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Abstract We show that the matrix query language MATLANG corresponds
to a natural fragment of the positive relational algebra on K-relations. The
fragment is defined by introducing a composition operator and restricting K-
relation arities to two. We then proceed to show that MATLANG can express
all matrix queries expressible in the positive relational algebra on K-relations,
when intermediate arities are restricted to three. Thus we offer an analogue,
in a model with numerical data, to the situation in classical logic, where the
algebra of binary relations is equivalent to first-order logic with three variables.

Keywords Expressive power · Provenance semirings · Annotated relations ·
Data science

1 Introduction

Motivated by large-scale data science, there is recent interest in supporting
linear algebra operations, such as matrix multiplication, in database systems.
This has prompted investigations comparing the expressive power of common
matrix operations with the operations on relations provided by the relational
algebra and SQL [8,9,12,4].

For Boolean matrices, the connection between matrices and relations is
very natural and well known. An m × n Boolean matrix A can be viewed
as a binary relation R ⊆ {1, . . . ,m} × {1, . . . , n}, where R consists of those
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pairs (i, j) for which Ai,j = 1. Boolean matrix multiplication then amounts to
composition of binary relations. Composition is the central operation in the
algebra of binary relations [13,16,17]. Besides composition, this algebra has
operations such as converse, which corresponds to transposition of a Boolean
matrix; union and complement, which correspond to disjunction and negation
of Boolean matrices; and the empty and identity relations, which correspond
to the zero and identity matrices.

A common theme in research in the foundations of databases is the expres-
sive power of query languages [1]. When we decide to use a particular query
language, we would like to understand as well as possible what we can do with
this query language. Results that characterize expressiveness may be very help-
ful in this respect. An example of such a result is the classical Codd theorem,
stating the equivalence between the standard relational algebra and first-order
logic. Likewise, for the algebra of binary relations, a classical result [18] is that
it has the same expressive power as the formulas with two free variables in
FO(3), the three-variable fragment of first-order logic. In this sense, we under-
stand quite well the expressive power of a natural set of operations on Boolean
matrices.

What can now be said in this regard about more general matrices, with
entries that are not just Boolean values? An m × n matrix with entries in
some semiring K is essentially a mapping from {1, . . . ,m} × {1, . . . , n} to
K. This perfectly fits the data model of K-relations introduced by Green et
al. [7]. In general, consider an infinite domain dom and a supply of attributes.
In a database instance, we assign to each attribute a range of values, in the
form of a finite subset of dom. Attributes can be declared to be compatible;
compatible attributes have the same range. A relation schema S is a finite set
of attributes. Tuples over S are mappings that assign to each attribute a value
of the appropriate range. Now, a K-relation over S is a mapping that assigns
to each tuple over S an element of K.

So, an m × n matrix X can be seen as a K-relation over two attributes,
say, A and B, where the range of A is {1, . . . ,m} and the range of B is
{1, . . . , n}. We can assume an order on all attributes and choose A < B so
that we know which values are row indices and which are column indices.
If, furthermore, there is an n × k matrix Y at play, we can also model the
latter as a K relation over two attributes, say, C and D, with C < D, but
with the additional conditional that C is compatible with B to reflect that the
number of columns of matrix X equals the number of rows of matrix Y . We can
view vectors as K-relations over a single attribute, and scalars as K-relations
over the empty schema. In general, a K-relation of arity r is essentially an r-
dimensional tensor (multidimensional array). (Because we need not necessarily
assume an order on dom, the tensor is unordered.)

Green et al. defined a generalization of the positive relation algebra working
onK-relations, which we denote here by ARA.1 When we restrict ARA to arities

1 ARA stands for Annotated-Relation Algebra, as the elements from K that a K-relation
assigns to its tuples are usually viewed as annotations.
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of at most 3, which we denote by ARA(3), we obtain an analogue to FO(3)
mentioned above. So, ARA provides a suitable scenario to reinvestigate, in
a data model with numerical values, the equivalence between the algebra of
binary relations and FO(3). In this paper, we make the following contributions.

1. We define a suitable generalization, to K-relations, of the composition op-
eration of classical binary relations. When we add this composition op-
erator to ARA, but restrict arities to at most two, we obtain a natural
query language for matrices. We refer to this language here as “ARA(2)
plus composition”.

2. We show that ARA(2) plus composition actually coincides with the matrix
query language MATLANG, introduced by two of the present authors with
Geerts and Weerwag [4] in an attempt to formalize the set of common
matrix operations found in numerical software packages.

3. We show that a matrix query is expressible in ARA(3) if and only if it is
expressible in MATLANG, thus providing an analogue to the classical result
about FO(3) and the algebra of binary relations. More generally, for any
arity r, we show that an r-ary query over r-ary K-relations is expressible in
ARA(r+ 1) if and only if it is expressible in ARA(r) plus composition. For
this result, we need the assumption that K is commutative. We stress that
the proof is not a trivial adaptation of the proof of the classical result, be-
cause we can no longer rely on familiar classical properties like idempotence
of union and join.

ARA has been a very influential vehicle for data provenance.2 The elements
from K are typically viewed as annotations, or as identifiers, and the seman-
tics of ARA operations was originally designed to show how these annotations
are propagated in the results of data manipulations. Other applications, apart
from provenance, have been identified from the outset, such as security levels,
or probabilities [7]. By doing the present work, we have understood that ARA
can moreover serve as a fully-fledged query language for tensors (multidimen-
sional arrays), and matrices in particular. This viewpoint is backed by the
recent interest in processing Functional Aggregate Queries (FAQ [2,3], also
known as AJAR [10]). Indeed, FAQ and AJAR correspond to the project-join
fragment of ARA, without self-joins.

This is a revised and extended version of the conference paper “On matrices
and K-relations” presented at FoIKS 2020 [5]. The conference version does not
contain the proofs of the presented results. The current version is a fully self-
contained version to which these proofs have been added. In addition, we have
expanded the discussion on complexity issues connected to the translations
between various languages considered in this work.

The paper is further organized as follows. Section 2 recalls the data model
of K-relations and the associated query language ARA. Section 3 presents the
result on ARA(r + 1) and ARA(r) plus composition. Section 4 relates ARA(2)
plus composition to MATLANG. Section 5 draws conclusions, discusses related
work, and proposes directions for further research.

2 The paper by Green et al. [7] received the PODS 2017 test-of-time award.
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2 Annotated-Relation Algebra

In this section, we start with some preliminaries before introducing the Anno-
tated-Relation Algebra, or ARA for short. We also identify some identities on
ARA expressions that are useful in later sections.

By function we will always mean a total function. For a function f : X → Y
and Z ⊆ X, the restriction of f to Z, denoted by f |Z , is the function Z → Y
where f |Z(x) = f(x) for all x ∈ Z.

Recall that a semiring K is a set equipped with two binary operations, ad-
dition (+) and multiplication (∗), such that (1) addition is associative, commu-
tative, and has an identity element 0; (2) multiplication is associative, has an
identity element 1, and has 0 as an annihilating element; and (3) multiplication
distributes over addition. A semiring is called commutative if multiplication is
commutative.

Proviso In the remainder of this paper, the presence of a semiring K is im-
plicitly assumed. Unless where explicitly specified otherwise, K need not be
commutative.

From the outset, we also fix countable infinite sets rel, att, and dom, the
elements of which are called relation names, attributes, and domain elements,
respectively. We assume the existence of an equivalence relation “∼” on att
with an infinite number of equivalence classes each of which is infinite. Let
A and B be attributes. If A ∼ B, we say that A and B are compatible.
Intuitively, compatible attributes must be assigned the same domains, which
will be formalized soon. A function f : X → Y with X and Y sets of attributes
is called compatible if, for all A ∈ X, A and f(A) are compatible.

A relation schema is a finite subset of att. A database schema is a function
S : N → Pfin(att) from a finite set N of relation names to the set of all finite
subsets of att, assigning a relation schema S(R) to each R ∈ N . We call the
relation names in N also the relation names of S. The arity of a relation
name R of S is the cardinality |S(R)| of its schema. The arity of the database
schema S is the largest arity among its relation names.

We now recursively define the expressions of the Annotated-Relation Al-
gebra, abbreviated by ARA, syntactically. In the process, we assign a relation
schema to each ARA expression by extending S from relation names to arbi-
trary ARA expressions. The ARA expressions over a database schema S is the
smallest set of expressions that can be created using the following rules.

Relation name. A relation name R of S is an ARA expression over S.
One. If e is an ARA expression over S, then 1(e) is an ARA expression over
S, and S(1(e)) := S(e).

Union. If e1 and e2 are ARA expressions over S with S(e1) = S(e2) then
e1 ∪ e2 is an ARA expression over S, and S(e1 ∪ e2) := S(e1) = S(e2).

Projection If e is an ARA expression over S and Y ⊆ S(e), then πY (e) is an
ARA expression over S, and S(πY (e)) := Y .
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Selection. If e is an ARA expression over S, Y ⊆ S(e), and the elements of
Y are mutually compatible, then σY (e) is an ARA expression over S, and
S(σY (e)) := S(e).

Renaming. If e is an ARA expression over S and ϕ : S(e)→ Y is a compatible
one-to-one correspondence with Y ⊆ att, then ρϕ(e) is an ARA expression
over S, and S(ρϕ(e)) := Y .

Join. If e1 and e2 are ARA expressions over S, then e1 on e2 is an ARA
expression over S, and S(e1 on e2) := S(e1) ∪ S(e2).

The arity of an ARA expression e over S is the cardinality |S(e)| of its schema.

Example 1 From a purely syntactical point of view, let S be a database schema
on N = {no courses, course fee} with S(no courses) = {student,dptm} and
S(course fee) = {dptm}. Hence, the arity of no courses is 2 and the arity of
course fee is 1. We shall give meaning to the above in Example 2, after we
look at databases and relations from a semantical point of view, below.

Let π{student}(no courses on course fee) be an ARA expression over S. This
expression has schema {student} and arity 1. We come back to the semantics
of this expression in Example 3.

We now turn to semantics. A domain assignment is a functionD : att→ D,
where D is a set of nonempty finite subsets of dom, such that, for compatible
attributes A and B, D(A) = D(B). Let X be a relation schema. A tuple over
X with respect to D is a function t : X → dom such that, for all A ∈ X,
t(A) ∈ D(A). We denote by TD(X) the set of tuples over X with respect to D.
Note that TD(X) is finite. A relation r over X with respect to D is a function
r : TD(X)→ K. So a relation annotates every tuple over X with respect to D
with a value from K. If S is a database schema, then an instance I of S with
respect to D is a function that assigns to every relation name R of S a relation
I(R) : TD(S(R))→ K.

Remark 1 In practice, a domain assignment need only be defined on the at-
tributes that are used in the database schema (and on attributes compatible
with these attributes). Thus, it can be specified finitely. While, here, we have
chosen to keep the notions of domain assignment and instance separate, it may
be argued that it is perhaps more natural to think of the domain assignment
as being part of the instance.

