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Abstract 
This article investigates organic and polymeric materials, printing technology and sensing principles 

towards a reliable printed wearable pH sensor realised on textile substrates. This work systematically 

makes a literature study and experimental work of three different organic and polymeric material based 

pH sensors and their corresponding measurement methods. Initially, the three different sensors, a 

conductometric PEDOT:PSS  sensor,  a voltammetric carbon-alizarin sensor and a potentiometric PANI 

sensor were selected based on certain established criteria and were reproduced on foils for a feasibility 

study. Mass but simple production, and feasibility for fabrication on textile substrates were also being 
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the objectives of this work, and led to the deployment of printing and coating techniques for the sensor 

fabrication. These three sensors were printed on flexible foils and tested and verified for sensor 

performances. The performance measures like sensitivity, linearity and repeatability of the sensors and 

their mechanical properties were investigated with prime importance.  Based on the experimental results 

together with a literature study, a conclusive comparison between the sensing principles with respect to 

device fabrication, functionality and wearability were performed. As per this analysis, one principle was 

chosen and further developed towards a textile-based printed sensor.  A potentiometric graphene/PANI 

sensor was printed on a textile substrate and tested for a buffer solution of pH ranging from 4 to 10. The 

potentiometric sensor based on PANI shows a 45mV/pH sensitivity with linear sensor responses and 

repeatable characteristics. It proves as a potential pH sensor on textiles for wearable health applications. 

Keywords: Printed electronics, pH sensor, Textile, Wearable electronics, Organic and polymers 
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1. Introduction 
Human biofluids contain numerous known physical and chemical biomarkers that play a 

vital role in diagnosing the humans health status. In healthy conditions, these biofluids 

maintain a strict pH balance with an efficient regulation, and slight changes in pH can be 

used as an early detector of malfunction or disease. Sweat is such a biofluid and normal 

sweat has a pH in the range of pH 4.5 to 6.81. It is possible to track dehydration2-3 or risk of 

diabetes4 and detect cystic fiberosis5 with the pH readings of perspiration/sputum/urine. 

Similarly, wound healing is a complex dynamic and multifaceted process consisting of 

hemostasis, inflammation, proliferation, and remodeling stages6. During these different 

stages, the wound fluid pH could vary between 4.5 to 8.5,7-8 depending on the type of 

wound and its complexities in healing. A recent report indicates that the wound 

management expenditure has grown up to 4% of the health budget contribution in 

Europe9. However, with the help of accurate determination of the wound’s pH, very 

essential physiological information can serve as a source to simplify the entire wound 

diagnosis and treatment practice10-12.    

pH is a measure of acidity or basicity, and in 1909 Sørensen defined the pH scale as the 

H+ ion molar concentration on a negative logarithm scale13. In the same year, scientiests 

developed a pH sensitive glass electrode14. Arnold Beckman designed the very first 

commercial pH measurement system in 1936, which brought about the production of 

commercial pH meters15. It consisted of glass electrodes where the potential difference 

between the working and reference electrodes indicate the analyte's pH. Those sensor 

systems are highly sensitive to H+ ions and stable, however, they are fragile, bulky and do 

Ac
ce

pt
ed

 A
rti

cl
eHuman biofluids contain numerous known physical and chemical biomarkers that play a 

Ac
ce

pt
ed

 A
rti

cl
eHuman biofluids contain numerous known physical and chemical biomarkers that play a 

vital role in diagnosing the humans health status. In healthy conditions, these biofluids 
Ac

ce
pt

ed
 A

rti
cl

evital role in diagnosing the humans health status. In healthy conditions, these biofluids 

a 

Ac
ce

pt
ed

 A
rti

cl
e

a strict pH balance with 

Ac
ce

pt
ed

 A
rti

cl
e

strict pH balance with 

used as an early detector of malfunction or disease. Sweat is such a biofluid and normal 

Ac
ce

pt
ed

 A
rti

cl
e

used as an early detector of malfunction or disease. Sweat is such a biofluid and normal 

sweat has a pH in the range of pH 4.5 to 6.8

Ac
ce

pt
ed

 A
rti

cl
e

sweat has a pH in the range of pH 4.5 to 6.8

4

Ac
ce

pt
ed

 A
rti

cl
e

4 and detect cystic fiberosis

Ac
ce

pt
ed

 A
rti

cl
e

and detect cystic fiberosis

Similarly, wound healing is a complex dynamic and multifaceted process consisting of 

Ac
ce

pt
ed

 A
rti

cl
e

Similarly, wound healing is a complex dynamic and multifaceted process consisting of 

hemostasis, inflammation, proliferation

Ac
ce

pt
ed

 A
rti

cl
e

hemostasis, inflammation, proliferation

stages, the wound fluid pH could vary between 4.5 to 8.5

Ac
ce

pt
ed

 A
rti

cl
e

stages, the wound fluid pH could vary between 4.5 to 8.5

wound and its complexities in healing

Ac
ce

pt
ed

 A
rti

cl
e

wound and its complexities in healing

management expenditure has grown up to 4% of the health budget contribution in 

Ac
ce

pt
ed

 A
rti

cl
e

management expenditure has grown up to 4% of the health budget contribution in 

However, with the help of accurate determination of the wound’s pH, very 

Ac
ce

pt
ed

 A
rti

cl
e

However, with the help of accurate determination of the wound’s pH, very 

essential physiological information ca

Ac
ce

pt
ed

 A
rti

cl
e

essential physiological information ca

Ac
ce

pt
ed

 A
rti

cl
e

diagnosis and treatment practice

Ac
ce

pt
ed

 A
rti

cl
e

diagnosis and treatment practice

pH is a measure of ac

Ac
ce

pt
ed

 A
rti

cl
e

pH is a measure of ac

ion molar concentration on a negative logarithm scale

Ac
ce

pt
ed

 A
rti

cl
e

ion molar concentration on a negative logarithm scale

developed a pH sensitive glass electrodeAc
ce

pt
ed

 A
rti

cl
e

developed a pH sensitive glass electrode

commercial pH measurement system in 1936, which brought about the production of Ac
ce

pt
ed

 A
rti

cl
e

commercial pH measurement system in 1936, which brought about the production of 



 

This article is protected by copyright. All rights reserved 

not have a suitable form factor to be incorporated for human body in situ measurements. 

pH sensors for body measurements are preferred to be flexible, lightweight, and low cost 

with decent working range of operation. Along with this, selectivity to H+ ions and 

biocompatibility are the foremost sensor desirable attributes. Paper based pH indicators 

are known for a long time as a rapid, simple and easy technique to make pH sensing. The 

paper, treated with flavin (organic compound group),  turns its colour from red over yellow 

to green due to redox changes when it is dipped in low pH over neutral to high pH solutions 

respectively. Although paper’s mechanical properties comply with the skin,  this method is 

mostly limited due to inaccuracies and reproducibility matters.  

