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Author summary

The instantaneous reproduction number R(t) is a key metric that provides important insights

into an epidemic outbreak. We present a flexible Bayesian approach called EpiLPS (Epidemi-

ological modeling with Laplacian-P-splines) for smooth estimation of the epidemic curve and

R(t). Computational speed and absence of arbitrary assumptions on smoothing makes EpiLPS

an interesting tool for near real-time estimation of the reproduction number. An R software

package is available (https://github.com/oswaldogressani).
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Abstract

In infectious disease epidemiology, the instantaneous reproduction number R(t) is a time-

varying metric defined as the average number of secondary infections generated by individ-

uals who are infectious at time t. It is therefore a crucial epidemiological parameter that

assists public health decision makers in the management of an epidemic. We present a new

Bayesian tool for robust estimation of the time-varying reproduction number. The proposed

methodology smooths the epidemic curve and allows to obtain (approximate) point esti-

mates and credible envelopes of R(t) by employing the renewal equation, using Bayesian

P-splines coupled with Laplace approximations of the conditional posterior of the spline

vector. Two alternative approaches for inference are presented: (1) an approach based on

a maximum a posteriori argument for the model hyperparameters, delivering estimates of

R(t) in only a few seconds; and (2) an approach based on a MCMC scheme with underlying

Langevin dynamics for efficient sampling of the posterior target distribution. Case counts

per unit of time are assumed to follow a Negative Binomial distribution to account for po-

tential excess variability in the data that would not be captured by a classic Poisson model.

Furthermore, after smoothing the epidemic curve, a “plug-in” estimate of the reproduction

number can be obtained from the renewal equation yielding a closed form expression of R(t)

as a function of the spline parameters. The approach is extremely fast and free of arbitrary

smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003),

influenza A H1N1 (2009) in the USA and current SARS-CoV-2 pandemic (2020-2021) for

Belgium, Portugal, Denmark and France.

1 Motivation

The instantaneous reproduction number R(t) is a time-varying metric defined as the av-

erage number of secondary cases generated by infectious individuals at time t. During

epidemic outbreaks, R(t) provides a snapshot (often on a daily basis) that quantifies the

extent to which a given infectious disease is transmissible in a population and is therefore

an important tool that assists governmental organizations in the management of a public
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health crisis. The reproduction number is also a good proxy for measuring the real-time

growth phase of an epidemic and as such, constitutes a key signal about the severity of the

outbreak and the required control effort. For this reason, having a robust, accurate and

timely estimator of R(t) is a crucial matter that has attracted considerable interest in devel-

oping new statistical approaches during the last two decades as summarized in White et al.

(2021). The paper of Gostic et al. (2020) compares several methods for estimating R(t) and

gives clear insights about the main challenges and obstacles that have to be faced. They

recommend the method of Cori et al. (2013) and its associated EpiEstim package (Cori,

2021) as an appropriate and accurate tool for near real-time estimation of the instantaneous

reproduction number. Another recent approach is proposed in Parag (2021), where a re-

cursive Bayesian smoother based on Kalman filtering is used to derive a robust estimate of

R(t) in periods of low incidence. The EpiNow2 package (Abbott et al., 2020) also provides

interesting extensions and implementations of current best practices for precise estimation

and forecast of the reproduction number using a Bayesian latent variable framework. Spline

based approaches have shown to be an interesting tool for flexible modeling of the repro-

duction number. Azmon et al. (2014) use penalized radial splines for estimating R(t) under

a Bayesian setting with misreported data and Gressani et al. (2021) accelerated the com-

putational implementation by replacing the MCMC scheme with Laplace approximations.

From a frequentist perspective, Pircalabelu (2021) uses truncated polynomials and radial

basis splines to model the series of new infections and a derivative thereof as a candidate

estimator for the reproduction number.

In this article, we propose a new Bayesian approach termed “EpiLPS” for estimating

R(t) based on case incidence data and the serial interval distribution (the time elapsed

between the onset of symptoms in an infector and the onset of symptoms in an infected

case). Our estimator of R(t) is based on epidemic renewal-equations (Fraser, 2007; Wallinga

and Lipsitch, 2007) and Laplacian-P-splines (LPS) smoothing of the mean number of new

cases by day of reporting. Time series of new cases by day of reporting are assumed to

follow a Negative Binomial distribution to account for potential excess variability in the
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data that would not be captured by a classic Poisson model. Algorithms related to Laplace

approximations and evaluations of B-spline bases are coded in C++ and embedded in the

R language through the Rcpp package (Eddelbuettel et al., 2011), making computational

speed another key strength of EpiLPS as R(t) can be estimated in seconds. In addition,

EpiLPS can also be used to obtain a smoothed estimate of the epidemic curve that can be

of potential interest to further visualize an epidemic outbreak.

The proposed Bayesian methodology is based on a latent Gaussian model for the B-spline

amplitudes and opens up two possible paths for inference. The first is called LPSMAP, a

fully “sampling free” approach based on Laplace approximations to the conditional poste-

rior of B-spline coefficients. The hyperparameter vector is fixed at its maximum a posteriori

and credible envelopes of R(t) are computed via the “delta” method. The second path is

called LPSMALA and is an MCMC-based approach with Langevin diffusions for efficient

exploration of the posterior distribution of latent variables. The latter approach is compu-

tationally heavier than LPSMAP but has the merit of taking into account the uncertainty

surrounding the hyperparameters. The underlying Metropolis-within-Gibbs structure keeps

the practical implementation to a fairly simple level and the computational cost is reason-

able even for long chain lengths.

Compared to existing methods, EpiLPS resembles EpiEstim from a methodological

point of view in the sense that R(t) is estimated from incidence time series and a serial in-

terval distribution, yet the two approaches fundamentally differ in many aspects. First, the

methodology of Cori et al. (2013) assumes that incidence at time t is Poisson distributed,

while EpiLPS assumes a Negative Binomial model. Second, as our approach uses penalized

spline based approximations, the prior specifications are imposed on the roughness penalty

parameter and not directly on R(t) as in EpiEstim. Third and most importantly, EpiLPS

is free of any sliding window specification. An R package for EpiLPS has been developed

and is available at https://github.com/oswaldogressani. The software also allows to

compute the Cori et al. (2013) estimate of R(t) for the sake of comparison.

The manuscript is organized as follows. Section 2 aims at presenting the Laplacian-P-
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splines model for smoothing count data. We show how the Laplace approximation applies to

the conditional posterior of the B-spline amplitudes and also derive the (approximate) pos-

terior of the hyperparameter vector to be optimized. This yields the maximum a posteriori

estimate of the spline vector via Laplacian-P-splines (LPSMAP). Section 3 uses LPSMAP

and proposes a “plug-in” estimate of R(t) based on renewal equations. Approximate cred-

ible intervals for R(t) will also be shown in this section. Section 4 shows an alternative

path for estimation of R(t) based on Markov chain Monte Carlo (MCMC). The latter ap-

proach uses Langevin dynamics for efficient sampling of the target posterior distribution.