Example 2 We wish to record for a university both the number of courses
each student takes in each department and the unit fee for a course in each
department. For that purpose, we shall use the database schema S defined in
Example 1. Let K be the semiring of integers. If I is an instance of S, then
the relation I(no courses) must annotate each pair of a student and a depart-
ment with the number of courses taken by that student in that department.
Likewise, the relation I(course fee) must annotate each department with the
unit fee for a course in that department. Let D be a domain assignment with
D(student) = {Alice,Bob} and D(dptm) = {CS,Math,Bio}. One particular
database instance I of S with respect to D is shown in Figure 1.
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I(no courses) =

student dptm K
Alice CS 5
Alice Math 2
Alice Bio 0
Bob CS 2
Bob Math 1
Bob Bio 3

I(course fee) =

dptm K
CS 300

Math 250
Bio 330

Fig. 1 Example of a database instance.

We now define the relation 1DX , as well as how the generalizations of the
classical operations from the positive relational algebra (which we encountered
as the constructors in ARA expressions) work on relations.

One. Let X be a relation schema. The relation 1DX : TD(X)→ K with schema
X is defined by 1DX(t) = 1.

Union. Let r1, r2 : TD(X) → K be relations with the same schema X. The
relation r1 ∪ r2 : TD(X) → K with schema X is defined by (r1 ∪ r2)(t) =
r1(t) + r2(t).

Projection. Let r : TD(X)→ K be a relation with schema X, and let Y ⊆ X.
The relation πY (r) : TD(Y )→ K with schema Y is defined by(

πY (r)
)
(t) =

∑
t′∈TD(X),
t′|Y =t

r(t′).

Selection. Let r : TD(X) → K be a relation with schema X, and let Y ⊆
X, such that the attributes of Y are mutually compatible. The relation
σY (r) : TD(X)→ K over X is defined by

(
σY (r)

)
(t) =

{
r(t) if t(A) = t(B) for all A,B ∈ Y ;

0 otherwise.

Renaming. Let r : TD(X)→ K be a relation with schema X, and let ϕ : X →
Y be a compatible one-to-one correspondence. The relation ρϕ(r) : TD(Y )
→ K over Y is defined by

(
ρϕ(r)

)
(t) = r(t ◦ ϕ).

Join. Let r1 : TD(X1) → K and r2 : TD(X2) → K be relations with schemas
X1 and X2, respectively. The relation r1 on r2 : TD(X1 ∪X2)→ K over X
is defined by (r1 on r2)(t) = r1(t|X1

) ∗ r2(t|X2
).

The above operations provide semantics for ARA in a natural manner. For-
mally, let S be a database schema, and D a domain assignment. The semantics
of an ARA expression e over S with respect to D is a mapping which associates
to an instance I of S with respect to D the output relation e(I) with schema
S(e), defined by the following rules.

Relation name. If R is a relation name, then R(I) := I(R).
One. If e is an ARA expression over S, then

(
1(e)

)
(I) := 1DS(e).
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(πstudent(no courses on course fee))(I) =
student K
Alice 2000
Bob 1840

Fig. 2 The output relation for the ARA expression πstudent(no courses on course fee) applied
to the database instance I shown in Figure 1.

Union. If e1 and e2 are ARA expressions over S with S(e1) = S(e2), then
(e1 ∪ e2)(I) := e1(I) ∪ e2(I).

Projection If e is an ARA expression over S and Y ⊆ S(e), then
(
πY (e)

)
(I)

:= πX(e(I)).
Selection. If e is an ARA expression over S, Y ⊆ S(e), and the attributes of

Y are mutually compatible, then
(
σY (e)

)
(I) := σY (e(I)).

Renaming. If e is an ARA expression over S and ϕ : S(e)→ Y is a compatible
one-to-one correspondence with Y ⊆ att, then

(
ρϕ(e)

)
(I) := ρϕ(e(I)).

Join. If e1 and e2 are ARA expressions over S, then (e1 on e2)(I) := e1(I) on
e2(I).

Example 3 We continue with Examples 1 and 2. Consider again the ARA ex-
pression π{student}(no courses on course fee) over database scheme S. Let I be
an instance of S with respect to domain asignment D. From the above rules,
it follows that (no courses on course fee)(I) annotates each pair of a student
and a department with the product of the number of courses taken by that
student in that department and the unit fee for a course in that department,
i.e., with the total fee for the courses taken by that student in that department.
The projection π{student} then aggregates these subtotals per student over all

departments. Hence,
(
π{student}(no courses on course fee)

)
(I) annotates each

student with the total fee for all courses taken by that student. Figure 2 shows
the output relation for the ARA expression πstudent(no courses on course fee)
applied to the database instance I shown in Figure 1.

Remark 2 The language ARA is a slight variation of the K-annotated rela-
tional algebra as originally defined by Green et al. [7] to better suit our pur-
poses, i.e., comparing ARA to MATLANG in Section 4.

First, the original definition does not have a domain assignment D : att→
D but instead a single domain common to all attributes (and it therefore also
does not have a compatibility relation ∼). As such, the original definition
corresponds to the case where database schemas and ARA expressions use
only mutually compatible attributes, which is too restrictive for our purposes.
Second, we focus on equality selections, while the original paper does not fix
the allowed selection predicates. Third, and finally, we extended the original
definition with one-relations.

The following observations, to the effect that some (but not all) classical
relational-algebra equivalences carry over to the K-annotated setting, were
originally made by Green et al. (They are not affected by the small differences
between their formalism and ours, outlined in Remark 2.)
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Proposition 1 ([7, Proposition 3.4]) The following properties and identi-
ties hold, where, for each given identity, we assume that the left-hand side of
that identity is well defined.

– Union is associative and commutative.
– Join is associative and distributive over union, i.e., (r1 ∪ r2) on r3 = (r1 on
r3) ∪ (r2 on r3).

– Any two selections commute.
– Projection and selection commute if projection retains the attributes on

which selection takes place.
– Projection distributes over union, i.e., πY (r1 ∪ r2) = πY (r1) ∪ πY (r2).
– Selection distributes over union, i.e., σY (r1 ∪ r2) = σY (r1) ∪ σY (r2).
– Selection and join commute in the sense that σY (r1) on r2 = σY (r1 on r2)

and r1 on σY (r2) = σY (r1 on r2).
– If K is commutative, then join is commutative.

Note that idempotence of union and of join, i.e., r on r = r ∪ r = r, which
holds for the classical relational algebra, does not in general hold for ARA.

We supplement Proposition 1 with the following properties.

Lemma 1 Let r1 : TD(X1)→ K and r2 : TD(X2)→ K.

1. If X1 ∩X2 ⊆ X ⊆ X1 ∪X2, then πX(r1 on r2) = πX∩X1
(r1) on πX∩X2

(r2).
2. If Y1, Y2 ⊆ X1 where Y1 ∩ Y2 6= ∅ and the attributes of Y1 and of Y2 are

mutually compatible, then σY2(σY1(r1)) = σY1∪Y2(r1).
3. If ϕ : X1∪X2 → X is a compatible one-to-one correspondence, then ρϕ(r1 on

r2) = ρϕ|X1
(r1) on ρϕ|X2

(r2). If moreover X1 = X2, then ρϕ(r1 ∪ r2) =
ρϕ(r1) ∪ ρϕ(r2).

4. If Y ⊆ X1 and ϕ : X1 → X is a compatible one-to-one correspondence,
then ρϕ(σY (r1)) = σϕ(Y )(ρϕ(r1)), where ϕ(Y ) = {ϕ(y) | y ∈ Y }.

Proof 1. Both left- and right-hand side are functions from TD(X) to K, as
(X ∩X1)∪ (X ∩X2) = X ∩ (X1 ∪X2) = X. To prove that they are equal,
let t be any tuple in TD(X). Then,(

πX(r1 on r2)
)
(t) =

∑
t′∈TD(X1∪X2),

t′|X=t

(r1 on r2)(t′) =
∑

t′∈TD(X1∪X2),
t′|X=t

r1(t′|X1) ∗ r2(t′|X2).

Since X1∩X2 ⊆ X, all tuples t′ in the latter sum agree on X1∩X2. Hence,
we can apply distributivity of ∗ over + to rewrite that sum to( ∑

t′1∈TD(X1),

t′1|X∩X1
=t|X∩X1

r1(t′1)
)
∗
( ∑
t′2∈TD(X2),

t′2|X∩X2
=t|X∩X2

r2(t′2)
)

=
(
πX∩X1

(r1)
)
(t|X∩X1

) ∗
(
πX∩X2

(r2)
)
(t|X∩X2

)

=
(
πX∩X1

(r1) on πX∩X2
(r2)

)
(t),

as was to be shown.
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2. Both left- and right-hand side are functions from TD(X1) to K. To prove
that they are equal, let t be any tuple in TD(X1). Then,

(
σY2

(σY1
(r1))

)
(t) =

{(
σY1

(r1)
)
(t) if t(A) = t(B) for all A,B ∈ Y2;

0 otherwise.

Furthermore,

(
σY1

(r1)
)
(t) =

{
r1(t) if t(A) = t(B) for all A,B ∈ Y1;

0 otherwise.

Combining the above, we see that

(
σY2

(σY1
(r1))

)
(t) =

{
r1(t) if t(A) = t(B) for all A,B ∈ Y1 ∪ Y2;

0 otherwise

=
(
σY1∪Y2

(r1)
)
(t).

3. In the identity involving join, both left- and right-hand side are functions
from TD(X) to K. To prove that they are equal, let t be any tuple in
TD(X). Let u = t ◦ ϕ, which is a tuple in TD(X1 ∪X2). Then,(
ρϕ(r1 on r2)

)
(t) = (r1 on r2)(t ◦ ϕ) = (r1 on r2)(u) = r1(u|X1) ∗ r2(u|X2).

Obviously, u|X1
= t|ϕ|X1

(X1) ◦ ϕ|X1
and u|X2

= t|ϕ|X2
(X2) ◦ ϕ|X2

. Further-
more, ρϕ|X1

(r1) is a function from TD(ϕ|X1
(X1)) to K and ρϕ|X2

(r2) is a
function from TD(ϕ|X2(X2)) to K. Hence,

r1(u|X1
) ∗ r2(u|X2

) = r1(t|ϕ|X1
(X1) ◦ ϕ|X1

) ∗ r2(t|ϕ|X2
(X2) ◦ ϕ|X2

)

=
(
ρϕ|X1

(r1)
)
(t|ϕ|X1

(X1)) ∗
(
ρϕ|X2

(r2)
)
(t|ϕ|X2

(X2))

=
(
ρϕ|X1

(r1) on ρϕ|X2
(r2)

)
(t)

In the identity involving union, both left- and right-hand side are again
functions from TD(X) to K. To prove that they are equal, let t be as
above. Since X1 = X2, ϕ is a function from X1 = X2 to X. Then,(

ρϕ(r1 ∪ r2)
)
(t) = (r1 ∪ r2)(t ◦ ϕ)

= r1(t ◦ ϕ) + r2(t ◦ ϕ)

=
(
ρϕ(r1)

)
(t) +

(
ρϕ(r2)

)
(t)

=
(
ρϕ(r1) ∪ ρϕ(r2)

)
(t).

