and for the transmission rate reflect the information coming from their prior dis-

tributions (see S3 Table). Although the estimates of the infectious period and the incubation

period only vary marginally, taking the transmission rate to be constant is not a plausible

assumption. As it can be seen from S5 Fig, assuming constant transmission rate substantially

under-estimates the predictions.

Discussion

In this article, we make use of a stochastic multi-population SEIR model, an extension of the

discrete-time stochastic model proposed by Lekone and Finkenstädt [16], to analyze the 2014

Ebola outbreak in all districts of Sierra Leone. In the model we account for heterogeneity

amongst district through a hierarchical model for the district-specific parameters, which allows

borrowing of information across neighboring regions [23]. Additionally, as local control mea-

sures and other unmeasured factors might play a role in the transmission process, district-spe-

cific time-varying transmission rates are considered. Other functional form such as P-splines

as been used by Frasso and Lambert [13] or Wiener processes as in Camacho et al. [34] could

have been used.

The proposed model was fitted to the weekly incidence data with the main purpose of tak-

ing the heterogeneity into account when estimating the transition parameters between com-

partments, together with the effective reproductive number. Likewise the model used by

Lekone and Finkenstädt [16], our model lacks information on exposure and recovery. The

Table 3. Posterior summary statistics for Model 3.

District-specific model

Quantiles

Parameters Mean SD 2.5% 50% 97.5%

Mean transmission rate (μβ) 0.71 0.06 0.59 0.71 0.83

Incubation period (1/%) 2.70 0.34 2.04 2.85 3.08

Infectious period (1/γ) 1.59 0.11 1.40 1.58 1.81

Transmission rate variance (s2
b
) 0.24 0.04 0.16 0.24 0.31

Nationwide model

Quantiles

Parameters Mean SD 2.5% 50% 97.5%

Mean transmission rate (μβ) 0.74 0.05 0.65 0.74 0.84

Incubation period (1/%) 2.14 0.14 1.88 2.14 2.41

Infectious period (1/γ) 1.49 0.06 1.37 1.49 1.62

Transmission rate variance (s2
b
) 0.026 0.003 0.020 0.026 0.033

The results in this table correspond to the posterior summary statistics for Model 3, which is fitted to district-specific and nationwide data, considering weakly

informative priors. The posterior summary statistic are computed from a sample of 500k iteration after a burn-in of 100k iterations.

https://doi.org/10.1371/journal.pone.0250765.t003
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absence of this information prompted us to use Bayesian formalism for parameter estimation,

with the incorporation of informative priors. Nevertheless, this induces an additional source of

variability, and this was confirmed by wider credible interval of the effective reproductive

number Rt. In the estimation process three scenario were considered: a flexible model allowing

all parameters to be districts specific, a model with constant incubation period and constant

infectious period, and a model with constant mean transmission rate, constant incubation and

constant infectious period. The results showed that the latter scenario—the one with constant

mean transmission rate, constant incubation period and constant infectious period—is the

most plausible. In fact, this was expected as incubation and infectious period are disease spe-

cific characteristic. Moreover, we have assessed the fit of our model through stochastic simula-

tions. The simulations revealed that our model (with common mean transmission rate and

constant incubation period and constant infectious period) appropriately describes the epi-

demic both at district and nationwide level.

The results showed no common pattern of the effective reproductive number across the dis-

tricts, indicating that intensity of transmission is highly variable across the districts. The esti-

mated reproduction numbers at district level ranged from below 1.0 to 4.5. These results are

consistent with a study by Kucharski et al. [35]. At nationwide level, the reproduction number

in the early stages of the epidemic was estimated to range from 1.0 to 2.9. These findings are in

line with Nishiura and Chowell [10]. The authors analysed the Sierra Leone Ebola incidence

data in the early stages of the epidemic and found reproduction numbers between 1.4 and 1.7.

Similarly, Althaus [9], using an ODE with a time-dependent transmission rate, estimated the

reproduction number for Sierra Leone to range between 1.0 and 2.5, in the early months of the

epidemic. Gomes et al. [36], using a multimodel inference approach and accounting for inter-

national spread, estimated the reproduction number for the Ebola outbreak in West Africa to

range from 1.5 to 2.5. Fisman et al. [37] found an overall estimate of the basic reproduction

number between 1.4 and 2.6 for the West Africa Epidemic. Nevertheless, for Sierra Leone in

particular, they probably overestimated the basic reproduction number at 8.33. Using viral

genetic sequencing data, Stadler et al. [38] reported a median estimate of R0 between 1.65 and