Optical principle based sensors are attractive due to features like feasibility to 

miniaturize, no electrical interference, high sensitivity and remote sensing  capabilities. Yet, 

the sensors expensive setup, complex labeling process, cross sensitivity to ionic strength 

and very limited range of measurements are down sides15-17. Electrochemical techniques 

such as voltammetric, potentiometric and conductometric principles have shown great 

potential in terms of good sensitivity, extensive range and viability to be a flexible sensor18-

19. Iridium oxide (IrO2) is the most studied, electrochemical pH sensing material. IrO2 

electrodeposited flexible potentiometric sensors have shown a pH sensitivity of 72.5 

mV/pH in the range of pH from 3-11 and the same material dip-coated sensor shows a 

sensitivity of 51 mV/pH over the pH range from 2-1220. Apart from IrO2, other 

electrochemical MOx sensors made up of TiO221, RuOx22, WO323, and ZnO24 are also 

distinguished as pH sensitive and promising material choice. The MOx sensors are reported 

to be deposited using different techniques such as electron beam evaporation, sputtering, 

electrodeposition and dip coating19.  
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Conventional microfabrication routes are complex, time consuming, expensive and  not 

the best fit for the fabrication of textile sensor applications. Although spin coating has been 

chosen often for device fabrication in lab scale, it is not ideal for textiles, misfit for volume 

production and also causes huge material wastage25. Contemporarily, printed electronics 

grabbed more attention as an industry viable production technology, especially towards 

flexible electronics and innovative textile applications. Some of the major works in 

connection with intelligent textile-based wearable sensors for different sensing attributes 

reported in the literature include the wearable strain sensor developed on  graphene 

textile without polymer encapsulation26; worm-shaped graphene monolayer enabled 

ultrahigh tensile strain and stable conductance27; integrated smart textile bands for self-

pumping sweat sampling and analysis28; integrated smart clothing by employing multiscale 

disordered porous elastic fibers as sensing units capable of autonomous self-sensing of 

strain and temperature and self-cooling29; and bio-inspired textile sensor with conical 

micropores for human body moisture and thermal management30.  As a compatible textile 

production processing method in ambient air, it emphasizes printing and coating as the 

future of manufacturing technology31.  

Electrochemical MOx sensors are described for printing and coating based material 

deposition to produce pH sensors . However, the MOx sensors are yet to prove the repeated 

flexing and bending capabilities and also the high curing temperature is a challenge for 

textile sensors19, 32-33. Moreover, the metal oxide sensors have shortcomings in sensor 

characteristics like hysteresis, drift and cross-sensitivity that restrict them to be used in 

health monitoring applications34.  Studies of Alam et al. highlight major pH sensor works 

based on electrochemical organic compounds and conductive polymers to be a better 
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alternative for wearable biomedical applications35. Many of these materials are solution-

processable, intrinsically flexible, cheap and suitable for wearable textiles 12, 36-39. Among 

this, PANI is an intrinsically pH-sensitive, conductive polymer with good environmental 

stability and biocompatibility40-44. PANI based potentiometric sensors have demonstrated 

very promising near Nernst sensitivity of around 50-60 mV/pH with good repeatability and 

stability33, 41, 45-46. Polypyrole, Pentacene,  and P3HT are also (semi-)conducting polymers, 

which show decent activity towards pH sensing47-49. 

PEDOT:PSS is the most popular conductive polymer in the organic electronics domain 

due to its wide range of adjustable conductivities, transparency, modifiable bandgap, 

printability and biocompatibility50-53. PEDOT:PSS is applied to develop pH sensors, which 

are described in different research works46, 54-56. pH sensing is realized by noting the 

conductivity changes of the PEDOT:PSS layer57-59. In recent times, organic compounds are 

increasingly being used in biosensors12. Alizarin is such an abundant, cheap, solution-

processable, and biocompatible material choice60. Alizarin, basically an organic dye for 

textile fabrics, is also applied as a staining agent to identify calcium-containing osteocytes 

in cell cultures and for biosensor development61-64. pH activity of the Alizarin material is 

already reported in previous works65-67. Voltammetry based carbon-alizarin composite 

electrodes are used in pH sensing68-69. The carbon-alizarin sensor has shown a linear 

sensing behavior with a sensitivity in the range of 55 mV/pH and the sensor was equally 

good in buffered and unbuffered media70.  

Although  multiple pH sensing materials and methods are studied,  there exists  a lack of 

clarity in elucidating the best fitting one towards a wearable sensor. This work layouts an 

investigation towards highly reproducible, wearable and significantly sensitive pH sensors 
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by applying the right combination of the suitable electrochemical sensing method, the right 

materials, and compatible production techniques. This overview is a combination of own 

experiments combined with relevant literature sources and leads to an overview on 

selection criteria for wearable pH sensors. To prove this last point, we have further 

developed, based upon this selection, a wearable pH sensor on a textile substrate.   

Integrating pH sensors onto textile substrates meet the requirements of end-user 

suitability, sensing functionality, and economical feasibility.  A limited amount of research 

has been reported on printed pH sensors on textiles. Further the major concerns regarding 

a textile pH sensor are their capability to sense pH over a biologically relevant pH range 

and its  hystersis issues in pH cycles32, 71. These elements are lacking in the afore reported 

works and hence this article, apart from being a clear investigative study towards the 

selection of sensor principle, materials and production technology, also introduces a highly 

sensitive pH sensor fabricated on a textile substrate that can measure pH in a 

physiologically relevant range.  Textile substrates are desirable due to their compatibility 

with the human body, breathability, and user convenience39, 72. This work investigates 

three electrochemical organic and conductive polymer based sensor development 

principles to produce a consistent pH sensor on textiles for wearables. PANI, PEDOT:PSS 

and Alizarin are the materials of experimental interest here and they are selected for a 

couple of reasons.  