This approach is termed LPSMALA for “Laplacian-P-splines with a Metropolis-adjusted

Langevin algorithm”. Section 5 is devoted to assess the performance of EpiLPS in various

simulation scenarios and make comparisons with EpiEstim. In Section 6, we apply EpiLPS

to real world epidemic outbreaks. Finally, Section 7 concludes with a discussion.

2 Methodology behind EpiLPS

2.1 Negative Binomial model for case incidence data

Let {yt, t = 1, . . . , T} be a time series of counts during an epidemic of T days with yt ∈ N

(set of non-negative integers) denoting the total number of new contaminations on day t.

We assume that the number of cases on day t follows a Negative Binomial distribution

yt ∼ NegBin(µ(t), ρ), with µ(t), ρ ∈ R∗
+ := {x ∈ R|x > 0} and probability mass function

(see e.g. Anscombe, 1950; Piegorsch, 1990):

p(yt|µ(t), ρ) =
Γ(yt + ρ)

Γ(yt + 1)Γ(ρ)

(
µ(t)

µ(t) + ρ

)yt ( ρ

ρ+ µ(t)

)ρ

, (1)

where Γ(·) is the gamma function. Under the above parameterization, we have E(yt) = µ(t)

and V(yt) = µ(t) + µ(t)2/ρ, so that 1/ρ is the parameter responsible for overdispersion

(variance larger than the mean) that is absent in a Poisson setting. In the limiting case

limρ→+∞V(yt) = µ(t) = E(yt) and we recover the Poisson model. We assume that µ(t)
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evolves smoothly over the time course of the epidemic and model it with cubic B-splines

(Eilers and Marx, 1996):

log(µ(t)) =
K∑
k=1

θkbk(t) = θ⊤b(t), (2)

where θ = (θ1, . . . , θK)
⊤ is the vector of B-spline amplitudes to be estimated and b(·) =

(b1(·), . . . , bK(·))⊤ is a cubic B-spline basis defined on the domain T = [rl, T ], where rl is

a lower bound on the time axis, typically the first day of the epidemic (i.e. rl = 1). The

philosophy behind P-splines consists in specifying a “large” number K of basis functions

together with a discrete roughness penalty λθ⊤Pθ as a counterforce to the induced flexi-

bility of the fit. The parameter λ > 0 acts as a tuning parameter calibrating the “degree”

of smoothness and P = D⊤
r Dr + εIK is a penalty matrix built from rth order difference

matrices Dr of dimension (K − r) ×K perturbed by an ε-multiple (here ε = 10−6) of the

K-dimensional identity matrix IK to ensure full rankedness. The reader is redirected to

Eilers and Marx (2021) for a complete textbook treatment of P-splines. Following Lang and

Brezger (2004), we impose a Gaussian prior on the spline vector θ|λ ∼ Ndim(θ)(0, Q
−1
λ ), with

precision matrix Qλ = λP . For full Bayesian inference, the following priors are imposed

on the model hyperparameters. Following Jullion and Lambert (2007), a robust Gamma

prior is specified for the roughness penalty parameter λ|δ ∼ G (ϕ/2, (ϕδ)/2), where G(a, b)

is a Gamma distribution with mean a/b and variance a/b2, ϕ = 2 and δ is an additional

dispersion parameter with hyperprior δ ∼ G(aδ = 10, bδ = 10). Finally, the following unin-

formative prior is imposed on the overdispersion parameter ρ ∼ G(aρ = 0.0001, bρ = 0.0001).

Let η := (λ, ρ)⊤ denote the vector of hyperparameters. The full Bayesian model is thus:

yt|µ(t), ρ ∼ NegBin(µ(t), ρ),

log(µ(t)) = θ⊤b(t),

θ|λ ∼ Ndim(θ)(0, Q
−1
λ ),
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λ|δ ∼ G (ϕ/2, (ϕδ)/2) ,

δ ∼ G(aδ, bδ),

ρ ∼ G(aρ, bρ).

2.2 Laplace approximation to the conditional posterior of θ

The log-likelihood for the Negative Binomial model is given by:

ℓ(θ, ρ;D)=̇
T∑
t=1

{
g(yt, ρ) + ytθ

⊤b(t) + ρ log(ρ)− (yt + ρ) log(exp(θ⊤b(t)) + ρ)
}
, (3)

with g(yt, ρ) = log Γ(yt + ρ)− log Γ(ρ) and =̇ denoting equality up to an additive constant.

The gradient of the log-likelihood with respect to the spline coefficients is:

∇ℓ(θ, ρ;D) =

(
∂ℓ(θ, ρ;D)

∂θ1
, . . . ,

∂ℓ(θ, ρ;D)

∂θK

)⊤

,

where:

∂ℓ(θ, ρ;D)

∂θk
=

T∑
t=1

ytbk(t)−
T∑
t=1

(yt + ρ) exp(θ⊤b(t))(
exp(θ⊤b(t)) + ρ

) bk(t), k = 1, . . . , K.

The Hessian of the log-likelihood with respect to the B-spline amplitudes is:

∇2ℓ(θ, ρ;D) =


∂2ℓ(θ,ρ;D)

∂θ21
. . . ∂2ℓ(θ,ρ;D)

∂θ1∂θK

...
. . .

...

∂2ℓ(θ,ρ;D)
∂θK∂θ1

. . . ∂2ℓ(θ,ρ;D)

∂θ2K

 ,

with entries:
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∂2ℓ(θ, ρ;D)

∂θk∂θl
= −

T∑
t=1

ρ(yt + ρ)
exp(θ⊤b(t))(

exp(θ⊤b(t)) + ρ
)2 bk(t)bl(t), k, l = 1, . . . , K.

Using Bayes’ rule, the conditional posterior of θ for a given η is:

p(θ|η,D) ∝ L(θ, ρ;D)p(θ|λ)

∝ exp

(
ℓ(θ, ρ;D)− λ

2
θ⊤Pθ⊤

)
. (4)

The gradient and Hessian of the log-likelihood (3) can be used to compute the gradient and

Hessian of the (log-)conditional posterior (4), namely:

∇ log p(θ|η,D) = ∇ℓ(θ, ρ;D)− λPθ,

∇2 log p(θ|η,D) = ∇2ℓ(θ, ρ;D)− λP.

The above two equations will be used in a Newton-Raphson algorithm to obtain the Laplace

approximation to the conditional posterior of θ:

p̃G(θ|η,D) = Ndim(θ) (θ
∗(η),Σ∗(η)) , (5)

where θ∗(η) and Σ∗(η) is the mode and variance-covariance respectively after convergence

of the Newton-Raphson algorithm. The latter two quantities are functions of the hyperpa-

rameter vector η. An intuitive choice for η is to fix it at its maximum a posteriori (MAP).