4. Both left- and right-hand side of this identity are functions from TD(X) to
K. To prove that they are equal, let t be any tuple in TD(X). Then,(
ρϕ(σY (r1))

)
(t) =

(
σY (r1)

)
(t ◦ ϕ)

=

{
r1(t ◦ ϕ) if (t ◦ ϕ)(A) = (t ◦ ϕ)(B) for all A,B ∈ Y ;

0 otherwise.
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The identity follows from the observations that r1(t ◦ ϕ) =
(
ρϕ(r1)

)
(t),

(t ◦ ϕ)(A) = t(ϕ(A)), and (t ◦ ϕ)(B) = t(ϕ(B)). Since ϕ is one-to-one,
t(ϕ(A)) = t(ϕ(B)) for all A,B ∈ Y is equivalent to t(A′) = t(B′) for all
A′, B′ ∈ ϕ(Y ).

ut

We also use the derived operation of projecting away one attribute, π̂A(e),
which is a shorthand for πS(e)\{A}(e) if A ∈ S(e). Note that, conversely,
πX(e) = (π̂Am · · · π̂A1

)(e) where X = S(e) \ {A1, . . . , Am} and the Ai’s are
pairwise distinct. Hence, “standard” projection and projecting away one at-
tribute are interchangable as far as the construction of ARA expressions is
concerned. We shall take advantage of this in proofs, as projecting away one
attribute has often the advantage of having to deal only with that particular
attribute.

3 Annotated-Relation Algebra with Composition

In this section, we define an operation called k-composition and show that
augmenting ARA by composition allows one to reduce the required arity of
the relations that are computed in subexpressions. The intuition is to provide
a generalization of classical composition of two binary relations to annotated
relations, so that we can compose up to k relations of arity up to k. Specif-
ically, the classical composition of a binary relation r with a binary relation
s amounts to viewing these relations as relations over schemas {A,B} and
{A,C}, respectively, and performing π̂A(r on s). Thus, we arrive at the follow-
ing generalization.

Definition 1 Let k be a nonnegative integer and let l ∈ {1, . . . , k}. Let
ri : TD(Xi) → K for i ∈ {1, . . . , l}, let X = X1 ∪ · · · ∪ Xl, and let A ∈
X1 ∩ · · · ∩Xl.

Define the k-composition ζA,k(r1, . . . , rl) : TD(X \ {A})→ K as(
ζA,k(r1, . . . , rl)

)
(t) =

(
π̂A(r1 on · · · on rl)

)
(t),

for all t ∈ TD(X \ {A}).

Note that ζA,k takes at most k arguments. We emphasize that ζA,k is de-
fined as a new operator (albeit one that can be defined by an ARA expression)
and not as a shorthand for an ARA expression.

We denote by ARA + ζk the language obtained by extending ARA with
k-composition. That is, if e1, . . . , el are ARA + ζk expressions with l ≤ k and
A ∈ S(e1) ∩ · · · ∩ S(el), then e = ζA,k(e1, . . . , el) is an ARA + ζk expression.
Also, we let S(e) := (S(e1) ∪ · · · ∪ S(el)) \ {A}.

Let k be a nonnegative integer. We denote by ARA(k) the fragment of
ARA in which the database schemas are restricted to arity at most k and each
subexpression has arity at most k. In particular, join e1 on e2 is only allowed
if |S(e1 on e2)| ≤ k. The fragment (ARA + ζk)(k) is defined similarly.
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From Definition 1, it follows that (ARA + ζk)(k) is subsumed by ARA(k +
1). Indeed, let e be an (ARA + ζk)(k) expression. We obtain an equivalent
ARA expression e′ by subsequently replacing each subexpression of the form
ζA,k(e1, . . . , el) by π̂A(e1 on · · · on el). Since the former has arity at most k, so
has the latter. However, each such replacement introduces one subexpression
not equivalent to a subexpression of e, namely e1 on · · · on el, of which we can
only say that it has arity at most k + 1. Hence, e′ is in ARA(k + 1).

One of our main results (Corollary 1) provides the converse inclusion, when
the database schemas and outputs are restricted to arity at most k. To this
end, we establish a normal form for ARA expressions (Theorem 1). First, we
prove the following technical identity that we shall use to show Theorem 1.

Lemma 2 Let r1, . . . , rn be relations with relation schemas X1, . . . , Xn, re-
spectively, and with respect to a domain assignment D. Assume that A,B ∈
X1 ∪ · · · ∪Xn are distinct and compatible. Define, for i ∈ {1, . . . , n},

r′i :=


ri if A /∈ Xi;

ρϕ(ri) if A ∈ Xi, B /∈ Xi;

π̂A(σ{A,B}(ri)) if A,B ∈ Xi,

where ϕ is the one-to-one correspondence from Xi to (Xi \ {A}) ∪ {B} that
maps A to B and keeps the remaining attributes fixed. Then,

π̂A(σ{A,B}(r1 on · · · on rn)) = r′1 on · · · on r′n.

Proof Let X be a finite set of attributes with A,B ∈ X distinct and compat-
ible. Let r : TD(X)→ K be a relation and t ∈ TD(X \ {A}).

We have(
π̂A(σ{A,B}(r))

)
(t) =

∑
u∈TD(X),
u|X\{A}=t

(
σ{A,B}(r)

)
(u) =

∑
u∈TD(X),

u|X\{A} = t,

u(A)=u(B)

r(u) = r(t̃), (1)

where t̃ ∈ TD(X) is t̃ = t ∪ {(A, t(B))}. Thus, t̃ is obtained from t by adding
attribute A with value t(B). Indeed, the last summation of (1) is over a single
tuple u, namely u = t̃.

In particular, applying (1) to r1 on · · · on rn, we obtain(
π̂A(σ{A,B}(r1 on · · · on rn))

)
(t) = (r1 on · · · on rn)(t̃) = r1(t̃|X1

)∗ · · · ∗rn(t̃|Xn).

Denote the schemas of the relations r′1, . . . , r
′
n by X ′

1, . . . , X
′
n, respectively. Let

i ∈ {1, . . . , n}. We distinguish three cases.

– If A /∈ Xi, then t̃|Xi = t|Xi . Hence ri(t̃|Xi) = r′i(t|X′
i
).

– If A ∈ Xi and B /∈ Xi, then t̃|Xi = t|(Xi\{A})∪{B} ◦ ϕ = t|X′
i
◦ ϕ. Hence,

ri(t̃|Xi) =
(
ρϕ(ri)

)
(t|X′

i
) = r′i(t|X′

i
).

– If A,B ∈ Xi, then, by (1) but now applied to ri and t|Xi\{A}, we have

ri(t̃|Xi) =
(
π̂A(σ{A,B}(ri))

)
(t|Xi\{A}) = r′i(t|X′

i
).
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In all three cases, we obtain ri(t̃|Xi) = r′i(t|X′
i
). Consequently,

r1(t̃|X1
) ∗ · · · ∗ rn(t̃|Xn) = r′1(t|X′

1
) ∗ · · · ∗ r′n(t|X′

n
) = (r′1 on · · · on r′n)(t).

ut

We use the following terminology. Let F be any family of expressions. A
selection of F-expressions is an expression of the form σYn · · ·σY1

(f), where
f is an F-expression and n ≥ 0. Note the slight abuse of terminology as
we allow multiple selection operations. Furthermore, when we say that e is
a union of F-expressions or a join of F-expressions, we allow e to be just a
single expression in F (so union and join may be skipped).

We are now ready to state and prove one of the main results of this paper.
This result is inspired by the classic equivalence of FO(3) and the algebra of
binary relations [18]. (A compact proof of this equivalence is given by Marx
and Venema [14, Theorem 3.4.5, Claim 2]; a self-contained exposition is also
available [19].)

Two ARA expressions e1 and e2 over the same database schema are called
equivalent, denoted e1 ≡ e2, if they yield the same output relation for ev-
ery domain assignment and every database instance respecting that domain
assignment.

Theorem 1 Let S be a database schema of arity at most k, and assume that
K is commutative. Every ARA(k+1) expression over S is equivalent to a union
of selections of joins of (ARA + ζk)(k) expressions over S.

Proof For brevity, if an expression is a union of selections of joins of (ARA +
ζk)(k) expressions over S, then we say that this expression is in normal form.

We now prove that every ARA(k + 1) expression e is equivalent to an
expression in normal form, by induction on the structure of e. (This approach
works, since, by definition, a subexpression of an ARA(k+1) expression is also
in ARA(k + 1).)

Relation names. Let e be a relation name R of S. Since relation names of
S have arity at most k, e is already in normal form.

One. Let e be 1(e′), where e′ is equivalent to an expression in normal form. Let
e1, . . . , en be (ARA+ ζk)(k) expressions over S such that e1 on · · · on en is a
subexpression of this expression in normal form. Since unions and selections
do not change the schema of an expression, S(e′) = S(e1 on · · · on en), and,
hence, e = 1(e′) ≡ 1(e1 on · · · on en) ≡ 1(e1) on · · · on 1(en). Since, for
i = 1, . . . , n, S(1(ei)) = S(ei), 1(ei)—just like ei—is of arity at most k.
We may therefore conclude that e is equivalent to an expression in normal
form.

Union. Let e be e1 ∪ e2, where e1 and e2 are equivalent to expressions in
normal form. By definition, the union of expressions in normal form is
again in normal form.
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Join. Let e be e1 on e2, where e1 and e2 are equivalent to expressions in
normal form. Since join distributes over union and since selection and join
commute in the sense of Proposition 1, it follows that e = e1 on e2 is also
equivalent to an expression in normal form.

Selection. Let e be σY (e′), where e′ is equivalent to an expression in normal
form. Since selection distributes over union (Proposition 1), it follows that
e = σY (e′) is also equivalent to an expression in normal form.

Renaming. Let e be ρϕ(e′), where e′ is equivalent to an expression in nor-
mal form. Since renaming distributes over both union and join and since
renaming and selection commute (Lemma 1), it follows that e = ρϕ(e′) is
equivalent to a union of selections of joins of renamings of (ARA + ζk)(k)
expressions. Since renaming preserves arity, renamings of (ARA + ζk)(k)
expressions are in turn (ARA + ζk)(k) expressions. We may thus conclude
that e = ρϕ(e′) is equivalent to an expression in normal form.