 

a) Above mentioned materials have previously been investigated for their pH 

sensing functionality and have shown to be potential ones 
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b) Those materials are readily available in the research domain and inexpensive for 

industrial production 

c) They are used on some flexible foils, and other textile end applications imply 

their feasibility in using them in smart textiles39, 73-74 

d) Chosen functional materials are easily processable; mostly they are proven as 

printable 

e) They are environmentally stable, biocompatible materials 

f)  These materials are previously reported for antimicrobial properties75-76 

 

This work investigates the performance, linearity, sensitivity, and repeatability of these 

three sensor types based on the experiments performed together with literature 

knowledge. The  first phase of  the experiments is set to fabricate these three sensors into 

foils applying screen printing and ultrasonic spray coating (USSC) for material deposition.  

Based on sensor wearability, feasibility to produce on textiles, and sensing features along 

with previously published work, we narrow down the objective to a single sensor that 

leads to a final printed pH sensor on textiles for health monitoring. 

 

2 Materials and methods 

2.1 Theory of the sensor working principles 
 The functioning of three different sensor principles is considered here. A first one is a  

conductometric PEDOT:PSS based sensor, a second one is a voltammetric carbon-alizarin 

sensor, and finally a potentiometric PANI sensor is investigated.  
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2.1.1 Conductometric PEDOT:PSS based pH sensors  

The conductometric pH sensor working is envisaged here based on the resistance 

changes of the chemistor sensing material upon pH buffer exposure. Resistive readout-

based pH sensors are described previously where those works mostly applied 

microfabrication techniques and allotropes of carbon16, 77-78. This work applies PEDOT:PSS 

as one of the sensing elements where the conductivity modification occurs due to the 

electrochemical changes induced by the pH of the analyte in the sensor. The 

electrochemical properties of conjugated conducting polymers are highly dependent on the 

structure of the polymer film. PEDOT:PSS is ubiquitous in research, widely studied material 

showing reversible morphological changes towards pH79-80. PEDOT:PSS has a redox-active 

conjugated backbone with multiple redox states. Figure 1 explains the micro-

morphological changes in the PEDOT:PSS layer with respect to pH. When the PEDOT:PSS 

layer is exposed to acidic pH, it forms an uninterrupted, loose, and porous structure. The 

PEDOT chains are uniformly distributed on the PSS polymer backbone. The optimized 

distribution of PEDOT chains ensures the conductive networks within the PEDOT:PSS 

layer. As the pH changes to alkaline, microstructure of the PEDOT:PSS film transforms from 

a continuous network to non-continuous clusters. The presence of hydroxide ions leads to 

the formation of phase separation between PEDOT and PSS. The network of PSS polymer 

chains surrounds short PEDOT chains, leading to a drop in conductivity. This 

morphological change in PEDOT:PSS makes it an exciting choice for a conductometric pH 

sensor. Resistance tracking based pH sensors need the simplest electronic readouts, and 

such sensor systems do not require a reference electrode for their pH sensing functionality. 

Upon exposure and drying of the pH buffer on the printed PEDOT:PSS layer, a change in 
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resistance with respect to its initial resistance is exhibited, which correlates to the pH of 

buffer dropped on the sensor. This pH values of buffer and resistance change can be plotted 

in a linear scale.57-58, 80-81 

 

Figure 1 pH induced morphological changes in PEDOT:PSS layer and the chemical structure of PEDOT and 

PSS 

2.1.2 Voltammertric carbon-alizarin based pH sensors   

Voltammetry is an electrochemical analytical technique based on the voltage-current 

relation  (voltammogram) of the electrode-solution interface. The technique finds 

applications in the analyte compositional study, detecting certain electroactive elements or 

sensing applications. The experimental system consists of a three electrode configuration 

where the working, reference, and counter electrodes are interfaced together in the test 

solution. Voltammetry is a notable technique to quantify the solution's pH based on redox 

peaks that appear on the voltammograms82-84. The working electrode is the most vital in 

the measurement system and there are some of these electrodes reported previously83-85. 

In the proposed work, the working electrode consists of a carbon–alizarin composite where 

the carbon is an electrically conductive, low density, abundant, and cheap material. Alizarin 

is an anthraquinone derivative, with hydroxyl groups substituted at the 1 and 2 positions. 
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pH sensitive quinone moieties present in the Alizarin are the key for the sensor69-70. These 

quinone moieties in the working electrode act as centers of redox reactions with the 

analyte. The redox reaction in the working electrode is shown as  

 

Alizarin⇌ Anthracene-1,2,9,10-tetrone+  ++  −  

 

where n equals 2 hence, it is an 2H+/2e- redox process (figure 2). These are 

electrochemically reversible redox reactions. Based on Nernst relation,  analytes' pH is 

linearly correlated to peak potential (E)  and it could be written as  

      
       

  
          Equation1 

 

Where E0 is the standered potential, R universal gas constant, F is the Faraday constant, T is 

the temperature and n is the number electrons involved in th reaction. 

 

Figure 2 Alizarin molecular changes with changes in pH  

2.1.3 Potentiometric graphene/PANI sensor 

Potentiometry is a simple technique in electrochemistry to measure the potential 

difference (across the sensing electrode and reference eectrode immersed in test solution. 

This technique has been used in multiple sensing platforms, and nowadays, it grabs 

widespread recognition in wearable sensors86-87. The sensor system is comprised of a 
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working electrode made up of an ion-selective membrane and a reference electrode. A 

change in the concentration of ions in the bulk sample solution produces variation in the 

membrane potential. This is measured as an open circuit potential (OCP) between the 

reference and the working electrode and is served as the readout. In this study, the 

working electrode is configured in such a way that graphene is modified with a pH 

sensitive PANI coating. PANI is an intrinsically conductive polymer with semiflexible 

nature. PANI has pH sensing capabilities due to its multiple redox states and its reversible 

interconversions of emeraldine base (EB) to emaraldine salt (ES) as illustrated in figure 3. 