This is the option retained here, although it is also possible to work with a grid-based

approach (Rue et al., 2009; Gressani and Lambert, 2021).

2.3 Hyperparameter optimization

The hyperparameter vector η = (λ, ρ)⊤ will be calibrated by posterior optimization. Fol-

lowing Tierney and Kadane (1986) and Rue et al. (2009), the hyperparameter vector can

be approximated as follows:
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p̃(η, δ|D) ∝ L(θ, ρ;D)p(θ|λ)p(λ|δ)p(δ)p(ρ)
p̃G(θ|η,D)

∣∣∣∣∣
θ=θ∗(η)

, (6)

Approximation (6) can be written extensively as follows:

p̃(η, δ|D) ∝ λ
K+ϕ

2
−1δ

ϕ
2
+aδ−1 exp

(
−δ
(
ϕλ

2
+ bδ

))
ρaρ−1

×|Σ∗(η)|
1
2 exp

(
ℓ(θ∗(η), ρ;D)− λ

2
θ∗⊤(η)Pθ∗(η)− bρρ

)
,

where the K/2 power of λ comes from the determinant |Q−1
λ |−1/2 = |λP |1/2 ∝ λK/2. As

δ
ϕ
2
+aδ−1 exp

(
−δ
(
ϕλ
2
+ bδ

))
is the kernel of a Gamma distribution for the dispersion param-

eter δ, the following integral can be analytically solved:

∫ +∞

0

p̃(η, δ|D) dδ = p̃(η|D)

∝ λ
K+ϕ

2
−1

(
ϕλ

2
+ bδ

)−
(

ϕ
2
+aδ

)
ρaρ−1

×|Σ∗(η)|
1
2 exp

(
ℓ(θ∗(η), ρ;D)− λ

2
θ∗⊤(η)Pθ∗(η)− bρρ

)
.

Using the transformation of variables (ensuring numerical stability during optimization)

w = log(ρ), v = log(λ), one can show that p̃(η|D) can be written as follows after using the

multivariate transformation method:

p̃(η̃|D) ∝ exp(v)
K+ϕ

2

(
ϕ exp(v)

2
+ bδ

)−
(

ϕ
2
+aδ

)
exp(w)aρ

×|Σ∗(η̃)|
1
2 exp

(
ℓ (θ∗(η̃), exp(w);D)− exp(v)

2
θ∗⊤(η̃)Pθ∗(η̃)− bρ exp(w)

)
,

where η̃ = (w, v)⊤. The approximated log-posterior becomes:

log p̃(η̃|D) =̇ 0.5 log |Σ∗(η̃)|+ 0.5(K + ϕ)v + aρw − (0.5ϕ+ aδ) log (0.5ϕ exp(v) + bδ)

+ℓ (θ∗(η̃), exp(w);D)− 0.5 exp(v)θ∗⊤(η̃)Pθ∗(η̃)− bρ exp(w). (7)
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Equation (7) is numerically optimized and yields η̃∗ = argmaxη̃ log p̃(η̃|D). Plugging the

latter vector into the Laplace approximation (5), one obtains the estimate θ̂ = θ∗(η̃∗) of

the spline vector. The latter can be seen as a maximum a posteriori (MAP) estimate of θ.

Thus, the approximated posterior of the spline vector is:

p̃(θ|D) = Ndim(θ) (θ
∗(η̃∗),Σ∗(η̃∗)) , (8)

and can be used to construct credible intervals for functions that indirectly depend on θ,

such as R(t) as shown in the following section.

3 Estimation of R(t) with LPSMAP

3.1 The renewal equation “plug-in” estimate

In this section, we show how the Negative Binomial model for smoothing incidence counts

can be used to estimate R(t) through the renewal equation. Let φ = {φ1, . . . , φk} be

a known k-dimensional vector representing the serial interval distribution. The renewal

equation describes the link between the number of new cases at day t and past infected

cases (up to time point t− 1) weighted by the serial interval distribution. Mathematically:

yt =
∑
s

R(t)φsyt−s. (9)

Rearranging (9) and taking the length k of the serial interval into account, we obtain an

equation with the instantaneous reproduction number on the left-hand side:

R(t) =


yt for t = 1,

yt

(∑t−1
s=1 φsyt−s

)−1

for 2 ≤ t ≤ k,

yt

(∑k
s=1 φsyt−s

)−1

for k < t ≤ T.

(10)
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A “plug-in” estimator of R(t) at any t ∈ T is obtained by replacing the number of new

cases yt by the estimated mean number of cases µ̂(t) = exp
(
θ̂
⊤
b(t)
)
, yielding:

R̂(t) =


exp

(
θ̂
⊤
b(t)
)

for t = 1,

exp
(
θ̂
⊤
b(t)
)(∑t−1

s=1 φs exp
(
θ̂
⊤
b(t− s)

))−1

for 2 ≤ t ≤ k,

exp
(
θ̂
⊤
b(t)
)(∑k

s=1 φs exp
(
θ̂
⊤
b(t− s)

))−1

for k < t ≤ T.

(11)

Using the indicator function I(·), i.e. I(A) = 1 if condition A is true and I(A) = 0 otherwise,

the above “plug-in” estimate of R(t) can be written in a single line:

R̂(t) = exp
(
θ̂
⊤
b(t)
){

I(t = 1) +

(
t−1∑
s=1

φs exp
(
θ̂
⊤
b(t− s)

))−1

I(2 ≤ t ≤ k)

+

(
k∑

s=1

φs exp
(
θ̂
⊤
b(t− s)

))−1

I(k < t ≤ T )

}
. (12)

3.2 Credible intervals for R(t)

Replacing the number of new cases yt by the (theoretical) mean number of cases µ(t) =

exp(θ⊤b(t)) in (10) and using the compact notation, one has:

R(t) = exp
(
θ⊤b(t)

){
I(t = 1) +

(
t−1∑
s=1

φs exp
(
θ⊤b(t− s)

))−1

I(2 ≤ t ≤ k)

+

(
k∑

s=1

φs exp
(
θ⊤b(t− s)

))−1

I(k < t ≤ T )

}
. (13)

Let us denote the log of the instantaneous reproduction number in (13) as:

logR(t) := h(θ|t)

= θ⊤b(t) + log ζ(θ),

with

11
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ζ(θ) = I(t = 1) +

(
t−1∑
s=1

φs exp
(
θ⊤b(t− s)

))−1

I(2 ≤ t ≤ k)

+

(
k∑

s=1

φs exp
(
θ⊤b(t− s)

))−1

I(k < t ≤ T ).