Projection. Without loss of generality, let e be π̂A(e′), where e′ is equivalent
to an expression in normal form. Since projection distributes over union
(Proposition 1), we may assume without loss of generality that e′ is equiv-
alent to σYm · · ·σY1(f), with f a join of (ARA + ζk)(k) expressions. By
Proposition 1 and Lemma 1, we may assume that Y1, . . . , Ym are pairwise
disjoint. We may also assume that they are all of cardinality at least 2,
since σY on relations is the identity if |Y | ≤ 1. We consider two cases.
1. A ∈ Y1∪· · ·∪Ym. Since Y1, . . . , Ym are pairwise disjoint, there is a unique
i ∈ {1, . . . ,m} for which A ∈ Yi. Since any two selections commute
(Proposition 1), we may assume that A ∈ Y1. Also by Proposition 1,
e = π̂A(e′) ≡ σYm · · ·σY2(π̂A(σY1(f))). Since Y1 is of cardinality at least
2, there exists B ∈ Y1 distinct from A. Hence, by Lemma 1, σY1

(f) ≡
σY1\{A}(σ{A,B}(f)), and π̂A(σY1

(f)) ≡ σY1\{A}(π̂A(σ{A,B}(f))). Now,
by Lemma 2, π̂A(σ{A,B}(f)) is equivalent to a join of (ARA + ζk)(k)
expressions, as was to be shown.

2. A /∈ Y1 ∪ · · · ∪ Ym. With a similar argument as in the former case,
e = π̂A(e′) ≡ σYm · · ·σY1(π̂A(f)). It remains to show that π̂A(f) is
a join of (ARA + ζk)(k) expressions. Since e′ is a subexpression of the
ARA(k+1) expression e, e′ in turn is in ARA(k+1), hence |S(e′)| ≤ k+1.
Moreover, S(f) = S(e′), hence |S(f)| ≤ k + 1. If |S(f)| ≤ k, then f
itself is an (ARA + ζk)(k) expression and so is π̂A(f). So, assume that
|S(f)| = k + 1.
Since join is commutative (because K is) and associative, we can regard
f as a join of a multiset F = {f1, . . . , fn} of (ARA+ ζk)(k) expressions.
Now, for any two expressions e1 and e2 with A /∈ S(e1), we have that
π̂A(e1 on e2) ≡ e1 on π̂A(e2) (Lemma 1). Therefore, we may assume that,
for all i = 1, . . . , n, A ∈ S(fi). Let SAk (f) be the set of all k-element
subsets of S(f) containing A. There exists a function s : {1, . . . , n} →
SAk (f) such that, for all i = 1, . . . , n, S(fi) ⊆ s(i). Let R be the range of
s. Thus, |R| ≤ |SAk (f)| = k. Let, for S ∈ R, fS := oni=1,...,n;s(i)=S fi. In
words, fS is the join of all subexpressions fi, 1 ≤ i ≤ n, for which s(i) =
S. Since s(i) = S implies that S(fi) ⊆ S, it follows that S(fS) ⊆ S.
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Hence, |S(fS)| ≤ |S| = k. Therefore, fS is an (ARA+ζk)(k) expression.
Since, for each i = 1, . . . , n, fi occurs in fs(i), it follows that f ≡
onS∈R fS . Consequently, π̂A(f) ≡ π̂A(onS∈R fS) ≡ ζA,k((fS)S∈R), by
Definition 1. We thus obtain an (ARA + ζk)(k) expression as desired.

ut

Example 4 Assume that K is commutative and consider the ARA(3) expres-
sion e = π{B,C}(σ{B,C}(R on R on S on T on ρϕ(T )) ∪ σ{A,B}(R on S on T )),
where S(R) = {A,B}, S(S) = {B,C}, S(T ) = {A,C} (A,B,C are pairwise
distinct), and ϕ sends A to B and C to itself. The proof of Theorem 1 obtains
an equivalent expression in normal form as follows.

e = π̂A(σ{B,C}(R on R on S on T on ρϕ(T )) ∪ σ{A,B}(R on S on T ))

≡ π̂A(σ{B,C}(R on R on S on T on ρϕ(T ))) ∪ π̂A(σ{A,B}(R on S on T ))

≡ σ{B,C}(π̂A(R on R on S on T on ρϕ(T ))) ∪ π̂A(σ{A,B}(R on S on T ))

≡ σ{B,C}(S on ρϕ(T ) on π̂A(R on R on T )) ∪ π̂A(σ{A,B}(R on S on T ))

≡ σ{B,C}(S on ρϕ(T ) on ζA,2(R on R, T )) ∪ π̂A(σ{A,B}(R on S on T ))

≡ σ{B,C}(S on ρϕ(T ) on ζA,2(R on R, T )) ∪
(
π̂A(σ{A,B}(R)) on S on ρϕ(T )

)
.

The last expression is in the normal form since the subexpressions S, ρϕ(T ),
ζA,2(R on R, T ), and π̂A(σ{A,B}(R)) are all (ARA + ζ2)(2) expressions.

Note that we most likely cannot omit the “selections of” in Theorem 1.
To see this for k = 2, consider the expression σ{A,C}(R on S) where R and S
are relation names with S(R) = {A,B} and S(S) = {B,C}. This expression
is in ARA(3) and is also in normal form, as the relation names R and S
constitute expressions in (ARA + ζ2)(2). We cannot see, however, how the
selection operator σ{A,C} could be eliminated from this normal form.

Remark 3 Theorem 1 still holds if the 1 operator is omitted from the definition
of ARA. Indeed, in the proof we can simply omit the case for the 1 operator,
which is not used anywhere else.

In Theorem 1, we have shown that an ARA(k+ 1) expression is equivalent
to a union of selections of joins of (ARA+ ζk)(k) expressions. Since union and
selection do not change arity, a union of selections of joins of (ARA + ζk)(k)
expressions is an (ARA+ ζk)(k) expression if and only if these joins have arity
at most k if and only the original ARA(k + 1) expression has arity at most k.
Hence, Theorem 1 yields the following corollary.

Corollary 1 Let S be a database schema of arity at most k and assume that
K is commutative. Every ARA(k + 1) expression e over S of arity at most k
is equivalent to an (ARA + ζk)(k) expression over S.

Remark 4 Note that transforming an expression into the normal form of The-
orem 1 may lead to an exponential increase in expression length. The reason
is that the proof uses distributivity of join over union. Indeed, each time we
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replace an expression of the form (e1∪e2) on e3 by (e1 on e3)∪(e2 on e3) there is
a duplication of e3. The proof of the classic translation of FO(3) to the algebra
of binary relations also induces an exponential increase of expression length for
similar reasons. A proof that this blowup is unavoidable remains open, both
for our result and for the classical result (to the best of our knowledge).

4 Working with Matrices

In this section, we show that (ARA + ζ2)(2) is equivalent to a natural version
of MATLANG [4]. As a consequence of Corollary 1, we then obtain that also
ARA(3), with database schemas and output relations restricted to arity at
most 2, is equivalent to MATLANG. We begin by recalling the definition of
this language.

4.1 MATLANG

Let us fix the countable infinite sets matvar and size, where the latter has
a distinguished element 1 ∈ size. The elements of matvar are called matrix
variables and the elements of size are called size symbols.

A matrix schema is a function S : V → size×size with V ⊆matvar both
finite and nonempty. We write (α, β) ∈ size× size also as α× β.

We now recursively define MATLANG expressions syntactically. In the pro-
cess, we assign a matrix schema to each MATLANG expression by extending
S from matrix variables to arbitrary MATLANG expressions. The MATLANG
expressions over a matrix schema S is the smallest set of expressions that can
be created by using the following rules.

Variable. A matrix variable M of S is a MATLANG expression over S.
Transpose. If e is a MATLANG expression over S with S(e) = α × β, then

eT is a MATLANG expression with S(eT ) := β × α.
One-vector. If e is a MATLANG expression over S with S(e) = α × β, then

1(e) is a MATLANG expression with S(1(e)) := α× 1.
Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1,

then diag(e) is a MATLANG expression with S(diag(e)) := α× α.
Multiplication. If e1 and e2 are MATLANG expressions over S with S(e1) =

α × β and S(e2) = β × γ, then e1 · e2 is a MATLANG expression with
S(e1 · e2) := α× γ.

Addition. If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),
then e1 + e2 is a MATLANG expression with S(e1 + e2) := S(e1) = S(e2).

Hadamard product. If e1 and e2 are MATLANG expressions over S with
S(e1) = S(e2), then e1 ◦ e2 is a MATLANG expression with S(e1 ◦ e2) :=
S(e1) = S(e2).

A size assignment is a function σ that assigns to each size symbol a strictly
positive integer with σ(1) = 1. LetM be the set of all matrices over K. We say
that M ∈M conforms to α×β ∈ size×size by σ if M is a σ(α)×σ(β)-matrix.



16 Robert Brijder et al.

I(no courses) =

(
5 2 0
2 1 3

)
I(course fee) =

300
250
330


Fig. 3 An example of an instance of a matrix schema.

If S : V → size × size is a matrix schema, then an instance of S with
respect to σ is a function I : V →M such that, for each M ∈ V , the matrix
I(M) conforms to S(M) by σ.

Remark 5 In practice, a size assignment need only be defined on the size sym-
bol that are used in the schema. Thus, it can be finitely specified. While, here,
we have chosen to keep the notions of size assignment and instance separate, it
may be argued that it is perhaps more natural to think of the size assignment
as being part of the instance.

Example 5 Let K be the set of integers and let S be a matrix schema on the set
of matrix variables {no courses, course fee} with S(no courses) = student ×
dptm and S(course fee) = dptm × 1. Now, let σ be a size assignment such
that σ(student) = 2 and σ(dptm) = 3. An instance I of S with respect to σ
is shown in Figure 3.

This matrix schema and instance may be compared to the database schema
and instance exhibited in Examples 1 and 2 and Figure 1.

We now define how the operations which we encountered as the construc-
tors in MATLANG expressions work on matrices.

Transpose, Multiplication, Addition. Matrix transpose, matrix multipli-
cation, and matrix addition are defined in the usual way.

One-vector. Let M be a m×n matrix. Then, 1(M) is the m×1 matrix (i.e.,
column vector) for which, for i = 1, . . . ,m,

(
1(M)

)
i,1

= 1.

Diagonalization. Let M be a m × 1 matrix (i.e., a column vector). Then,
diag(M) is the m×m (square) matrix for which, for i, j = 1, . . . ,m,

(
diag(M)

)
i,j

=

{
Mi,1 if i = j;

0 if i 6= j.

Hadamard product Let M1 and M2 be m×n matrices. Then, M1◦M2 is the
m× n matrix for which, for i = 1, . . . ,m and j = 1, . . . , n, (M1 ◦M2)i,j =
(M1)i,j ∗ (M2)i,j .