 

Figure 3 PANI emeraldine protonation and deprotonation 

 ES and EB moieties of PANI in a test sample environment reaches an electrochemical 

equilibrium, which leads to an inversely proportional potential generation with respect to 

the sample pH. Higher pH conditions lead to deprotonation of PANI and causes  very low 

conductivity. This makes the use of PANI alone - difficult for sensors applications88. In 

contrast to PANI, the synergy of graphene-PANI composites (allotropes of carbon with 

PANI) could enhance its properties in terms of flexibility, electroactivity, conductivity, and 
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have shown antimicrobial properties89-90. Graphene is a 2D nanomaterial with sensational 

thermal, electrical, chemical, mechanical, and optical properties that are highly desirable 

for many applications. In a recent study, Lin et al. made a serendipitous discovery that 

porous graphene can be induced on the polyamide foil with a laser scribing at low power 

settings81. This laser source creates photochemical and photothermal changes on the 

substrate leading to the formation of 3D porous graphene. As a facile approach to get 

graphene on flexible substrates, it leads to tremendous applications in wearables91-92. 

2.2 Sensor Fabrication 

For the sensor fabrication, this research work applying two different printing/coating 

technologies. The first one, ultrasonic spray coating (USSC), is a versatile non-impact, large-

area solution/dispersion coating technique. The printhead's ultrasonic vibration inducing 

standing waves on the solution drop leads to its atomization,  provides consistent drop size, 

and a high degree of coating uniformity on 2D and 3D surface. USSC found great 

importance in high precision thickness (from nanometer scale) and uniform active layer 

deposition of solar cells, light emitting diodes, sensors, and other functional coating 

applications, especially in large areas93-94. 

The second technology, screen printing, is a conventional technique categorized as a 

thick film material deposition method.  The setup comprises a fabric screen stretched and 

attached to a frame, and the unwanted areas of the screen are masked with a suitable 

emulsion. The functional material in the form of a printing ink is pushed through the 

unmasked areas of the screen with the help of a rubber squeegee into the substrate. 

Printed electronics heavily depend on screen printing as it's a simple, long time known 

Ac
ce

pt
ed

 A
rti

cl
eporous graphene can be induced on the polyamide foil with a laser scribing at low power 

Ac
ce

pt
ed

 A
rti

cl
eporous graphene can be induced on the polyamide foil with a laser scribing at low power 

81

Ac
ce

pt
ed

 A
rti

cl
e

81. 

Ac
ce

pt
ed

 A
rti

cl
e

. This laser source creates photochemical and photothermal ch

Ac
ce

pt
ed

 A
rti

cl
e

This laser source creates photochemical and photothermal ch

substrate leading to the formation of 3D porous graphene. As a facile approach to get 

Ac
ce

pt
ed

 A
rti

cl
e

substrate leading to the formation of 3D porous graphene. As a facile approach to get 

graphene on flexible substrates, it leads to tremendous applications in wearables

Ac
ce

pt
ed

 A
rti

cl
e

graphene on flexible substrates, it leads to tremendous applications in wearables

2.2 Sensor Fabrication

Ac
ce

pt
ed

 A
rti

cl
e

2.2 Sensor Fabrication

For the sensor fabrication, 

Ac
ce

pt
ed

 A
rti

cl
e

For the sensor fabrication, 

technologies. The first one, ultrasonic spray coating (USSC), is a 

Ac
ce

pt
ed

 A
rti

cl
e

technologies. The first one, ultrasonic spray coating (USSC), is a 

area solution/dispersion coating technique. The printhead's ultrasonic vibration inducing 

Ac
ce

pt
ed

 A
rti

cl
e

area solution/dispersion coating technique. The printhead's ultrasonic vibration inducing 

standing waves on the solution drop leads to its atomization,  provides consistent drop size, 

Ac
ce

pt
ed

 A
rti

cl
e

standing waves on the solution drop leads to its atomization,  provides consistent drop size, 

and a high degree of coating uniformity on 2

Ac
ce

pt
ed

 A
rti

cl
e

and a high degree of coating uniformity on 2

importance in high precision thickness (from nanometer scale) and uniform active layer 

Ac
ce

pt
ed

 A
rti

cl
e

importance in high precision thickness (from nanometer scale) and uniform active layer 

deposition of solar cells, light emitting diodes, sensors, and other functional coating 

Ac
ce

pt
ed

 A
rti

cl
e

deposition of solar cells, light emitting diodes, sensors, and other functional coating 

applications, especially in large areas

Ac
ce

pt
ed

 A
rti

cl
e

applications, especially in large areas

Ac
ce

pt
ed

 A
rti

cl
e

The second technology, screen printing, is a conventional technique categorized as a 

Ac
ce

pt
ed

 A
rti

cl
e

The second technology, screen printing, is a conventional technique categorized as a 

thick film material deposition method.  The 

Ac
ce

pt
ed

 A
rti

cl
e

thick film material deposition method.  The 

attached to a frame, and the unwanted areas of the screen are masked with a suitable Ac
ce

pt
ed

 A
rti

cl
e

attached to a frame, and the unwanted areas of the screen are masked with a suitable 

emulsion. The functional material in the form of a printing ink is pushed through the Ac
ce

pt
ed

 A
rti

cl
e

emulsion. The functional material in the form of a printing ink is pushed through the 



 

This article is protected by copyright. All rights reserved 

material deposition technique in mass volumes and the compatibility to print a variety of 

material compositions on different substrates from paper to foil to textiles95-96. 

 

The work used  inhouse prepared Britton-Robinson buffer characterized with a 

commercial pH meter for the sensor testing. 

2.2.1 Conductometric PEDOT:PSS based pH sensor 

High conductive grade PEDOT:PSS Clevios PH 1000 from Heraeus, Germany and  flexible 

silver paste from Gwent group are used for sensor fabrication. The sensor fabrication starts 

with cleaning the PET substrate using isopropanol alcohol together with cleanroom wipes. 

Then silver paste to form two electrode contacts of the sensor were printed. The electrodes 

are spaced 5 cm apart on the substrate. These printed silver electrodes are cured at 130 0C 

in a box oven for 10 minutes. Followed by this step, a PEDOT:PSS structure was deposited 

via ultrasonic spray coating. The spray coatable PEDOT:PSS was prepared using a high 

conductive version of it. Clevios PH1000 PEDOT:PSS is diluted with IPA in the ratio of 1:4. 