2.18. The WHO Ebola Response Team [27] also analysed the Ebola incidence data in three

most affected countries—Guinea, Liberia and Sierra Leone. They estimated for Sierra Leone

an R0 of 2.02 (1.79-2.26), which is in accordance with our estimates of Rt at district and nation-

wide level. The estimates of Rt herein are also consistent with previous small outbreaks in

Sudan and Zaire. The estimate of R0 for the Ebola outbreak in Zaire varied between 1.4 and

4.7, and in Sudan the estimate ranged from 1.3 to 2.7 [39]. Furthermore, we were able to con-

clude that Rt started decreasing around December to July 2015. Frasso and Lambert [13] also

concluded that the Rt approached 1.0 by the end of December 2014. Districts like Bo, Bonthe,

Kambia, Koinadugu and Pujehum showed a fluctuation of Rt around the threshold overtime,

suggesting that the epidemic is not sustainable. The fluctuation around the threshold could be

an indication of the effectiveness of the control measures in these districts. These results tie

well with what was found by Santermans et al. [12] and Camacho et al. [34]. Similar to Santer-

mans et al. [12] and Camacho et al. [34], we observed a substantial heterogeneity in the esti-

mated effective reproductive number, temporally and geographically. The observed

heterogeneity in the estimated Rt could be attributed to differences in the size of the susceptible

population among districts as well as to cultural and behavioral differences. Furthermore, the

differences in the transmission of Ebola may be justified by the varying interventions imple-

mented in each districts.

In the present study, the multi-population model also allowed us to estimate the incubation

period and the infectious period. Using the the district-specific transmission model, with com-

mon incubation period and common infectious period, the mean incubation period was
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estimated at 2.30 weeks (95% CI: 2.20-2.40). Our estimate for the mean incubation period,

although it is within the minimum and maximum value for incubation period (2 to 21 days), is

considerably larger when compared with what is reported in the literature. The nationwide

model resulted into an estimate for the incubation period, 1.66 weeks * 11.62 days (95%CI:

1.53-1.79), more in line with previous estimates of the incubation period. As a matter of fact,

Okware et al. [40], for the 2000 Ebola outbreak in Uganda, reported an average incubation

period of 12 days. A similar estimate was also found by Eichener et al. [28] for the 1995 Ebola

outbreak in Kikwit, Democratic Republic of Congo. The authors estimated the mean incuba-

tion period to be equal to 12.7 days with a standard deviation of 4.31 days. Lekone and Finken-

städt [16], for the same Ebola outbreak, estimated an incubation period of 10.11 days. More

recently, using retrospective data on exposure, the WHO Ebola Response Team [27] estimated

an overall incubation period of 11.4 days, which was also found to be similar across the affected

countries, Guinea, Liberia and Sierra Leone. The infectious period was estimated at 1.08 weeks

(95% CI:1.03-1.12). Our estimate is consistent with other estimates for previous EVD out-

breaks [8, 16]. A recent study on the latest West Africa EVD outbreak, using viral sequence

data for different models, estimated an infectious period ranging between 1.22 and 6.09 days

[38]. On the other hand, Frasso and Lambert [13] reported two estimates for the infectious

period, one corresponding to the time from 1st symptoms to death (8.55 days) and another

from the 1st symptoms to recovery (17.20 days). It should be recalled that the infectious period

parameter is not identifiable, and the reported estimate only reflects the information contained

in the respective prior distribution. Identifiability issues for the SEIR model parameters were

also observed by Frasso and Lambert [13] and by Ganyani et al. [33].

The results further showed that the model is sensitive to prior specification, as the change

in prior distributions impacted substantially the posterior estimates. Contrary to Lekone and

Finkenstädt [16], weakly informative priors considered herein led to larger posterior estimates

for the incubation period and infectious period. Moser et al. [41] studied the impact of prior

information on the estimates of an epidemic model. They showed that slight modification can

affect the posterior estimates. Additionally, they showed that using minimally informative

prior leads to larger estimates of the R0, a result that is concurrent with our findings. The sensi-

tivity analyses, despite the larger values of the Rt under weakly informative priors, showed that

the pattern of the Rt overtime is robust to prior elicitation. Moreover, the results revealed that,

unlike the model with time-dependent transmission rate, the assumption of constant transmis-

sion rate leads to considerable discrepancy between the predicted incidence and the observed

EVD incidence.