The above operations provide semantics for ARA in a natural manner.
Formally, let S be a matrix schema, and let σ be a size assignment. The
semantics of a MATLANG expression over S with respect to σ is a mapping
associating with an instance I of S with respect to σ the output matrix e(I)
conforming to S(e) by σ, defined by the following rules.

Variable. If M is a matrix variable, then M(I) := I(M).
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Mapping MATLANG (ARA + ζ2)(2)
matrix variable → relation name M M
size symbol → attributes α rowα, colα
element of size× size → relation schema s Γ (s)
matrix schema → database schema S Γ (S)
size assignment → domain assignment σ D(σ)
matrix → relation M Rels,σ(M)
matrix instance → database instance I Rels,σ(I)
MATLANG expression → (ARA + ζ2)(2) expression e Υ (e)

Table 1 Symbol table for the simulation of MATLANG in (ARA + ζ2)(2).

Transpose. If e is a MATLANG expression over S, then (eT )(I) :=
(
e(I)

)T
.

One-vector. If e is a MATLANG expression over S, then
(
1(e)

)
(I) := 1(e(I)).

Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1,
then

(
diag(e)

)
(I) := diag(e(I)).

Multiplication If e1 and e2 are MATLANG expressions over S with S(e1) =
α× β and S(e2) = β × γ, then (e1 · e2)(I) := e1(I) · e2(I).

Addition If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),
then (e1 + e2)(I) := e1(I) + e2(I).

Hadamard product If e1 and e2 are MATLANG expressions over S with
S(e1) = S(e2), then (e1 ◦ e2)(I) := e1(I) ◦ e2(I).

Remark 6 Matrix addition and the Hadamard product are the pointwise appli-
cations of addition and product, respectively. The original definition of MAT-
LANG [4] is more generally defined in terms of an arbitrary set Ω of allowed
pointwise functions. So, MATLANG as defined above fixes Ω to {+, ∗}. This
restriction was also considered by Geerts [6] (who also allows multiplication
by constant scalars, but this is not essential).

Also, the original definition of MATLANG fixes K to the field of complex
numbers and complex conjugate transpose is considered instead of transpose.
By definition, the complex conjugate transpose of a matrix is obtained by
pointwise application of complex conjugate to the transpose of that matrix.
Hence, transpose can be expressed as pointwise application of complex conju-
gate to the complex conjugate transpose of a matrix. It follows that transpose
and conjugate complex transpose are exchangable provided the set Ω of al-
lowed pointwise functions contains complex conjugate.

In Sections 4.2 and 4.3, we provide simulations of MATLANG in (ARA +
ζ2)(2) and of (ARA + ζ2)(2) in MATLANG.

4.2 Simulating MATLANG in (ARA + ζ2)(2)

The notations used in this translation are summarized in Table 1 for easy
reference. Examples 6 and 7, together with Figures 3 and 5, may also help to
understand the translation.
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For notational convenience, instead of fixing a one-to-one correspondence
between rel and matvar, we assume that rel = matvar.

Let us now fix injective functions row: size \ {1} → att and col : size \
{1} → att with disjoint ranges such that, for all α ∈ size \ {1}, row(α) and
col(α) are compatible. To reduce clutter, we write, for α ∈ size \ {1}, row(α)
as rowα and col(α) as colα.

Let s ∈ size× size, s = α× β. We associate to s a relation schema

Γ (s) :=


{rowα, colβ} if α 6= 1 6= β;

{rowα} if α 6= 1 = β;

{colβ} if α = 1 6= β;

∅ if α = 1 = β.

Observe that always |Γ (s)| ≤ 2.
Let S be a matrix schema on a set of matrix variables V . We associate to

S a database schema Γ (S) on V as follows. For M ∈ V , we set
(
Γ (S)

)
(M) :=

Γ (S(M)). Notice that, in the left-hand side, we interpret M as a relation
name, whereas, in the right-hand side, we interpret M as a matrix variable.
Of course, Γ (S) is extended to ARA expressions in the usual way.

Let σ be a size assignment. We associate to σ a domain assignment D(σ)
where, for α ∈ size,

(
D(σ)

)
(rowα) =

(
D(σ)

)
(colα) := {1, . . . , σ(α)}.

Let M ∈ M conform to s by σ. We associate to matrix M a relation
Rels,σ(M) : TD(σ)(Γ (s))→ K as follows. For t in TD(σ)(Γ (s)), we have

(
Rels,σ(M)

)
(t) :=


Mt(rowα),t(colβ) if α 6= 1 6= β;

Mt(rowα),1 if α 6= 1 = β;

M1,t(colβ) if α = 1 6= β;

M1,1 if α = 1 = β.

Remark 7 We wish to make a short remark on 1 × 1 matrices over K, which
by definition contain a single element of K. By the above, the schema of the
relation representing a 1 × 1 matrix is the empty set, which has arity 0. The
only tuple over this relation schema is the so-called empty tuple. To see that
this tuple exists, recall that a tuple is function mapping the attributes of
the relation schema to domain values. Mathematically, a function is a set of
pairs, in this case pairs of attributes and domain values, exactly one for each
attribute. Hence, if the relation schema is empty, the empty set technically
satisfies the definition of tuple over that relation schema, and it is this tuple
that we refer to as the empty tuple. If M is the 1×1 matrix with entry a ∈ K,
then Rels,σ(M) above maps the empty tuple to a ∈ K. Figure 4 visualizes the
1×1 matrix M and the 0-ary relation Rels,σ(M). So, also for this corner case,
the development above is sound.

Let S : V → size × size be a matrix schema, and let I be a matrix in-
stance of S with respect to σ. We associate to I an instance RelS,σ(I) of
database schema Γ (S) with respect to D(σ) as follows. For M ∈ V , we set(
RelS,σ(I)

)
(M) := RelS(M),σ(I(M)).
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M =
(
a
)

Rels,σ(M) =
K
a

Fig. 4 The 1× 1 matrix considered in Remark 7 and its representation as a 0-ary relation.

I(no courses) =

rowstudent coldptm K
1 1 5
1 2 2
1 3 0
2 1 2
2 2 1
2 3 3

I(course fee) =

rowdptm K
1 300
2 250
3 330

Fig. 5 Matrix instance from Figure 3 represented as a database instance. The tuple entries
are the row and column indices of the corresponding matrices.

Example 6 Consider again matrix schema S, size assignment σ, and matrix
instance I of S with respect to σ from Example 5 and Figure 3. We have
that

(
Γ (S)

)
(no courses) = {rowstudent, coldptm} and

(
Γ (S)

)
(course fee) =

{rowdptm}. The database instance RelS,σ(I) is shown in Figure 5.

We now show that every MATLANG expression can be simulated by an
(ARA + ζ2)(2) expression.

Lemma 3 For every MATLANG expression e over a matrix schema S, there
exists an (ARA+ ζ2)(2) expression Υ (e) over database schema Γ (S) such that

1.
(
Γ (S)

)
(Υ (e)) = Γ (S(e)); and

2. for all size assignments σ and matrix instances I of S with respect to σ,(
Υ (e)

)
(RelS,σ(I)) = RelS(e),σ(e(I)).

Proof We construct the translation recursively on the structure of the MAT-
LANG expression. The basis of the inductive proof that the translation satisfies
the desired properties is in the translation of matrix variables. The inductive
steps are a straightforward albeit sometimes tedious application of definitions
and the induction hypothesis. For most operations, we therefore only provide
some intuition. Only for two more elaborate cases, diagonalization and matrix
product, we provide full proofs in the most general subcase.

Variable. If M is a matrix variable, then

Υ (M) := M.

Both properties are trivially satisfied, as left- and right-hand side of the
first property both reduce to Γ (S(M)) and left- and right-hand side of the
second property both reduce to RelS,σ(I(M)).

Transpose. If e is a MATLANG expression over S with S(e) = α× β, then

Υ
(
eT
)

:=


ρrowα→colα,colβ→rowβ (Υ (e)) if α 6= 1 6= β;

ρrowα→colα(Υ (e)) if α 6= 1 = β;

ρcolβ→rowβ (Υ (e)) if α = 1 6= β;

Υ (e) if α = 1 = β.



20 Robert Brijder et al.

Transposing a matrix involves swapping rows and columns, and, hence, in
the translation, row attributes must become column attributes and column
attributes must become row attributes. This is most obvious in the first
of the four cases above, where α 6= 1 6= β. The three other cases are
specializations of the first case for column vectors, row vectors, and 1× 1
matrices, respectively.

One-vector. If e is a MATLANG expression over S with S(e) = α× β, then

Υ (1(e)) :=

{
1(π{rowα}(Υ (e))) if α 6= 1;

1(π∅(Υ (e))) if α = 1.

Applying the one-vector operation to a matrix can be simulated by ap-
plying the one operation to an appropriate projection of the relational
representation of that matrix.

Diagonalization. If e is a MATLANG expression over S with S(e) = α × 1,
then

Υ (diag(e)) :=

{
σ{rowα,colα}(Υ (e) on 1(ρrowα→colα(Υ (e)))) if α 6= 1;

Υ (e) if α = 1.

The latter case reflects that the diagonalization of a 1 × 1 matrix is that
matrix itself.
For diagonalization, we formally prove that both properties of this Lemma
are satisfied in the case α 6= 1 6= β as the case α = 1 is straightfor-
ward, using the above observation. As induction hypothesis, we assume that(
Γ (S)

)
(Υ (e)) = Γ (S(e)), which equals {rowα}, and that, for all size assign-

ments σ and matrix instances I of S with respect to σ,
(
Υ (e)

)
(RelS,σ(I)) =

RelS(e),σ(e(I)).

As for the first property, we have, on the one hand,
(
Γ (S)

)
(Υ (diag(e))) =(

Γ (S)
)
(σ{rowα,colα}(Υ (e) on 1(ρrowα→colα(Υ (e))))) = {rowα, colα}, by the

induction hypothesis. On the other hand, Γ (S(diag(e))) = {rowα, colα},
since S(diag(e)) = α×α. Hence, left- an right-hand side in the first property
are equal.
As for the second property, let t be a tuple in TD(σ)({rowα, colα}).
On the one hand,((

Υ (diag(e))
)
(RelS,σ(I))

)
(t)

=
((
σ{rowα,colα}(Υ (e) on 1(ρrowα→colα(Υ (e))))

)
(RelS,σ(I))

)
(t)

=
(
σ{rowα,colα}

((
Υ (e) on 1(ρrowα→colα(Υ (e)))

)
(RelS,σ(I))

))
(t).