The coating parameters include flow rate of 0.35ml/min and the hot plate temperature to 

70 0C. The multipass PEDOT:PSS layer is deposited with USSC and only the desired area of 

the sensing area is kept exposed to the coating. Then it is cured at 130 0C for 10 minutes. 

Both junctions of PEDOT:PSS to silver are coated with a polydimethylsiloxane elastomer 

(Sylgard 184) and preceded by a curing step at 70 0C in a box oven, so that the silver 

electrodes do not get wet during the testing. The sensor set-up is shown in figure 4 . Ac
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Figure 4 Conductometric type PEDOT:PSS sensor on  foils 

2.2.2 Voltammertric carbon-alizarin based pH sensor 

The working electrode for the sensor is made up of Alizarin (C14H8O4) and was 

purchased from Sigma Aldrich and high conductive carbon paste LOCTITE EDAG PF 407A 

E&C was supplied from Henkel, Belgium. The carbon paste is mixed with Alizarin using a 

speed mixer (Hauschild model DAC 600.2 VAC-P) at 2500 rpm for 2 min at a fixed weight 

ratio of 15:170. This prepared paste is screen printed using a predesigned screen on a PET 

foil and cured at 130 0C. Followed by this, a layer of silver paste is printed on the tracks and 

contacts. Leaving the sensing area open, the track is covered with the same 

polydimethylsiloxane (PDMS) elastomer and followed by curing, as mentioned before. The 

alizarin based working electrode and voltammetric measurement system is depicted in 

figure 5.  
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Figure 5 Carbon-alizarin based working electrode (a), The measurement set up of the voltametric measurements (b) 

2.2.3 Potentiometric graphene/PANI sensor 

Polyaniline emeraldine base (20000 g/mol) from Sigma-Aldrich was dissolved in 99.9% 

dimethyl sulfoxide (DMSO), resulting in 0.4 wt% PANI-DMSO ink. The ink was 

homogeneously mixed using a speed mixer and a vortex mixer. Additionally, the ink was 

filtered using a disposable 'Chromafil GF-100/25 MS' filter with pore size of 1 µm.  Kapton 

substrates are cleaned with solvents, followed by the 3D porous graphene formation on the 

substrate with the help of a CO2 laser. Laser induction on polyimide sheets has been 

performed using Universal Laser Systems, VLS2.30 equipped with a wavelength of 10.6 µm 

pulsed CO2 laser system (25 W). The polyimide sheets `were purchased from Good fellow. 

A scan rate of 20 cm/s, a laser duty cycle of 30%, and an image density of 1000 ppi were 

used to obtain a black layer of LIGNs on the polyimide sheets. Then a reference electrode is 

printed where the salt-bridge based on water-based polymeric ink (Tubicoat from CHT 

group, Germany) and pottasium chloride salt powder (KCl) was prepared. Tubicoat and KCl 

are mixed in a weight ratio of 10:1. A silver electrode is screen printed next to the LIG 

electrode and cured. Then stencil printed the saltbridge on top of the silver electrode and 

cured at 120 0C in a box oven for the reference electrode. The sensing area of the porous 
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graphene is coated with PANI and masked  other areas. PANI deposition is made with USSC 

setting a flow rate of 0.1ml/min and the hot plate at 90 0C. The sensor was then cured at 

150 0C in inert condition for 10minutes. A thin layer of the polydimethylsiloxane elastomer 

covered the complete printed area, except the active sensing area and is cured as similar to 

the previous ones. Figure 6 represents the build-up of the printed working and reference 

electrodes and the sensor set up. 

 

 
Figure 6 Working electrode and reference electrode structure is shown (A) and the sensing set up used (B). 

2.2.4 Textile potentiometric graphene/PANI sensor 

The substrate used for the final sensor fabrication is a polyester woven fabric (100% 

Polyester - washed and fixated - kw11401) from Concordia Textiles (Valmontheim, 

Belgium) with an average roughness of 6µm. It has shown good printability and flexibility 

properties and is stable up to 1400C.  A layer of  insulative ink (Tubicoat MEA, CHT group, 

Tübingen Germany) is screen printed and cured at 1300C. Carbon and silver paste are 

screen printed onto the insulative layer to form the conductive electrode and cured at 130 

0C for 10 minutes in a box oven. A salt bridge is stencil printed on the silver electrode and 

cured as mentioned previously .On the other side of the substrate (not the electode printed 
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surface), a layer of PDMS is deposited using a bladecoater and is then cured at 70 °C for 20 

minutes. The polyaniline ink was spray coated on the carbon electrode and cured as 

mentioned in the previous section. 

 

 

Figure 7 Depiction of potentiometric PANI sensor on textiles 

3. Results 

 3.1 Conductometric PEDOT:PSS based pH sensor  

Discrete volumes of buffer solutions with pH values ranging from 4 to 10 are used for the 

sensor characterization. Once the buffer is dropped on the sensing part, it takes a few 

minutes to give acceptable responses. To facilitate accurate sensing, the buffer drop on the 

sensor surface needs to be properly removed. Whereas the pH of the buffer changes from 

10 to 4.5, a drop in resistance is observed as it is shown in figure 8b. This drop in 

resistance is attributed to occur from the morphological changes of the PEDOT:PSS upon 

exposure to buffers of different pH. PEDOT:PSS  is an intrinsically conductive polymer and 

consists of PEDOT and PSS ionomers. The presence of acidic medium improves the PEDOT 

alignment with PSS, which is attributed to the increased conductivity. This is supplemented 

in the UV-VIS  absorption spectrum of PEDOT: PSS exposed to different pHs shown in 

figure 8a. Relatively lower pH buffer exposures give rise to a broader absorption in the 
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NIR region, which indicates the presence of bipolarons. This explains the better 

conductivity of the PEDOT:PSS layer in lower pH exposure. Contrary to this, the basic 

medium causes the interruption to the PEDOT to PSS charge balance that decreases the 

density of polarons and bipolarons in the PEDOT chains. The higher pH conditions reduce 

the bipolarons to polarons (900 nm) and neutral (600nm) species, diminishing the 

conductivity. 

 
Figure 8 (a) UV visible spectrum of PEDOT:PSS layer dipped in different pH buffers and dried. (b) Resistance changes 

occur on PEDOT: PSS sensor with different pH. 