Note that h(θ|t) is seen here as a function of the spline vector θ for a given time point

t ∈ T . A (1 − α) × 100% approximate credible interval for R(t) is obtained via a “delta”

method. Consider a first-order Taylor expansion of h(θ|t) around θ∗(η̃∗) (henceforth θ∗ for

the sake of a light notation), the mean of the Laplace approximated posterior of the spline

vector in (8):

h(θ|t) ≈ h(θ∗|t) + (θ − θ∗)⊤∇h(θ|t)|θ=θ∗ , (14)

where the kth entry of the gradient vector ∇h(θ|t) = (∂h(θ|t)/∂θ1, . . . , ∂h(θ|t)/∂θK)⊤ is:

∂h(θ|t)
θk

= bk(t) + ζ−1(θ)
∂ζ(θ)

∂θk
.

∂ζ(θ)

∂θk
= −

(
t−1∑
s=1

φs exp
(
θ⊤b(t− s)

))−2 t−1∑
s=1

φs exp
(
θ⊤b(t− s)

)
bk(t− s)I(2 ≤ t ≤ k)

−

(
k∑

s=1

φs exp
(
θ⊤b(t− s)

))−2 k∑
s=1

φs exp
(
θ⊤b(t− s)

)
bk(t− s)I(k < t ≤ T ).

It follows that for k = 1, . . . , K we have:

∂h(θ|t)
θk

= bk(t) +

{
0I(t = 1)

−

(
t−1∑
s=1

φs exp
(
θ⊤b(t− s)

))−1 t−1∑
s=1

φs exp
(
θ⊤b(t− s)

)
bk(t− s)I(2 ≤ t ≤ k)

−

(
k∑

s=1

φs exp
(
θ⊤b(t− s)

))−1 k∑
s=1

φs exp
(
θ⊤b(t− s)

)
bk(t− s)I(k < t ≤ T )

}
.
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The Taylor expansion in (14) is a linear combination of the vector θ that is a posterior

(approximately) Gaussian due to the Laplace approximation. As the family of Gaussian

distributions is closed under linear combinations, it follows that h(θ|t) (and hence logR(t))

is a posteriori also (approximately) Gaussian with mean E(h(θ|t)) ≈ h(θ∗|t) and variance-

covariance matrix V(h(θ|t)) ≈ ∇⊤h(θ|t)|θ=θ∗Σ∗∇h(θ|t)|θ=θ∗ , where Σ∗ := Σ∗(η̃∗) is the

covariance matrix of the Laplace approximation (8). This suggests to write:

(
logR(t)|D

)
≈ N1

(
h(θ∗|t),∇⊤h(θ|t)|θ=θ∗Σ∗∇h(θ|t)|θ=θ∗

)
. (15)

Thus, from (15) a quantile-based (1− α)× 100% approximate credible interval for R(t) is:

CI1−α
R(t) = exp

(
h(θ∗|t)± zα/2

√
∇⊤h(θ|t)|θ=θ∗Σ∗∇h(θ|t)|θ=θ∗

)
, (16)

where zα/2 is the α/2-upper quantile of a standard normal variate.

4 Estimation of R(t) with LPSMALA

In Bayesian statistics, posterior distributions obtained with Bayes’ theorem often entail a

high degree of analytical complexity and to a certain extent a flavor of incompleteness in the

sense that the posterior is typically only known up to a normalizing constant. Markov chain

Monte Carlo (MCMC) methods are simulation techniques for generating samples from a

(possibly unnormalized) target distribution (Chib and Greenberg, 1996). One of the most

popular MCMC methods together with the Gibbs sampler (Geman and Geman, 1984) is

the Metropolis-Hastings (MH) algorithm originally proposed by Metropolis et al. (1953)

and later generalized by Hastings (1970). In this section, we propose to implement a modi-

fied version of the Metropolis-adjusted Langevin algorithm (MALA) (Roberts and Tweedie,

1996) within the EpiLPS framework. The major advantage of MALA as compared to MH

algorithms is that the proposal distribution is based upon a discretized approximation of

the Langevin diffusion that uses the gradient of the target posterior distribution. These
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“smarter” proposals make use of additional information about the target density so that

algorithms based on Langevin dynamics can converge at sub-geometric rates and tend to

be more efficient than naive random-walk Metropolis algorithms (Roberts and Rosenthal,

1998, 2001).

This motivates our choice for embedding a MALA algorithm in EpiLPS as an efficient

way of obtaining MCMC samples for inference on the instantaneous reproduction number

R(t) via the renewal equation. The end-user will thus have a fully flexible choice regard-

ing the underlying approach for estimating R(t) either via Laplacian-P-splines where the

uncertainty surrounding the parameter λ responsible for smoothing is ignored and fixed

at its “maximum a posteriori” (LPSMAP); or via a modified MALA algorithm where the

uncertainty surrounding the penalty (and overdispersion) parameter is fully taken into ac-

count (LPSMALA). The approach permits to obtain samples from the joint posterior of

the spline vector and the penalty and overdispersion parameters. The latter can then be

injected in functionals of the spline vector and hence obtain smooth estimates of the epi-

demic curve as well as the instantaneous reproduction number. Another advantage is that

highest posterior density intervals can be easily calculated from LPSMALA.

4.1 Conditional posteriors for a “Metropolis-within-Gibbs”

4.1.1 Joint posterior of (ζ, λ)

Let ζ = (θ⊤, ρ)⊤ be the (K + 1)-dimensional vector gathering the B-spline coefficients θ

and the overdispersion parameter ρ. Using Bayes’ theorem, the joint posterior distribution

for ζ, λ and δ is:

p(ζ, λ, δ|D) =
p(D|ζ, λ, δ)p(ζ, λ, δ)

p(D)

∝ L(ζ;D)p(θ|λ)p(λ|δ)p(δ)p(ρ)

∝ exp (ℓ(ζ;D)) p(θ|λ)p(λ|δ)p(δ)p(ρ), (17)

The analytical formulas of the chosen priors are:
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p(θ|λ) ∝ λ
K
2 exp

(
−0.5λθ⊤Pθ

)
,

p(λ|δ) ∝ δ
ϕ
2 λ

ϕ
2
−1 exp(−0.5ϕδλ),

p(δ) ∝ δaδ−1 exp(−bδδ),

p(ρ) ∝ ρaρ−1 exp(−bρρ).