We see that, if t(rowα) 6= t(colα), then((
Υ (diag(e))

)
(RelS,σ(I))

)
(t) = 0.
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Let us therefore assume in the remainder of the calculation that t(rowα) =
t(colα). Then, using the induction hypothesis in the fourth equality,(

σ{rowα,colα}
((
Υ (e) on 1(ρrowα→colα(Υ (e)))

)
(RelS,σ(I))

))
(t)

=
((
Υ (e) on 1(ρrowα→colα(Υ (e)))

)
(RelS,σ(I))

)
(t)

=
((
Υ (e)

)
(RelS,σ(I))

)
(t|{rowα}) ∗((

1(ρrowα→colα(Υ (e)))
)
(RelS,σ(I))

)
(t|{colα})

=
((
Υ (e)

)
(RelS,σ(I))

)
(t|{rowα}) ∗(

1
((
ρrowα→colα(Υ (e))

)
(RelS,σ(I))

))
(t|{colα})

=
(
RelS(e),σ(e(I))

)
(t|{rowα}) ∗ 1{colα}(t|{colα})

=
(
e(I)

)
t|{rowα}(rowα)

∗ 1

=
(
e(I)

)
t(rowα)

.

On the other hand,(
RelS(e),σ

((
diag(e)

)
(I)
))

(t) =
((

diag(e)
)
(I)
)
t(rowα),t(colα)

.

If t(rowα) 6= t(colα), then the latter expression equals 0; if t(rowα) =
t(colα), then it equals

(
e(I)

)
t(rowα)

. Hence, left- an right-hand side in the

second property are also equal.
Multiplication If e1 and e2 are MATLANG expressions over S with S(e) =

α× β and S(e) = β × γ, then

Υ (e1 · e2) =

{
ζC,2(ρϕ1(Υ (e1)), ρϕ2(Υ (e2))) if β 6= 1;

Υ (e1) on Υ (e2) if β = 1,

where C is an attribute different from both rowα and colγ , ϕ1(colβ) =
ϕ2(rowβ) = C, and ϕ1 and ϕ2 are the identity elsewhere.
Also for matrix multiplication, we formally prove that both properties
of this Lemma are satisfied in the case where β 6= 1 and α 6= 1 6=
γ. The other cases are then straightforward. As induction hypothesis,
we assume that

(
Γ (S)

)
(Υ (e1)) = Γ (S(e1)), which equals {rowα, colβ},(

Γ (S)
)
(Υ (e2)) = Γ (S(e2)), which equals {rowβ , colγ}, and that, for all

size assignments σ and matrix instances I of S with respect to σ and for
i = 1, 2,

(
Υ (ei)

)
(RelS,σ(I)) = RelS(ei),σ(ei(I)).

As for the first property, we have, on the one hand,
(
Γ (S)

)
(Υ (e1 · e2)) =(

Γ (S)
)
(ζC,2(ρϕ1

(Υ (e1)), ρϕ2
(Υ (e2)))) = {rowα, colγ}, by the induction hy-

pothesis. On the other hand, Γ (S(e1 ·e2)) = {rowα, colγ}, since S(e1 ·e2) =
α× γ. Hence, left- an right-hand side in the first property are equal.
As for the second property, let t be a tuple in TD(σ)({rowα, colγ}).
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On the one hand, using the induction hypothesis in the ninth equality,((
Υ (e1 · e2)

)
(RelS,σ(I))

)
(t)

=
((
ζC,2(ρϕ1(Υ (e1)), ρϕ2(Υ (e2)))

)
(RelS,σ(I))

)
(t)

=
((
π{rowα,colβ}(ρϕ1(Υ (e1)) on ρϕ2(Υ (e2)))

)
(RelS,σ(I))

)
(t)

=
(
π{rowα,colβ}

((
ρϕ1(Υ (e1)) on ρϕ2(Υ (e2))

)
(RelS,σ(I))

))
(t)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

((
ρϕ1

(Υ (e1)) on ρϕ2
(Υ (e2))

)
(RelS,σ(I))

)
(t′)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

((
ρϕ1

(Υ (e1))
)
(RelS,σ(I)) on

(
ρϕ2

(Υ (e2))
)
(RelS,σ(I))

)
(t′)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

(
ρϕ1

((
Υ (e1)

)
(RelS,σ(I))

)
on ρϕ2

((
Υ (e2)

)
(RelS,σ(I))

))
(t′)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

(
ρϕ1

((
Υ (e1)

)
(RelS,σ(I))

))
(t′|{rowα,C}) ∗

(
ρϕ2

((
Υ (e2)

)
(RelS,σ(I))

))
(t′|{C,colγ})

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

((
Υ (e1)

)
(RelS,σ(I))

)
(t′|{rowα,C} ◦ ϕ1) ∗

((
Υ (e2)

)
(RelS,σ(I))

)
(t′|{C,colγ} ◦ ϕ2)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

(
RelS(e1),σ(ei(I))

)
(t′|{rowα,C} ◦ ϕ1) ∗

(
RelS(e2),σ(ei(I))

)
(t′|{C,colγ} ◦ ϕ2)

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

(
e1(I)

)
t′(ϕ1(rowα)),t′(ϕ1(colβ))

∗
(
e2(I)

)
t′(ϕ2(rowβ)),t′(ϕ2(colγ))

=
∑
t′∈TD(σ)({rowα,C,colγ}), t′|{rowα,colγ}=t

(
e1(I)

)
t′(rowα),t′(C)

∗
(
e2(I)

)
t′(C),t′(colγ)

=

σ(β)∑
k=1

(
e1(I)

)
t(rowα),k

∗
(
e2(I)

)
k,t(colγ)

.

On the other hand,(
RelS(e),σ((e1 · e2)(I))

)
(t) =

(
(e1 · e2)(I)

)
t(rowα),t(colγ)

=
(
e1(I) · e2(I)

)
t(rowα),t(colγ)

=

σ(β)∑
k=1

(
e1(I)

)
t(rowα),k

∗
(
e2(I)

)
k,t(colγ)

.
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Hence, left- an right-hand side in the second property are also equal.
Addition If e1 and e2 are MATLANG expressions over S with S(e1) = S(e2),

then
Υ (e1 + e2) := Υ (e1) ∪ Υ (e2).

Since union involves adding values of corresponding tuples, this operation
provides the appropriate translation for matrix addition.

Hadamard product If e1 and e2 are MATLANG expressions over S with
S(e1) = S(e2), then

Υ (e1 ◦ e2) := Υ (e1) on Υ (e2).

Since joining relations with the same scheme involves multiplying values of
corresponding tuples, this operation provides the appropriate translation
for the Hadamard product.

ut
Example 7 Consider again matrix schema S, size assignment σ, and matrix
instance I of S with respect to σ from Example 5 and Figure 3. Consider
the MATLANG expression e = no courses · course fee over S. We have S(e) =
student× 1 and

e(I) =

(
2000
1840

)
and RelS(e),σ(e(I)) =

rowstudent K
1 2000
2 1840

.

By Lemma 3 and its proof, we have that RelS(e),σ(e(I)) equals e′(RelS,σ(I))
with

e′ = ζC,2(ρϕ1(no courses), ρϕ2(course fee)),

where ϕ1(colγ) = ϕ2(rowγ) = C /∈ {rowα, colβ} and ϕ1 and ϕ2 are the identity
elsewhere.

4.3 Simulating (ARA + ζ2)(2) in MATLANG

The notations used in this translation are summarized in Table 2 for easy
reference. Examples 8 and 9, together with Figures 1 and 3, may also help to
understand the translation.

In order to simulate (ARA + ζ2)(2) in MATLANG, we equip att with some
linear ordering <. Note that < is an ordering on attributes, not on domain
elements. Only an ordering on domain elements can have an impact on the
expressive power of query languages [1].

Again, we assume that rel = matvar. Let us fix an injective function
Ψ : att→ size \ {1}.

Let X be a relation schema with |X| ≤ 2. We associate to X an element
Θ(X) ∈ size× size as follows:

Θ(X) :=


Ψ(A1)× Ψ(A2) if X = {A1, A2} and A1 < A2;

Ψ(A)× 1 if X = {A};
1× 1 if X = ∅.
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Mapping (ARA + ζ2)(2) MATLANG
relation name → matrix variable R R
attribute → size symbol A Φ(A)
relation schema → element of size× size X Θ(X)
database schema → matrix schema S Θ(S)
domain assignment → size assignment D σ(D)
relation → matrix r MatD(r)
database instance → matrix instance I MatD(I)
(ARA + ζ2)(2) expression → MATLANG expression e Φ(e)

Table 2 Symbol table for the simulation of (ARA + ζ2)(2) in MATLANG.

Let S be a database schema on a set N of relation names with arity at most 2.
We associate to S a matrix schema Θ(S) on N as follows. For R ∈ N , we set(
Θ(S)

)
(R) := Θ(S(R)).

Let D be a domain assignment. We associate to D a size assignment σ(D)
where, for A ∈ att,

(
σ(D)

)
(Ψ(A)) = |D(A)|. If every domain in the range of

a domain assignment D is of the form {1, . . . , n} for some integer n ≥ 1, then
we say that D is consecutive.

Let D be a consecutive domain assignment. Given a relation r : TD(X)→
K with |X| ≤ 2, we associate a matrix MatD(r) conforming to Θ(X) by σ(D).
We distinguish three cases:

1. If X = {A1, A2} with A1 < A2, then MatD(r) is a |D(A1)| × |D(A2)|
matrix. For i = 1, . . . , |D(A1)| and j = 1, . . . , |D(A2)|,

(
MatD(r)

)
i,j

= r(t),

where t ∈ TD(X) is defined by t(A1) := i and t(A2) := j.
2. If X = {A}, then MatD(r) is a |D(A)| × 1 matrix (i.e., a column vector).

For i = 1, . . . , |D(A)|,
(
MatD(r)

)
i,1

= r(t), where t ∈ TD(X) is defined by

t(A) := i.
3. IfX = ∅, then MatD(r) is a 1×1 matrix. We have that

(
MatD(r)

)
1,1

= r(t),

where t is the empty tuple (see Remark 7).

Let S : N → Pfin(att) be a database schema such that all relation names
in N have arity at most 2, and let I be a database instance of S with respect
to D. We associate to I a matrix instance MatD(I) of Mat(S) with respect
to σ(D) as follows. For R ∈ N , we set

(
MatD(I)

)
(R) := MatD(I(R)).

Example 8 Consider again database schema S, domain assignment D, and
database instance I of S with respect to D from Examples 1 and 2 and Fig-
ure 1. To reduce clutter, assume that att = size \ {1} and that Ψ is the
identity function. Take student < dptm. We have that

(
Θ(S)

)
(no courses) =

student× dptm and (Θ(S))(course fee) = dptm× 1. Consider domain assign-
ment D′ and database instance I ′ obtained from D and I, respectively, by
replacing Alice by 1, Bob by 2, CS by 1, Math by 2, and Bio by 3. Note that
D′ is consecutive. The instance MatD′(I ′) is shown in Figure 3.