In order to ensure the repeatability of the measurements, the sensor has undergone for 

another set of measurements in the reverse order. The repeated measurements as well 

showed broadly similar plots (figure 9). However, the sensor performance is substantially 

dominated by the hysteresis nature of the sensor. Since the PEDOT:PSS material is being 

doped multiple times with the pH buffer during the 1st set of measurements, the sensor is 

not fully recovered to its initial status during the 2nd set of measurements . Thus the 

protonation/deprotonation charge exchanges are not fully reversible. Naficy et al. also 

reported for similar kinds of hysteresis in their PEDOT:PSS based hydrogel pH sensor58. 
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Besides this, experiments indicate that the sensor system has different sensitivity in cycle 1 

and cycle 2. This inconsistency and offset in sensor performance limits the functionality of 

the sensor into one-time use applications. Resistance readout principle based printed 

sensors for wearables are previously reported. Many of them are designed to be for single 

use (exposure of the body fluid limited to one time), which is adequate for minimal end-

uses77, 97.   

 

 
Figure 9 PEDOT:PSS sensor tested for ascending and descending order of pH buffers 

3.2 Voltammetric carbon-alizarin based pH sensor 

The sensor system has been tested for a range of buffer from pH 4 to 9.5. The sensor in a 

test solution is scanned with an applied voltage from 0 to 1V and a scan rate of 50mV, a 

distinct single redox peak is realized in the voltammogram (figure 11a). The 

voltammogram corresponding to each pH buffer shows a unique current peak.  As the 

buffer's pH goes from acidic to basic, the corresponding voltammogram peak is observed to 

occur at lower voltages. The shift in peak position is also observed in the UV-VIS absorption 
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spectra for Alizarin material treated with different pH buffer. Figure 10 is a clear 

indication for the changes in the molecular structure of Alizarin in different pH conditions. 

 

Figure 10 UV-VIS absorption spectrum for alizarin layer exposed to a range of pH buffers. 

The peak shifted from 492 nm to 470 nm in response to the treatment of pH 10 and pH 4 

solutions. This can be explained as the decrease of the Alizarin’s LUMO-HOMO energy gap 

with increasing pH98. In concurrence to this, a shift in the oxidation peaks is observed in the 

voltammogram to lower values with an increasing pH. The voltage at which the peak is 

obtained has a linear dependence on the pH of the test solution which can be observed 

from figure 11b and follows the Nernst relation. The sensitivity of the sensor is calculated 

from the voltammogram measurements as 55 mV/pH and it is in close agreement with the 

previously reported similar sensors. The sensor has been tested multiple times 

consecutively for the same buffer to ensure its peaks are not a random occurrence. In 

Figure 12a, the reproducibility of the repetitive measurements are clearly established 

from the precise alignment of the peak of the voltammogram at the same position. 
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Moreover, it proves that the number of measurements have no significant influence on 

sensor performance.  

 
Figure 11 (a) Voltammogram of Alizarin based pH sensor, (b) The peak position in the voltage axis is redrawn against pH 

However, the sensor shows shifted peaks for each pH when the measurements are 

compared between cycles; i.e. sweeping from low to high pH value, over and over again 

(figure 12b). All the 2nd cycles' measurements appeared to have the peak moved slightly 

to the left in the voltammogram compared to the 1st cycle. Although the voltammograms in 

the 2nd cycle show a drift to the left, it was not of equal magnitudes for all pH 

measurements.  This may arise due to the memory effect or hysteresis of the sensor after a 

set of measurements.  
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Figure 12 (a) Voltagram of pH 5.7 buffer for five repeated cycles in a row, (b) Voltagram of pH 3.9 and 5.7 buffer  in two 

different cycles 

3.3 Potentiometric graphene/PANI sensor  

This sensor development initiates with the process to obtain laser induced graphene 

(LIG) on a polyamide foil. Figure 13a shows the SEM images of the  porous fibrous 

structure formation of 3D graphene. The Raman spectrum shown in Figure 13b contains D, 

G and 2D peaks81, 99. The D peak at 1342 cm-1 indicates the presence of structural edge 

defects of sp3 centers in LIG. The G peak and 2D peak are at 1540 and 2680 cm-1, 

respectively, which represents the existence of sp2 phases in LIG. The ID/IG ratio of 0.34 and 

I2D/IG ratio of  0.53 indicate the presence of high degree of sp2 network and formation of 

multilayered graphene in LIG100. The graphene electrode is modified with a thin layer of  

spray coated polyaniline. Ac
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Figure 13 (a) SEM morphology ,  (b) and Raman spectrum of the laser induced graphene  

Potentiometric readings of the sensor are taken in the pH buffer against the Ag/AgCl 
reference electrode (the sensor readings against standered glass referance elctrode is 
displayed in figure S5). The PANI coated graphene serves as an ion selective electrode for 
pH sensing. The H+ ions can be detected through the protonation and the deprotonation 
process of PANI, leading to OCP changes against the reference electrode.  In the previous 
section of the voltammetric sensor, a standard glass reference electrode was used to 
characterize the foil sensors. However, it is not practicable to be in health monitoring end-
uses as it is fragile, not possessing a wearability form factor and is an expensive choice. So 
the work is extended to the fabrication of a solid-state reference electrode into foil applying 
printing techniques. The reliability of the reference electrode is detrimental to sensor 
performance and reliability. Many wearable sensors are reported with quasi reference 
electrodes, but they are not ideal for health monitoring due to cross-sensitivity and short 
lifetime101. This work utilizes solid-state reference electrodes with a polymer based solid-
state salt bridge. This type of reference electrode needs a longer time for the initial 
stabilization than the standard glass reference electrode, where the salt bridge consists of 
liquid media. The proposed electrode is made up of a printed silver electrode turned into a 
silver/silver chloride by electrodeposition. To maintain a constant potential, a salt bridge 
layer is deposited on the silver/silver chloride. The salt bridge layer consisted out of KCl 
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and a water-based polyurethane formulation. The printed solid-state electrode is measured 
against the standard reference electrode and shows that the initial measurement of the 
reference electrode is getting stabilized after 20 minutes of  buffering (figure 14).  

 

Figure 14 Initial stabilisation of Printed Ag/AgCl reference electrode tested against standard Ag/AgCl reference electrode 

The potentimetric PANI sensor readings show a linear relation of open circuit potential 

(OCP) to pH for a range 4 to 10. Each measurement takes 3 to 4 minutes time to stabilize. 