Injecting the above priors into (17) yields:

p(ζ, λ, δ|D) ∝ exp
(
ℓ(ζ;D)− bρρ− 0.5λθ⊤Pθ

)
ρaρ−1λ

K+ϕ
2

−1δ(
ϕ
2
+aδ)−1 exp (−δ(0.5ϕλ+ bδ)) .(18)

4.1.2 Condtional posteriors of ζ, λ and δ

The following conditional posterior distributions can be directly obtained from (18):

p(ζ|λ, δ,D) ∝ ρaρ−1 exp
(
ℓ(ζ;D)− bρρ− 0.5λθ⊤Pθ

)
, (19)

(λ|ζ, δ,D) ∼ G
(
0.5(K + ϕ), 0.5(θ⊤Pθ + δϕ)

)
, (20)

(δ|ζ, λ,D) ∼ G (0.5ϕ+ aδ, 0.5ϕλ+ bδ) . (21)

4.2 Sampling from the joint posterior p(ζ, λ, δ|D)

As the full conditionals p(ζ|λ, δ,D), p(λ|ζ, δ,D) and p(δ|ζ, λ,D) are available, we follow a

“Metropolis-within-Gibbs” strategy to sample the joint posterior p(ζ, λ, δ|D). In particular,

the hyperparameters λ and δ will be sampled in a Gibbs step, while ζ will be sampled using

a modified Langevin-Hastings algorithm. This approach is presented in Lambert and Eilers

(2009) in the context of Bayesian density estimation (see also Lambert and Eilers (2005) for

the use of MALA in a proportional hazards model). We adapt the algorithm of the latter

reference to our EpiLPS methodology by incorporating the added value of our Laplacian-

P-splines method. In particular, the variance-covariance matrix in the Langevin diffusion

will be replaced by the variance-covariance matrix of LPSMAP. The correlation structure

borrowed from LPSMAP improves convergence and chain mixing.
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4.3 The modified Metropolis-adjusted Langevin algorithm

In what follows, we prefer to work under the log(·) parameterization for ρ, i.e. w = log(ρ)

and denote by ζ̃ = (θ⊤, w)⊤, the (K + 1)-dimensional vector of B-spline amplitudes and

overdispersion w. Under this parameterization, the conditional posterior of ζ̃ given λ and

δ can be obtained from (19) by using the transformation method of random variables:

p(ζ̃|λ, δ,D) ∝ exp(w)aρ exp
(
ℓ(ζ̃;D)− bρ exp(w)− 0.5λθ⊤Pθ

)
, (22)

with the following log-likelihood under the reparameterization:

ℓ(ζ̃;D) =̇
T∑
t=1

{
log Γ(yt + exp(w))− log Γ(exp(w)) + ytθ

⊤b(t) + exp(w)w

−(yt + exp(w)) log
(
exp(θ⊤b(t)) + exp(w)

)}
. (23)

Let us denote by ζ̃
(m−1)

∈ R(K+1) the state of the chain at iteration (m − 1). In the

Langevin-Hastings algorithms, the proposal for the vector ζ̃ at iteration m is a draw from

the following multivariate Gaussian distribution:

ζ̃
(prop)

∼ N(K+1)

(
ζ̃
(m−1)

+ 0.5ϱΣLH∇ζ̃ log p(ζ̃|λ, δ,D)
∣∣
ζ̃=ζ̃

(m−1) , ϱΣLH

)
, (24)

where ϱ > 0 is a tuning parameter that has to be carefully chosen in order to reach a desired

acceptance rate and ΣLH is the following block-diagonal variance-covariance matrix:

ΣLH =

Σ∗ 0

0 1

 , (25)

where Σ∗ is the K-dimensional covariance matrix obtained with LPSMAP. The gradient of

log p(ζ̃|λ, δ,D) = ℓ(ζ̃;D)− 0.5λθ⊤Pθ − bρ exp(w) + aρw can be decomposed as follows:

∇ζ̃ log p(ζ̃|λ, δ,D) =

(
∇θ log p(ζ̃|λ, δ,D),

∂ log p(ζ̃|λ, δ,D)

∂w

)⊤

, (26)
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and is analytically available (see Appendix A for more details). All the quantities related

to the Langevin-Hastings proposal have been analytically derived, so that the draw in (24)

can be obtained (for a given value of λ and δ). As in a classic MH algorithm, the next step

consists in computing the acceptance probability:

π
(
ζ̃
(m−1)

, ζ̃
(prop)

)
= min

1,
p(ζ̃

(prop)
|λ, δ,D)

p(ζ̃
(m−1)

|λ, δ,D)

q
(
ζ̃
(prop)

, ζ̃
(m−1)

)
q
(
ζ̃
(m−1)

, ζ̃
(prop)

)
 , (27)

where q(·, ·) denotes the (Gaussian) proposal distribution and p(·|λ, δ,D) the target (condi-

tional) posterior distribution. Finally, we generate a uniform random variable u ∼ U(0, 1)

and accept the proposed vector ζ̃
(prop)

if u ≤ π
(
ζ̃
(m−1)

, ζ̃
(prop)

)
and reject it otherwise.

While iterating through the Metropolis-within-Gibbs algorithm, the tuning parameter ϱ is

automatically adapted to reach the optimal acceptance rate of 0.57 (Haario et al., 2001;

Atchadé and Rosenthal, 2005; Roberts and Rosenthal, 1998). The pseudo-code below sum-

marizes the LPSMALA algorithm.

LPSMALA algorithm to sample the posterior p(θ, ρ, λ, δ|D).

1: Fix initial values m = 0, λ(0), δ(0), ϱ(0) and ζ̃
(0)

= (θ(0)⊤, w(0))⊤.

2: for m = 1, . . . ,M do

3: (Langevin-Hastings)

4: Compute Langevin diffusion: E
(
ζ̃
(m−1)

)
= ζ̃

(m−1)
+0.5ϱ(m−1)ΣLH∇ζ̃ log p(ζ̃|λ(m−1), δ(m−1),D)

∣∣
ζ̃=ζ̃

(m−1) .

5: Generate a proposal: ζ̃
(prop)

∼ N(K+1)

(
E
(
ζ̃
(m−1))

, ϱ(m−1)ΣLH

)
.

6: Compute acceptance probability π
(
ζ̃
(m−1)

, ζ̃
(prop)

)
= min

{
1, p(ζ̃

(prop)|λ(m−1),δ(m−1),D)

p(ζ̃
(m−1)|λ(m−1),δ(m−1),D)

q
(
ζ̃
(prop)

,ζ̃
(m−1)

)
q
(
ζ̃
(m−1)

,ζ̃
(prop)

)
}
.

7: Draw u ∼ U(0, 1).

8: if u ≤ π set ζ̃
(m)

= ζ̃
(prop)

(accept), else ζ̃
(m)

= ζ̃
(m−1)

(reject).

9: (Gibbs sampler)

10: Draw δ(m) ∼ G
(
0.5ϕ+ aδ, 0.5ϕλ

(m−1) + bδ
)
,

11: Draw λ(m) ∼ G
(
0.5(K + ϕ), 0.5(θ(m)⊤Pθ(m) + δ(m)ϕ)

)
.

12: (Adaptive tuning)

13: Update ϱ(m) = H 2
(√

ϱ(m−1) +m−1
(
π
(
ζ̃
(m−1)

, ζ̃
(prop)

)
− 0.57

))
.

14: end for
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The adaptive tuning part (on line 13) involves the step function H (z) = ϵI(z < ϵ)+ zI(ϵ ≤

z ≤ A ) + A I(z > A ), with ϵ = 10−4 and A = 104, see Lambert and Eilers (2009) for

details. Finally, the ratio q
(
ζ̃
(prop)

, ζ̃
(m−1)

)
q−1

(
ζ̃
(m−1)

, ζ̃
(prop)

)
entering the computation

of the acceptance probability (line 6) is derived in Appendix B.