We now show that every (ARA + ζ2)(2) expression can be simulated by a
MATLANG expression.
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Lemma 4 For every (ARA+ ζ2)(2) expression e over a database schema S of
arity at most 2, there exists a MATLANG expression Φ(e) over matrix schema
Θ(S) such that

1.
(
Θ(S)

)
(Φ(e)) = Θ(S(e)); and

2. for all consecutive3 domain assignments D and database instances I with
respect to D,

(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

Proof We construct the translation recursively on the structure of the (ARA+
ζ2)(2) expression. The basis of the inductive proof that the translation satisfies
the desired properties is in the translation of relation names. The inductive
steps are a straightforward albeit sometimes tedious application of definitions
and the induction hypothesis. For most operations, we therefore only provide
some intuition. Only for two more elaborate cases, projection and selection,
we provide full proofs in the most general subcase.

Relation name. If M is a relation name with |S(M)| ≤ 2, then

Φ(M) := M.

Both properties are trivially satisfied, as left- and right-hand side of the
first property both reduce to Θ(S(M)) and left- and right-hand side of the
second property both reduce to MatD(I(M)).

One. If e is an (ARA + ζ2)(2) expression over S, then

Φ(1(e)) :=

1(Φ(e)) ·
(
1
((
Φ(e)

)T ))T
if |S(e)| = 2;

1(Φ(e)) if |S(e)| < 2.

Applying the one operation to a null-ary or unary relation can be simulated
simply by applying the one-vector operation to the matrix representation
of that relation. In case of a binary relation, we must also apply the one-
vector operation to the transpose of that matrix, and then multiply the
former with the transpose of the latter to obtain a matrix of the same
dimensions as the original one.

Union. If e1 and e2 are (ARA+ζ2)(2) expressions over S with S(e1) = S(e2),
then

Φ(e1 ∪ e2) := Φ(e1) + Φ(e2).

Since matrix addition was translated in the union of their relational repre-
sentations in Lemma 3, union of at most binary relations must be translated
in the sum of their matrix representations.

3 Recall that we required consecutive domain assignments to obtain a matrix represen-
tation of a relation. (In case of arbitrary domain assignments, the representation is still
possible, of course, if we provide mappings of all domains into initial segments of the strictly
positive integers.)
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Projection It is convenient in this case to consider projecting out an at-
tribute rather than standard projection. We already argued that these are
interchangable. If e is an (ARA + ζ2)(2) expression over S and A ∈ S(e),
then

Φ(π̂A(e)) :=

{
Φ(e) · 1

((
Φ(e)

)T )
if S(e) = {A1, A2}, A1 < A = A2;(

Φ(e)
)T · 1(Φ(e)) otherwise.

In essence, the two cases distinguish between projecting out the second
attribute (if there is one) and projecting out the first attribute (or the only
attribute).
For this operation, we formally prove that both properties of this Lemma
are satisfied in the former case. As induction hypothesis, we assume that(
Θ(S)

)
(Φ(e)) = Θ(S(e)), which equals Ψ(A1) × Ψ(A2), and that, for all

consecutive domain assignments D and database instances I with respect
to D,

(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

As for the first property, we have, on the one hand,
(
Θ(S)

)
(Φ(π̂A2(e))) =(

Θ(S)
)(
Φ(e) · 1

((
Φ(e)

)T ))
= |D(A1)| × 1, by the induction hypothesis.

On the other hand, Θ(S(π̂A2
(e))) = |D(A1)| × 1, since S(π̂A2

(e)) = {A1}.
Hence, left- an right-hand side in the first property are equal.
As for the second property, let i = 1, . . . , |D(A1)|.
On the one hand, using the induction hypothesis in the fifth equality,((

Φ(π̂A2(e))
)
(MatD(I))

)
i,1

=
((
Φ(e) · 1

((
Φ(e)

)T ))
(MatD(I))

)
i,1

=
((
Φ(e)

)
(MatD(I)) ·

(
1
((
Φ(e)

)T ))
(MatD(I))

)
i,1

=
((
Φ(e)

)
(MatD(I)) · 1

(((
Φ(e)

)T)
(MatD(I))

))
i,1

=
((
Φ(e)

)
(MatD(I)) · 1

(((
Φ(e)

)
(MatD(I))

)T))
i,1

=
(

MatD(e(I)) · 1
((

MatD(e(I))
)T ))

i,1

=

|D(A2)|∑
j=1

(
MatD(e(I))

)
i,j
∗
(
1
((

MatD(e(I))
)T ))

j,1

=

|D(A2)|∑
j=1

(
e(I)

)
(ti,j) ∗ 1

=

|D(A2)|∑
j=1

(
e(I)

)
(ti,j),

where ti,j ∈ TD({A1, A2}) is defined by t(A1) = i and t(A2) = j.
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On the other hand, for ti ∈ TD({A1}) defined by t(A1) = i,(
MatD

((
π̂A2(e)

)
(I)
))
i,1

=
((
π̂A2(e)

)
(I)
)

(ti)

=
(
π̂A2

(e(I))
)
(ti)

=
∑
t∈TD({A1,A2}), t|A1

=ti

(
e(I)

)
(t)

=

|D(A2)|∑
j=1

(
e(I)

)
(ti,j),

where ti,j ∈ TD({A1, A2}) is defined by t(A1) = i and t(A2) = j. Hence,
left- an right-hand side in the second property are also equal.

Selection. If e is an (ARA + ζ2)(2) expression over S, Y ⊆ S(e), and the
attributes of Y are mutually compatible, then

Φ(σY (e)) :=

{
Φ(e) ◦ diag(1(Φ(e))) if |S(e)| = |Y | = 2;

Φ(e) otherwise.

The latter case reflects that selection has no effect unless at least two at-
tributes are involved in it. We formally prove that both properties of this
Lemma are satisfied in the former case. Therefore, assume that S(e) =
Y = {A1, A2}. As induction hypothesis, we assume that

(
Θ(S)

)
(Φ(e)) =

Θ(S(e)), which equals |D(A1)| × |D(A2)| = |D(A1)| × |D(A1)|, since A1

and A2 are mutually compatible. We also assume that, for all consecu-
tive domain assignments D and database instances I with respect to D,(
Φ(e)

)
(MatD(I)) = MatD(e(I)).

As for the first property, we have, on the one hand,(
Θ(S)

)
(Φ(σ{A1,A2}(e))) =

(
Θ(S)

)
(Φ(e) ◦ diag(1(Φ(e)))),

which equals |D(A1)|× |D(A1)|, by the induction hypothesis. On the other
hand, Θ(S(σ{A1,A2}(e))) = |D(A1)| × |D(A1)|, since S(σ{A1,A2}(e)) =
{A1, A2}, and A1 and A2 are compatible. Hence, left- an right-hand side
in the first property are equal.
As for the second property, let i, j = 1, . . . , |D(A1)| = |D(A2)|.
On the one hand, using the induction hypothesis in the last equality,((

Φ(σ{A1,A2}(e))
)
(MatD(I))

)
i,j

=
((
Φ(e) ◦ diag(1(Φ(e)))

)
(MatD(I))

)
i,j

=
((
Φ(e)

)
(MatD(I)) ◦

(
diag(1(Φ(e)))

)
(MatD(I))

)
i,j

=
((
Φ(e)

)
(MatD(I))

)
i,j
∗
((

diag(1(Φ(e)))
)
(MatD(I))

)
i,j

=
(
MatD(e(I))

)
i,j
∗ ((diag(1(Φ(e))))(MatD(I)))i,j .
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We now distinguish two cases. If i 6= j, then the second factor in the
K-product above equals 0, and, hence,((

Φ(σ{A1,A2}(e))
)
(MatD(I))

)
i,j

= 0.

If i = j, then(
MatD(e(I))

)
i,i
∗
((

diag(1(Φ(e)))
)
(MatD(I))

)
i,i

=
(
MatD(e(I))

)
i,i
∗
((

1(Φ(e))
)
(MatD(I))

)
i,1

=
(
MatD(e(I))

)
i,i
∗
(
1
((
Φ(e)

)
(MatD(I))

))
i,1

=
(
MatD(e(I))

)
i,i
∗ 1

=
(
MatD(e(I))

)
i,i

=
(
e(I)

)
(ti,i),

where ti,i ∈ TD({A1, A2}) is defined by t(A1) = i = t(A2).
On the other hand, for ti,j ∈ TD({A1, A2}) defined by t(A1) = i and
t(A2) = j,(

MatD
((
σ{A1,A2}(e)

)
(I)
))
i,j

=
((
σ{A1,A2}(e)

)
(I)
)

(ti,j)

=
(
σ{A1,A2}(e(I))

)
(ti,j),

where ti,j ∈ TD({A1, A2}) is defined by t(A1) = i and t(A2) = j. We
again distinguish two cases. If i 6= j, then t(Ai) = i 6= j = t(Aj) and,
consequently, (

MatD
((
σ{A1,A2}(e)

)
(I)
))
i,j

= 0.

If i = j, then t(Ai) = t(Aj) and(
MatD

((
σ{A1,A2}(e)

)
(I)
))
i,i

=
(
e(I)

)
(ti,i).

Hence, left- an right-hand side in the second property are also equal.
Renaming. If e is an (ARA + ζ2)(2) expression over S and ϕ : S(e)→ Y is a

compatible one-to-one correspondence with Y ⊆ att, then

Φ(ρϕ(e)) :=

{(
Φ(e)

)T
if S(e) = {A1, A2}, A1 < A2, and ϕ(A1) > ϕ(A2);

Φ(e) otherwise.

Since attribute names are not reflected in the matrix representation of
relations, renaming has no effect on the translation, unless the renaming
reverses the order of the attributes, which results in swapping rows and
columns, i.e., in transpose.