In general, the adopted Bayesian formalism appeared to be very flexible in the parameter

estimation, mainly because it allowed us to provide inference even in the absence of informa-

tion on exposure and recovery. It allows to relax the assumption of homogeneous mixing

among the districts. The proposed model has some drawbacks. The model does account for

heterogeneous mixing within the districts. For future work it could be interesting to consider

this in the estimation process. Recently, Kong et al. [42] proposed a way of accounting for het-

erogeneity within the population by assuming that the number of contacts from individuals

varies from person to person. Our model assumes perfect reporting of number of cases of

EVD. Gamado et al. [43] show that ignoring underreporting leads to under-estimation of

infection rate and reproductive number. Taking heterogeneous mixing and underreporting

was beyond the scope of this research, but is an interesting extension for further research. The

multi-population SEIR epidemic model could also be extended in several ways. For instance,

Frasso and Lambert [13] use a SEIR epidemic model to analyse the Sierra Leone nationwide

data. Nevertheless, in their approach they make distinction, in the removed compartment,

between recovery and death. Such distinction is also possible for the multi-population SEIR
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epidemic model. However, this could add complexity to the model and also result in identifia-

bility issues, unless enough data are available to precisely estimate all the model parameters.

Lekone and Finkenstädt [16] in their approach, to make use of death counts, unrealistically

assume that individuals are only removed from the removed compartment through death,

while in practice individuals can either be removed through death or recovery. Another exten-

sion that deserves an attention for future works is to consider transmission through contacts

with dead bodies, as EVD can also be transmitted through contact with unburied dead bodies

[44]. Santermans et al. [12] in their two stage modelling assessed the adequacy of their model

when transmission through dead bodies is taken into account. Nevertheless, the fit of the

model to the data did not improve, probably because no sufficient data were available to

improve the model fit.

Despite the flexibility of Bayesian inferential techniques, lack of information leads to inac-

curate estimates. Thus, we think that availability of exposure and recovery data would be

insightful. Furthermore, availability of data on daily basis would also help in the quest of less

uncertain posterior estimates. In fact, Lekone and Finkenstädt [16] noted that when data are

collected on weekly basis, credible intervals were much wider.

Supporting information

S1 Appendix. Additional discussion and interpretation on Model 1 and 2.

(PDF)

S1 Table. Posterior summary measures for Model 1. Posterior summary statistics for Model

1 computed from a sample of 500k iterations after a burn-in of 100k. Model 1 considers that all

parameter varies across districts. The model is fitted considering informative priors. 95% cred-

ible interval a reported in brackets.

(PDF)

S2 Table. Posterior summary measures for Model 2. Posterior summary statistics for Model

2 computed from a sample of 500k iterations after a burn-in of 100k iterations. Model 2

assumes common incubation period and common infectious period. The model is fitted con-

sidering informative priors. 95% credible interval a reported in brackets.

(PDF)

S3 Table. Posterior summary measures for nationwide model with constant transmission

rate. Posterior summary statistic for for nationwide model with constant transmission rate.

The model is fitted considering the first 17 weeks of the epidemic as the assumption of con-

stant transmission rate applies only to the early stage of the epidemic.

(PDF)

S1 Fig. Effective reproductive number for model 1 under informative priors. Effective

reproductive number(black solid line) with its 95% credible interval. The horizontal red line

corresponds to Rt = 1. The vertical red line indicates where exactly the epidemic starts. These

results correspond to the model with informative priors. The curves were produced based on

Model 1. This model assumes that all the model parameters vary across the district. The black

dots represent the observed incidence data.

(TIF)

S2 Fig. Effective reproductive number model 2 under informative priors. Effective repro-

ductive number(black solid line) with its 95% credible interval. The horizontal red line corre-

sponds to Rt = 1. The vertical red line indicates where exactly the epidemic starts. These results

correspond to the model with informative priors. The curves were produced based on Model
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2. This model assumes that incubation period and infectious period do not vary across the dis-

tricts. The black dots represent the observed incidence data.

(TIF)

S3 Fig. Effective reproductive number for model 3 under weakly informative prior. Effec-

tive reproductive number(black solid line) with its 95% credible interval. The horizontal red

line corresponds to Rt = 1. The vertical red line indicates where exactly the epidemic starts.

These results correspond to the model with weakly informative priors. The model assumes

constant mean transmission rate, constant incubation and constant infectious period. The

curves were produced based on Model 3. The black dots represent the observed incidence

data.

(TIF)

S4 Fig. Effective reproductive number for nationwide model under weakly informative

prior. Effective reproductive number (black solid line) for the nationwide EVD data with its

95% credible interval. The horizontal red line corresponds to Rt = 1. These results correspond

to the model with weakly informative priors. The black dots represent the observed incidence

data.

(TIF)

S5 Fig. Ebola incidence data versus simulated data from a stochastic epidemic model con-

sidering a constant transmission rate. Stochastic simulation of the incidence data from the

marginal posterior distribution of (β, 1/%, 1/γ, E(0), I(0)). The data are simulated for the first

17 weeks of the epidemic as the assumption of constant transmission rate applies for the early

phase of the epidemic. The out break reaches the peak at week 17. The blue curve represents

the observed EVD incidence data.

(TIF)
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