4.4 Posterior inference

Provided the LPSMALA algorithm (cf. Section 4.3) is iterated long enough, say after

M̃ iterations, MCMC theory certifies that S =
{(

θ(m)⊤, ρ(m), λ(m), δ(m)
)}M

m=M̃+1
can be

viewed as random draws from the target posterior distribution p(θ, ρ, λ, δ|D). Note that a

convenient starting point for the initial values of the parameters might be to fix them at

their LPSMAP estimate. Given the sample S , inference on quantities that are functions of

θ becomes straightforward in the sense that point estimates and credibility envelopes can

be easily obtained. A point estimate for the mean number of incidence counts at time t is

taken to be the posterior mean (after discarding the burn-in phase):

µ̂(t) =
1

M − M̃

M∑
m=M̃+1

exp
(
θ(m)⊤b(t)

)
. (28)

Note also that S can be used to compute highest posterior density intervals of µ(t) at any

point t. Using the renewal equation and the MCMC sample, one can apply the “plug-in”

estimate of Section 3.1 and recover the following estimate of the instantaneous reproduction

number at any given point t:

R̂(t) =
1

M − M̃

M∑
m=M̃+1

exp
(
θ(m)⊤b(t)

){
I(t = 1) +

(
t−1∑
s=1

φs exp
(
θ(m)⊤b(t− s)

))−1

I(2 ≤ t ≤ k)

+

(
k∑

s=1

φs exp
(
θ(m)⊤b(t− s)

))−1

I(k < t ≤ T )

}
. (29)

Also, using S , one can compute a highest posterior density interval of R(t) at any point t.
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5 Numerical study

In this section, we implement a numerical study with four underlying epidemic scenarios to

assess the accuracy with which EpiLPS is able to “track” the target reproduction number

over time. EpiLPS results are compared with the estimate R() routine of the EpiEstim

package using two sliding window options (the default weekly window of 7 days and a shorter

window of 3 days). In each scenario, we simulate incidence data for an epidemic lasting

50 days according to a Poisson data generating process with mean counts governed by the

renewal equation (see Eq.10). In total, S = 200 epidemics are simulated for each scenario

and a cubic B-spline basis of size K = 20 with a second order penalty is used for inference

in EpiLPS. In Scenario 1, a constant instantaneous reproduction number at R(t) = 2.5 is

considered. In Scenario 2, an intervention strategy is replicated, so that R(t) = 2.5 and a

sudden drop to R(t) = 0.7 occurs at day t = 20. The latter scenario allows to check whether

EpiLPS is able to quickly react to such a brutal change in R(t). Scenario 3 implements

a more wiggly structure for R(t) and finally, Scenario 4 considers the case of a vanishing

epidemic with a monotonic decreasing reproduction number. Table 1 summarizes the target

R(t) functions and the serial interval distribution for the considered scenarios. Table 2

reports for each scenario the average Bias, MSE, coverage of 90% and 95% credible envelopes

and credible interval width for the R(t) estimator with EpiLPS (LPSMAP and LSPMALA)

and EpiEstim. The average is computed over days t = 8, . . . , 50. For LPSMALA, a chain

of length 5, 000 and a warm up period of 2, 000 is specified.

Table 1: Different scenarios for the simulation of epidemic data based on a Poisson data
generating process for the incidence time series over T = 50 days.

Scenario Target R(t) Serial interval distribution
1 R(t) = 2.5 φ = (0.05, 0.05, 0.1, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1)
2 R(t) = 2.5 I(t < 20) + 0.7 I(t ≥ 20) φ = (0.15, 0.25, 0.35, 0.13, 0.12)
3 R(t) = 0.4 + exp(cos(t/5)) φ = (0.13, 0.22, 0.18, 0.15, 0.07, 0.13, 0.12)
4 R(t) = exp(cos(t/15)) φ = (0.32, 0.24, 0.15, 0.09, 0.2)
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Table 2: Numerical results for EpiLPS and EpiEstim under different simulation scenarios.
The Bias, MSE, 90% and 95% coverage of credible intervals and 95% CI width are averaged
over days t = 8, . . . , 50.

Scenario Method Bias MSE CP90% CP95% CI95% width

LPSMAP -0.026 0.018 98.756 99.407 0.946
Scenario 1 LPSMALA -0.026 0.020 93.535 95.977 0.351

“Constant R(t)” EpiEstim (7d window) -0.003 0.016 90.291 95.221 0.335
EpiEstim (3d window) 0.003 0.036 90.444 95.567 0.499

LPSMAP -0.008 0.038 89.337 90.651 0.395
Scenario 2 LPSMALA -0.005 0.030 90.384 90.814 0.328
“Step R(t)” EpiEstim (7d window) 0.085 0.071 76.733 81.302 0.123

EpiEstim (3d window) 0.030 0.036 86.000 90.691 0.253
LPSMAP -0.007 0.009 97.372 98.895 0.530

Scenario 3 LPSMALA 0.000 0.009 92.058 95.919 0.329
“Wave R(t)” EpiEstim (7d window) 0.051 0.145 19.895 24.395 0.321

EpiEstim (3d window) 0.039 0.050 60.957 67.638 0.532
LPSMAP 0.000 0.001 98.477 99.465 0.257

Scenario 4 LPSMALA -0.001 0.001 90.767 95.419 0.112
“Decaying R(t)” EpiEstim (7d window) 0.125 0.021 17.988 20.616 0.097

EpiEstim (3d window) 0.046 0.010 46.436 51.819 0.214

For the first scenario, EpiEstim exhibits slightly lower bias than EpiLPS and the MSE is

more or less of the same magnitude for both approaches. A general pattern that is appar-

ent from Table 2 is that EpiLPS tends to overcover with LPSMAP (except for Scenario 2),

while LPSMALA is closer to the nominal value in all scenarios. This phenomenon can be

attributed to the following two main sources of approximations inherent to LPSMAP: (1)

the Laplace approximation to the conditional posterior of the B-spline amplitudes and (2)

the maximum a posteriori estimate of the hyperparameter vector that ignores the uncer-

tainty related to the estimation of the roughness penalty parameter. In Scenario 2, EpiLPS

has smaller bias than EpiEstim and the latter approach also suffers from mild undercov-

erage with a weekly sliding window. In Scenarios 3 and 4, where the target R(t) curve is

less linear than in the previous scenarios, a more pronounced difference between EpiEstim

and EpiLPS appears. EpiLPS shows better performance, especially in terms of coverage

of credible intervals where EpiEstim exhibits severe undercoverage. Even when decreasing