On matrices and K -relations 29

Join. If e1 and e2 are (ARA + ζ2)(2) expressions over S, then Φ(e1 on e2)
equals

Φ(e1) ◦ Φ(e2) if S(e1) = S(e2);

s(Φ(e1), Φ(e2)) ◦ Φ(e2) if S(e1) = ∅;
Φ(e1) ◦ s(Φ(e2), Φ(e1)) if S(e2) = ∅;
Φ(e1) ·

(
Φ(e2)

)T
if S(e1) = {A1} and S(e2) = {A2};(

Φ(e1) ·
(
Φ(e2)

)T)T
if S(e1) = {A2} and S(e2) = {A1};

diag(Φ(e1)) · Φ(e2) if S(e1) = {A1} and S(e2) = {A1, A2};((
Φ(e1)

)T · diag(Φ(e2))
)T

if S(e1) = {A1, A2} and S(e2) = {A1};
Φ(e1) · diag(Φ(e2)) if S(e1) = {A1, A2} and S(e2) = {A2};(

diag(Φ(e1)) ·
(
Φ(e2)

)T)T
if S(e1) = {A2} and S(e2) = {A1, A2},

where A1 < A2 in each case where both attributes occur, and s is an
abbreviation defined as follows. If f1 and f2 are two MATLANG expressions

with S(f1) = 1×1 and S(f2) = α×β, then s(f1, f2) := 1(f2)·f1 ·
(
1(f2

T )
)T

.
Notice that S(s(f1, f2)) = α × β. Furthermore, if J is a matrix instance
over S for which f1(J ) is a 1 × 1 matrix with entry a and f2(J ) is an
m× n matrix for some m,n ≥ 1, then

(
s(f1, f2)

)
(J ) is the m× n matrix

in which all entries equal a.
The many cases above reflect all possible combination where |S(e1)| ≤ 2,
|S(e2)| ≤ 2, and |S(e1 on e2)| ≤ 2, taking into account the order of the
attributes. In the first case, where S(e1) = S(e2), join reduces to point-
wise multiplication of the tuple values, which is reflected by the Hadamard
product in the translation. The second and third cases concern a join with a
null-ary relation, which reduces to a scalar multiplication of the value of the
empty tuple with the tuple values of the other relation. In the translation,
this scalar multiplication is simulated using the abbreviation s explained
above and the Hadamard product. Observe that we need to distinguish two
cases, since K-multiplication is not necessarily commutative. The fourth
and fifth cases concern the join of two disjoint unary relations, which re-
sults in considering all possible combinations of tuples and associating with
them the product of their values. In the translation, this is simulated by
a matrix product. Depending on the order of the attributes involved, a
transpose may be in order, which is why there are again two cases here.
The remaining cases involve the join of a binary relation and a unary rela-
tion over one of the attributes of the binary relation. To obtain the correct
result, the value of each tuple of the binary relation must be multiplied, in
the correct order, with the value of the corresponding tuple of the unary
relation. In the translation, this is simulated using diagonalization and ma-
trix multiplication. We need to distinguish four cases, since the order of the
join matters (binary with unary or unary with binary), and since it also
matters whether the unary relation is defined over the first or the second
attribute (with respect to their mutual order) of the binary relation.
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Composition. If e1 and e2 are (ARA+ζ2)(2) expressions over S with S(e1) =
{A1, A3}, and S(e2) = {A2, A3}, and A1, A2, A3 pairwise different, then

Φ(ζA3,2(e1, e2)) :=
((
Φ(e1)

)T (A1,A3) ·
(
Φ(e2)

)T (A3,A2)
)T (A1,A2)

,

where, for attributes A and B and MATLANG expression f ,

fT (A,B) :=

{
f if A < B;

fT if A > B.

As may be expected, this operation can be simulated straightforwardly with
matrix multiplication. Depending on the order of the attributes, however,
transpositions may be in order.
Notice that we have only covered the case where |S(e1)4S(e2)| = 2, where
4 denotes symmetric difference. If |S(e1)4S(e2)| ≤ 1, then ζA3,2(e1, e2) ≡
π̂A3(e1 on e2) is expressible in ARA(2) (since then |S(e1 on e2)| ≤ 2) . In this
case, we first replace ζA3,2(e1, e2) by its defining expression π̂A3

(e1 on e2)
and then proceed using the cases for projection and join above.

ut

Observe that, in the above proof, the number of cases in the expression of
Φ(e1 on e2) can be significantly reduced if the semiring K is commutative (in
which case join is commutative).

Example 9 Consider again database schema S, domain assignment D, and
database instance I of S with respect to D from Examples 1 and 2 and Fig-
ure 1. Consider the (ARA+ ζ2)(2) expression e = no courses on course fee over
S. We have S(e) = {student,dptm} and

e(I) =

student dptm K
1 1 1500
1 2 500
1 3 0
2 1 600
2 2 250
2 3 990

and MatD(e(I)) =

(
1500 500 0
600 250 990

)
.

By Lemma 3 and its proof, we have that MatD(e(I)) is equal to e′(MatD(I))
with e′ = no courses · diag(course fee).

4.4 Relationship with ARA(3)

Corollary 1, Lemma 3, and Lemma 4 together establish the equivalence of
MATLANG with the language ARA(3) restricted to database schemas and out-
put relations of arity at most 2.
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Theorem 2 If K is commutative, then, for each ARA(3) expression of arity
at most 2 over a database schema S of arity at most 2, there exists a MAT-
LANG expression e′ such that MatD(e(I)) = e′(MatD(I)) for all consecutive
domain assignments D and instances I with respect to S over D.

Conversely, for each MATLANG expression e over a matrix schema S, there
exists an ARA(3) expression e′ such that RelS(e),σ(e(I)) = e′(RelS,σ(I)) for
all size assignments σ and matrix instances I of S with respect to σ.

4.5 Complexity of the translations

Now that we have established translations from MATLANG to ARA(3) via
(ARA+ ζ2)(2) as an intermediate step, we also want to look at the complexity
of these translations, in terms of the lengths of the expressions involved.

First of all, we note that the translations Υ from MATLANG to (ARA +
ζ2)(2) and Φ from (ARA+ ζ2)(2) to MATLANG provided in the proofs of Lem-
mas 3 and 4, respectively, are strictly speaking exponential. They can, however,
be readily adapted to become linear, provided the schema is considered to be
fixed. (If the schema is not fixed and considered to be part of the input, these
adaptations result in quadratic translations.) The required adaptations are the
following.

We first consider the translation from MATLANG to (ARA + ζ2)(2). For a
MATLANG expression e with S(e) = α × 1 with α 6= 1, there is a constant-
length expression Tpα with S(Tpα) = α× 1. Indeed, since α is a size symbol
of S(e) distinct from 1, there is a matrix variable M with S(M) equal to either
α×β or β×α for some β. Taking Tpα := 1(M) in the former case and Tpα :=
1(MT ) in the latter case, we have S(Tpα) = α×1 as desired. The only source
of exponential growth in Lemma 3 is in the expression σ{rowα,colα}(Υ (e) on
1(ρrowα→colα(Υ (e)))) appearing in the diagonalization case, which is equivalent
to σ{rowα,colα}(Υ (e) on ρrowα→colα(Υ (Tpα))).

For the converse translation, from (ARA+ζ2)(2) to MATLANG, we observe
that, for an ARA expression e with S(e) := X ⊆ {A1, A2}, there is a constant-
length expression TpX with S(TpX) = X. Indeed, if A ∈ S(e), then there
exists A′ ∈ S(RA′) for some relation name RA′ such that A′ is compatible
with A. Taking TpX :=onA∈X ρA′→A(π{A′}(RA′)) if X 6= ∅ and Tp∅ := π∅(R)
for some relation name R, we have S(TpX) = X as desired. Replacing each
occurrence of 1(Φ(e)) by the equivalent expression 1(Φ(TpS(e))) and each oc-

currence of 1
((
Φ(e)

)T )
by the equivalent expression 1

((
Φ(TpS(e))

)T )
in the

proof of Lemma 4 avoids exponential growth.

We remind the reader that (ARA + ζ2)(2) is subsumed by ARA(3), and,
hence, the “translation” from (ARA + ζ2)(2) to ARA(3) comes for free. The
translation from ARA(3) to (ARA+ζ2)(2) is exponential, however (Remark 4).
In summary, we have provided linear translations in the following directions:
MATLANG ↔ (ARA + ζ2)(2) → ARA(3).
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4.6 Indistinguishability

Using a recent result by Geerts on indistinguishability in MATLANG [6], we
can also relate ARA(3) to C3, the three-variable fragment of first-order logic
with counting [15]. Let A1 and A2 be matrices of the same dimensions m×n.
We view A1 and A2 as instances of a schema S on a single matrix name M with
S(M) = α×β, with respect to the size assignment σ that maps α to m and β
to n. We say that A1 and A2 are indistinguishable in MATLANG, denoted by
A1 ≡MATL A2, if for each MATLANG expression e over S with S(e) = 1 × 1,
we have e(A1) = e(A2). Similarly, one can define indistinguishability of binary
K-relations r1 and r2 in ARA(3), denoted by r1 ≡ARA(3) r2. This leads to the
following corollary to Theorem 2.

Corollary 2 A1 ≡MATL A2 if and only if Rels,σ(A1) ≡ARA(3) Rels,σ(A2).

Geerts’s result concerns finite undirected graphs G1 and G2 with the same
number of nodes. Recall that G1 and G2 are called indistinguishable in C3,
denoted by G1 ≡C3 G2, if each C3-sentence over a single binary relation vari-
able has the same truth value on G1 and G2. Denote the adjacency matrix of
G by Adj(G).

Theorem 3 ([6]) If K is the field of complex numbers, then Adj(G1) ≡MATL

Adj(G2) if and only if G1 ≡C3 G2.

We can immediately conclude the following, for suitable s and σ:

Corollary 3 If K is the field of complex numbers, then G1 ≡C3 G2 if and
only if Rels,σ(Adj(G1)) ≡ARA(3) Rels,σ(Adj(G2)).

5 Conclusion

In related work, Yan, Tannen, and Ives consider provenance for linear algebra
operators [20]. In that approach, provenance tokens represent not the matrix
entries (as in our work), but the matrices themselves. Polynomial expressions
(with matrix addition and matrix multiplication) are derived to show the
provenance of linear algebra operations applied to these matrices.

Our result that every matrix query expressible in ARA(3) is also expressible
in MATLANG provides a partial converse to the observation already made
in the original paper [4], to the effect that MATLANG can be expressed in
LAggr(3): the relational calculus with summation and numerical functions [11],
restricted to three base variables.4 This observation was made in the extended
setting of MATLANG that allows arbitrary pointwise functions (Remark 6).
For the language considered here, ARA(3) provides a more appropriate upper
bound for comparison, and ARA(3) is still a natural fragment of LAggr(3).

4 LAggr is a two-sorted logic with base variables and numerical variables.
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When allowing arbitrary pointwise functions in MATLANG, we actually
move beyond the positive relational algebra, as queries involving negation can
be expressed. For example, applying the function x ∧ ¬y pointwise to the
entries of two n×n Boolean matrices representing two binary relations R and
S on {1, . . . , n}, we obtain the set difference R\S. It is an interesting research
question to explore expressibility of queries in MATLANG in this setting. For
example, consider the following LAggr(3) query on two matrices M and N :

∀i∃j∀k∀x
(
M(i, k, x)→ ∃iN(j, i, x)

)
Here, M(i, k, x) means that Mi,k = x, and similarly for N(j, i, x).

The above query, which does not even use summation, reuses the base
variable i and checks whether each row of M , viewed as a set of entries, is
included in some row of N , again viewed as a set of entries. We conjecture that
the query is not expressible in MATLANG with arbitrary pointwise functions.
Developing techniques for proving this conjecture is an interesting direction
for further research.

Finally, recall that our main result Corollary 1 assumes that K is commu-
tative. It should be investigated whether or not this result still holds in the
noncommutative case.
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