The sensor displays a voltage variation of 162 to -155 mV in response to the pH 4 to 10 

(figure 15a). The readings in the graphs are linear in nature with adj. R2 value of 0.99 and 

demonstrate a sensitivity of 53mV/pH. The PANI coated sensor with standard reference 

electrode and printed reference electrode are compared and they are showing similar 

performance (supplementary info). The PANI electropolymerized sensor has shown a 

slightly better sensitivity in the literature compared to this work. However, those 

production methods are not feasible for low-cost wearable sensors on textiles due to its 

complicated processing and the involvement of hazardous chemicals42. The repeated 

measurement cycles record identical sensor responses (figure 15b), and it proves the 

ability to read pH accurately.  
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Figure 15 (a) Potentiometric sensor tested for pH 4 to 10, (b) measurement over the repeated cycle 

Although there was intense influence of hysteresis found in the other two sensors, the 

PANI based sensor was not affected by it which is clear from the figure 15b. The PANI 

layer treated with pH buffer is in the states of partially protonated forms of emeraldine 

base. There are different protonation states and with the low pH (acidic) buffer, a higher 

protonation is induced, which reduces the peak height at 630nm of UV-VIS absorption 

spectrum (figure 16). Further, at 900 nm, a higher amount of polarons are found in the 

films treated with lower pH buffer102. However there are no changes noticed in the peak 

position in the range of pH 4 to 10.    
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Figure 16 UV-VIS absorption spectrum for PANI layer treated in different pH buffer 

3.4 A sensing approach and property comparison to achieve textile-based pH sensors 

pH sensor development for textile and wearable applications demands specific classic 

prerequisites, being of great importance. Tehrani et al. listed some of them, including ease 

of manufacturing, availability of the materials for fabrication, high sensitivity, stability, and 

fast response time103. In the context of a textile based sensor, it has to meet wearability 

priorities along with its sensing functionalities. As the sensor is being used in guiding 

medical diagnostics, sensor features such as accuracy, repeatability, and stability are 

indispensable. The printability, flexibility, bendability, biocompatibility, and feasibility to 

fabricate sensors into textile facilitates to encompass highly pertinent prospects of non-

invasive health monitoring through end-user convenience at low cost. Some of the 

significant sensor characteristics are investigated in this work. However, along with this 

work, the previously reported works are taken into account to further develop sensor on 

textiles. 
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The fabricated  sensors (in figure S1) mostly used printing and coating based production 

methods, which is comparatively less complex than conventional approaches for pH sensor 

production. The carbon-alizarin composit ink is highly viscous and possess shear thinning 

behaviour which facilitated the material deposition with screen printing. The printed 

functional layer shown adequate conductivity and uniformity. Similarly, PANI formulation 

have low visocity which can be adjusted with respective solvents. The ink attributes 

matched for inkjet printing and USSC deposition and tiny atomised droplet deposition of 

USSC ensured high quality and  uniform material depsition of PANI functional layers104-105. 

Different from other two materials,  PEDOT: PSS is reported to be compatible for  printing 

with a range of printing techniques from screen printing106, gravure printing107, inkjet 

printng108, flexographic printing109 and many coaing techniques. The viscosity adjusted 

formulation of PEDOT:PSS layer deposited with optimised layer thickness using USSC 

shown to be excellent in transperency and conductivity properties. The reference eletrode 

printing is also cmpletely carried out with printing tehniques. Yet PEDOT:PSS based 

conductometric sensors do not need a reference electrode, and it makes the sensor 

fabrication route simple with respect to the other two sensor principles.  

Materials used for sensor fabrication are readily available in the commercial domain 

and previously applied to produce devices on textiles. Biocompatibility in terms of 

cytotoxicity is investigated for PANI and PEDOT:PSS in different works and was concluded 

as non-toxic43, 110. Alizarin (Madder) is used as an antimicrobial agent in skincare products 

and in wound cleaning60. Those reports counted them as biocompatible and eligible for 

bioelectronics applications. In the context of a simplified sensor readout for wearables, the 

passive resistive and potential measurements posseses advantages whereas voltammetry 
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is an active method that adds some complexities into it. All of these properties are 

summarized in figure 17.   

 

The sensitivity of the sensors are considered for the range from pH 4-10. Voltammetric 

and potentiometric sensors have sensitivity of 55 and 53 mV in this work and are 

concurring with literature reported values42, 70. The conductometric sensor shown a 

sensitivity of 7.5 Ω/pH in the range of 4.5 to 10. The linearity of all three sensors was 

decent, and PANI and alizarin-based sensors displayed a correlation coefficient of 0.99. The 

potentiometric sensor readings repeatability confirms an excellent agreement between the 

measurement cycles; however, the other sensors have demonstrated poor performance, 

mostly due to the memory effect and the functional material dissolvability in buffer. As 

shown in figure S2, multiple sensors are tested within the sensor type and show quite 

similar sensing behaviour for all sensor types. The response time of the PEDOT:PSS sensor 

was comparatively longer as the sensor has to be dried after getting wet in order to get the 

intended reading. Accuracy of the conductometric PEDOT:PSS sensor in real life 

measurements is under suspicion as the sensor structure has to be uniformly wet, and its 

dryness is related to the function of the pH measurements. Besides, the measurement 

reproducibility is inferior for the conductometric and voltammetric sensors. However, the 

PANI sensor demonstrated excellent sensing characteristics, and the readings are 

repeatable. Stability of the sensor readings are another relevant aspect and PANI based 

sensors show 48 hours of continuous testing without significant stability drops111. 

Conversely, the alizarin from the voltammetric sensor was found slightly dissolving in 
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alkaline buffers. Similarly longer time exposure of PEDOT: PSS layer to buffer media can 

lead to its deterioration due to its dispersibility in water. 