the sliding window to 3 days, the coverage probability is far from the nominal value.
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Figure 1: (Left) Simulated incidence data for Scenario 1. (Center) Estimated trajectories of
R(t) for each generated dataset with EpiLPS (LPSMAP). (Right) Estimated trajectories of
R(t) for each generated dataset with EpiEstim and a weekly sliding window. The pointwise
median estimate of R(t) for EpiLPS (dashed) and EpiEstim (dotted) is also shown.
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Figure 2: (Left) Simulated incidence data for Scenario 2. (Center) Estimated trajectories of
R(t) for each generated dataset with EpiLPS (LPSMAP). (Right) Estimated trajectories of
R(t) for each generated dataset with EpiEstim and a weekly sliding window. The pointwise
median estimate of R(t) for EpiLPS (dashed) and EpiEstim (dotted) is also shown.
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Figure 3: (Left) Simulated incidence data for Scenario 3. (Center) Estimated trajectories of
R(t) for each generated dataset with EpiLPS (LPSMAP). (Right) Estimated trajectories of
R(t) for each generated dataset with EpiEstim and a weekly sliding window. The pointwise
median estimate of R(t) for EpiLPS (dashed) and EpiEstim (dotted) is also shown.

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.02.21267189doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267189
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1000

2000

3000

4000

0 10 20 30 40 50
Time (days)

In
ci

de
nc

e

0

1

2

3

10 20 30 40 50
Time (days)

R

Target R EpiLPS EpiLPS median EpiEstim median

0

1

2

3

10 20 30 40 50
Time (days)

R

Target R EpiEstim EpiLPS median EpiEstim median

Figure 4: (Left) Simulated incidence data for Scenario 4. (Center) Estimated trajectories of
R(t) for each generated dataset with EpiLPS (LPSMAP). (Right) Estimated trajectories of
R(t) for each generated dataset with EpiEstim and a weekly sliding window. The pointwise
median estimate of R(t) for EpiLPS (dashed) and EpiEstim (dotted) is also shown.

Figures 1-4 show the simulated incidence data together with the estimated trajectories of

R(t) with EpiLPS (using LPSMAP) and EpiEstim respectively. Under linear configura-

tions of R(t), the two competing approaches have similar behavior, while for curved R(t)

functions, EpiEstim estimates (with a weekly sliding window) are shifted as compared to

the target. With EpiEstim, the magnitude of this shift can be controlled by decreasing the

sliding window, yet the optimal a priori choice of a smoothing window is far from being an

easy task in practice and thus alleviating the window size assumption (as in EpiLPS) can

be of interest.

6 Application to observed case counts in infectious

disease epidemics

6.1 Epidemics of SARS-CoV-1 and influenza A H1N1

In this section, the LPSMALA algorithm is applied on two historical outbreak datasets

presented in Cori et al. (2013). In particular, we consider the 2003 SARS outbreak in

Hong Kong and the 2009 pandemic influenza in a school in Pennsylvania (USA). We use

K = 40 B-splines with a second-order penalty and the serial interval distributions provided

in the EpiEstim package Cori (2021). The LPSMALA algorithm is implemented with a
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chain of length 25,000. Acceptance rates for the generated chains are close to the optimal

value of 57% and the posterior samples have converged according to the Geweke (1992)

diagostic test (at the 1% level of significance). Figure 5 shows the smoothed epidemic

curves and the estimated R(t) for the two outbreaks. Results for the SARS data show

that the reproduction number reaches a first peak during the third week where R̂(t) = 9.66

(95% CI : 5.12− 16.82) and a second more moderate peak around week 6 with R̂(t) = 2.79

(95% CI : 1.97− 3.81). After day t = 43, the epidemic is under control and R(t) smoothly

decays below 1. For the pandemic influenza in Pennsylvania, in the end of the second

week R(t) is around 2.04 (95% CI : 1.24− 3.07). During the middle of the third week, the

situation is less severe and R(t) points below 1. As noted in Cori et al. (2013), a few cases

appeared in the last days of the epidemic generating an upward trend in R(t) estimates.
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Figure 5: (Left column) EpiLPS fit for the epidemic curve (top) and the instantaneous
reproduction number R(t) (bottom) of the SARS outbreak in Hong Kong, 2003. (Right
column) EpiLPS fit for the epidemic curve (top) and the instantaneous reproduction number
R(t) (bottom) of the pademic influenza in Pennsylvania, 2009.
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6.2 Application on the SARS-CoV-2 pandemic

The EpiLPS methodology is illustrated on the SARS-CoV-2 pandemic using publicly avail-

able data from the Covid-19 Data Hub (Guidotti and Ardia, 2020) and its associated

COVID19 package on CRAN (https://cran.r-project.org/package=COVID19). Country-

level data on hospitalizations for Belgium, Denmark, Portugal and France from April, 5th

2020 to October 31st, 2021 is used with a uniform serial interval distribution over five days,

i.e. φ = (0.2, 0.2, 0.2, 0.2, 0.2). In Figure 6, the estimated reproduction number over the

considered period is shown for the four countries. Results are obtained with the LPSMAP

algorithm using K = 30 B-splines and a second order penalty. From a computational per-

spective, it takes less than 3 seconds to fit the EpiLPS model for the four countries with

LPSMAP. The fitted reproduction numbers reflect the different waves of the COVID-19

pandemic and the recent rise in infections in the beginning of September 2021.

0.9

1.0

1.1

1.2

1.3

2020−06−01 2020−09−01 2020−12−01 2021−03−01 2021−06−01 2021−09−01
Time

R

Estimated R Belgium

0.9

1.0

1.1

1.2

1.3

2020−06−01 2020−09−01 2020−12−01 2021−03−01 2021−06−01 2021−09−01
Time

R

Estimated R Denmark

0.8

0.9

1.0

1.1

2020−06−01 2020−09−01 2020−12−01 2021−03−01 2021−06−01 2021−09−01
Time

R

Estimated R Portugal

1.0

1.1

2020−06−01 2020−09−01 2020−12−01 2021−03−01 2021−06−01 2021−09−01
Time

R

Estimated R France

Figure 6: Estimated reproduction number from 2020-04-05 to 2021-10-31 for Beglium,
Denmark, Portugal and France using a five days serial interval and LPSMAP with K = 30
B-splines and a second order penalty. The gray shaded surface corresponds to the 95%
(approximate) credible interval.
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7 Conclusion

EpiLPS (an acronym for Epidemiological modelling with Laplacian-P-Splines) is a fast and

flexible tool for near real-time estimation of the instantaneous reproduction number R(t)

during epidemic outbreaks. The tool is flexible in the sense that (penalized) spline based

approximations provide smoothed estimates of R(t) with little computational effort and

without the constraint of imposing any sliding window assumption that could potentially

affect the timing and accuracy of the estimator. Moreover, the end user has the choice

between a fully sampling-free approach (LPSMAP) or an efficient MCMC-based approach

with Langevin diffusions (LPSMALA) for inference. The available EpiLPS package (https:

//github.com/oswaldogressani) allows public health policy makers to analyze incoming

data faster than existing methods relying on classic MCMC samplers, thus allowing them to

be better informed when taking decisions on control measures for the ongoing SARS-CoV-2

epidemic. Simulation studies in this manuscript provide encouraging results and support

EpiLPS as being a robust tool capable of a precise tracking of R(t) over time. The available

EpiLPS software package is also straightforward to use with simple function calls that are

specifically interesting for routine usage.