 

Bendability, flexibility, and stretchability of the sensor are predominant attributes 

related to its wearability function. All the three sensors were rolled in a cylindrical shape 

with a diameter of ~ 1.5 cm as shown in figure S3 a&b. This step was repeated for ten times 

and subsequently, the sensors were tested. Whereas the potentiometric and voltammetric 

sensor readings (in figure S4 b&c) have not shown any significant changes from the 

previous measurements indicating their robustness. the PEDOT:PSS sensors show 5% 

resistance change in the sensor readings from its initial resistance. The PEDOT:PSS based 

pH sensor has constraints in exhibiting bending or flexing attributes as its resistance would 

change in such instances that can influence the pH sensor reading. Wearability features of 

Alizarin are not cross-examined further as it is known as a textile dye for a long time.  The 

potentiometric PANI sensor's wearability attributes and mechanical properties are also 

reported for sensing applications in other literature sources112-113. These sensors can be 

flexible and bendable in a relatively large extent45. Rahimi et al. demonstrated the PANI 

sensor on foil in a serpentine design as stretchable105. Stempien et al. has shown the 

performance of the printed PANI layer on textiles and its robustness to washing and 

mechanical flexing tests114.  Different studies investigated the selectivity of the PANI based 

sensor through the influence from the ionic presence on pH sensing. Those studies 

concluded that no significant impact is found due to the presence of ions like K, Na, which 

enhances the functionality of the sensor for wearable applications46, 113. Temperature is 

another relevent factor to be considered for pH sensing, however for the on-body 
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measurements, they are relatively less influential as the body temperatre remains more or 

less constant. 

 

 
Figure 17 Radar plot to evaluate the three pH sensors discussed in the work based on the results of the work and 

literature 

After a comprehensive analysis of multiple aspects from fabrication, sensor functioning, 

and wearability features, the PANI-based sensor showed clear advantage over other 

sensors discussed here. The radar plot also points out the wearability requirements and 

bioelectronics stipulates could be well addressed with a PANI potentiometric sensor.  

3.5 A textile-based potentiometric pH sensor based on carbon/PANI together with a printed 

reference electrode  

Sensor fabrication on textile substrates is one of the noteworthy aspects and an essential 

objective of this work. The previous section described a detailed screening and selection of 
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best performing pH sensors. Here, we present the development of a solid-state textile 

potentiometric printed pH sensor intended for wearable health tracking applications. In 

contrast to traditional biomedical sensing systems, the textile sensor must meet very 

stringent requirements. Through setting proper screening measures, here we decided to go 

with potentiometric pH sensor on textile fabrication. Instead of LIG, carbon is printed on 

the textile substrate as LIG formation on textiles is hassle, however some new researches 

show that there are possibilities to achieve LIG on textiles115-116. Here the sensor is tested 

in slightly different conditions as compared to previously mentioned ones. As the sensor 

needs to address biofluid volumes in microliter ranges, it is designed for such a range of 

volumes. Here the pH buffer is dropped on top of the electrodes with a few tens of 

microliter and it is found enough to make good measurements. The spacing between the 

working and reference electrode could be reduced further, which will result in a threshold 

volume of the test fluid that can be even reduced.  

 
Figure 18 (a) pH sensor on textile tested for the range pH 4 to 10, (b) sensor tested for repeatability 

The pH buffer solution is dropped onto the textile sensor such that it connects both 

electrodes. Figure 18a displays the OCP variations with respect to variations in the  pH of 
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the buffer solution. The textile sensor has shown Nernestian sensitivity of 45mV/pH, which 

is well agreed with the foil made sensor in this work. The sensor measurement readings 

demonstrate a linear transfer function characteristics with a correlation coefficient of 0.99 

over a physiologically significant pH range. The sensor measurement plot (figure 18b) 

shows that the sensor output is substantially the same for increasing and decreasing pH 

solutions steps in the 4–9.5 pH range. The sensor has been examined multiple times to 

ensure the repeatability and measured a maximum error of 2.9mV. This confirmes the low 

error tolerance of pH measurement (~±0.1 pH) which can offer competitive wound 

monitoring . The pH of the wound varies between pH 4.5 and 8.5 while transiting through 

the wound healing stages. A freshly formed wound has a pH between 7.4. An abrupt change 

in the pH can be an indicator of infections. A consistently observed high pH value indicates 

the chronicity of the wound7.  Although the sensor has some tolerance in the 

measurements, the healing status and chronicity could be followed. The sensor readings 

have shown an overall consistency in its OCP to pH relation in recurring measurements. 

Yet, there are slight variations in the measurement cycles, and it could be arising from 

systematic errors. This can mainly occur from the residues left behind on the textiles from 

previous pH buffer solutions. Also, the quick drying of a few microliter volume of dropped 

solution can lead to measurement errors.The sensor is also tested for a longer duration, 

where the sensor is kept in measurements for a time period of 1 hour. The sensor is found 

to be stable throughout and the readings were stable over time (figure 19).  Ac
ce
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Figure 19 Stability test for textile pH sensor with three different buffer solutions  

4 Conclusions 

There are a considerable number of pH sensors reported in the literature for health 

monitoring so far. However, most of them are fabricated on foils applying expensive 

microfabrication,  have limited range, inferior sensitivity, and lack repeatability. There are 

also difficulties in choosing the right material and sensing technology to be incorporated in 

wearables. This work explores the organic and polymeric sensing materials as they are 

found to be engaging in health monitoring due to their exceptional sensing, wearability, 

biocompatibility and processability properties. Besides that, the sensor is opted to be 

fabricated on textile substrates due to its ubiquitous wearable nature. This study makes an 

initial assortment of the most feasible sensor for such applications based on literature. A 

conductometric PEDOT:PSS sensor, a carbon-alizarin voltammetric sensor and a PANI 
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potentiometric sensor are experimentally investigated in terms of fabrication with printing 

techniques, sensing performance, and repeatability. According to the first phase of 

experimental results and literature background, the PANI-based potentiometric sensor is 

the most optimal choice towards the objective of the work, among the three different 

sensor materials and principles investigated. This work also utilises simple printing 

techniques for pH sensor fabrication which can be applied on foils and textiles. The printed 

PANI based pH sensor on textiles shows to be promising for a physiologically relevant 

range of pH values ranging from 4 to 9.5, has a good sensitivity of 45mV/pH, and an 

excellent repeatability. The selection of textiles and polymer based sensing materials 

enables wearability. Further, printing and coating techniques together with cheaper 

compatible materials ensure a more economical large scale production possibility of the 

wearable sensors. This work strongly asserts economicaly viable pH sensor into more 

wearable and disposable health monitoring applications which helps to realise an 

intelligent and portable health management system. 
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