The EpiLPS project opens up several future research directions. A possible extension

would be to formulate the EpiLPS model within a zero-inflated Poisson framework to cope

with incindence time series characterized by an excess of zero counts. Another interesting

extension would be to adapt the model to account for regional variation and imported cases.
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Software

Simulation results and real data applications in this manuscript can be fully reproduced

with the EpiLPS package available here https://github.com/oswaldogressani.
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Appendix A

In this appendix, we derive the analytical expressions of the gradient:

∇ζ̃ log p(ζ̃|λ, δ,D) =

(
∇θ log p(ζ̃|λ, δ,D),

∂ log p(ζ̃|λ, δ,D)

∂w

)⊤

,

where the target function is log p(ζ̃|λ, δ,D) = ℓ(ζ̃;D)− 0.5λθ⊤Pθ − bρ exp(w) + aρw. Let

us first concentrate on the partial derivatives with respect to the spline components:

∇θ log p(ζ̃|λ, δ,D) = ∇θℓ(ζ̃;D)− λPθ. (30)

As already shown in Section 2.2, the gradient for the log-likelihood ∇θℓ(ζ̃;D) is:

∂ℓ(ζ̃;D)

∂θk
=

T∑
t=1

ytbk(t)−
T∑
t=1

(yt + exp(w)) exp(θ⊤b(t))(
exp(θ⊤b(t)) + exp(w)

) bk(t), k = 1, . . . , K. (31)

The last term to be computed to recover the full gradient is:

∂ log p(ζ̃|λ, δ,D)

∂w
=
∂ℓ(ζ̃;D)

∂w
− bρ exp(w) + aρ, (32)

where

∂ℓ(ζ̃;D)

∂w
=

T∑
t=1

{
∂ log Γ(yt + exp(w))

∂w︸ ︷︷ ︸
Term I

− ∂ log Γ(exp(w))

∂w︸ ︷︷ ︸
Term II

+
∂ exp(w)w

∂w︸ ︷︷ ︸
Term III

− ∂

∂w
(yt + exp(w)) log

(
exp(θ⊤b(t)) + exp(w)

)
︸ ︷︷ ︸

Term IV

}
. (33)

For Term I, using the chain rule, one recovers:

∂ log Γ(yt + exp(w))

∂w
=

∂ log Γ(yt + exp(w))

∂Γ(yt + exp(w))

∂Γ(yt + exp(w))

∂(yt + exp(w))

∂(yt + exp(w))

∂w

=
Γ′(yt + exp(w))

Γ(yt + exp(w))
exp(w)

= ψ(yt + exp(w)) exp(w), (34)
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where ψ(·) is the digamma function. Using the same chain rule argument, one can easily

show that for Term II:

∂ log Γ(exp(w))

∂w
= ψ(exp(w)) exp(w). (35)

Term III is also trivial:

∂ exp(w)w

∂w
= exp(w)(1 + w). (36)

Term IV is as follows:

∂

∂w
(yt + exp(w)) log

(
exp(θ⊤b(t)) + exp(w)

)
= exp(w) log

(
exp(θ⊤b(t)) + exp(w)

)
+(yt + exp(w)) exp(w)

(
exp(θ⊤b(t)) + exp(w)

)−1

= exp(w)

{
log
(
exp(θ⊤b(t)) + exp(w)

)
+(yt + exp(w))

(
exp(θ⊤b(t)) + exp(w)

)−1
}
. (37)

Gathering all the above intermediate results, we obtain the following derivative for (32):

∂ log p(ζ̃|λ, δ,D)

∂w
=

T∑
t=1

{
exp(w)

[
ψ(yt + exp(w))− ψ(exp(w)) + (1 + w)− log

(
exp(θ⊤b(t)) + exp(w)

)
−(yt + exp(w))

(
exp(θ⊤b(t)) + exp(w)

)−1
]}

− bρ exp(w) + aρ. (38)

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.02.21267189doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267189
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix B

To determine the analytical form of the ratio of proposal distributions in the Metropolis-

within-Gibbs algorithm, let us use the compact notationΥ(m−1) = ∇ζ̃ log p(ζ̃|λ, δ,D)
∣∣
ζ̃=ζ̃

(m−1) ,

Υ(prop) = ∇ζ̃ log p(ζ̃|λ, δ,D)
∣∣
ζ̃=ζ̃

(prop) and define the difference ∆ζ̃ = ζ̃
(prop)

−ζ̃
(m−1)

, so that:

q
(
ζ̃
(prop)

, ζ̃
(m−1)

)
= (2π)−

(K+1)
2 |ϱΣLH |−

1
2 exp

{
− 1

2ϱ

(
ζ̃
(m−1)

− ζ̃
(prop)

− 0.5ϱΣLHΥ(prop)

)⊤
Σ−1

LH

×
(
ζ̃
(m−1)

− ζ̃
(prop)

− 0.5ϱΣLHΥ(prop)

)}
. (39)

The kernel of (39) is thus:

ker
(
q
(
ζ̃
(prop)

, ζ̃
(m−1)

))
= exp

{
− 1

2ϱ

(
−(∆ζ̃)⊤ − 0.5ϱΣLHΥ(prop)

)⊤
Σ−1

LH

×
(
−(∆ζ̃)⊤ − 0.5ϱΣLHΥ(prop)

)}
= exp

{
− 1

2ϱ

[(
− (∆ζ̃)⊤Σ−1

LH − 0.5ϱΥ⊤
(prop)ΣLHΣ

−1
LH

)
×
(
−(∆ζ̃)⊤ − 0.5ϱΣLHΥ(prop)

) ]}
= exp

{
− 1

2ϱ

[
(∆ζ̃)⊤Σ−1

LH(∆ζ̃)⊤ + ϱΥ⊤
(prop)(∆ζ̃) +

ϱ2

4
Υ⊤

(prop)ΣLHΥ(prop)

]}
= exp

{
− 1

2ϱ
(∆ζ̃)⊤Σ−1

LH(∆ζ̃)⊤ − 1

2
Υ⊤

(prop)(∆ζ̃)− ϱ

8
Υ⊤

(prop)ΣLHΥ(prop)

}
.

Using a similar argument, one can show that the kernel of q
(
ζ̃
(m−1)

, ζ̃
(prop)

)
is:

ker
(
q
(
ζ̃
(m−1)

, ζ̃
(prop)

))
= exp

{
−
[ 1

2ϱ
(∆ζ̃)⊤Σ−1

LH(∆ζ̃)⊤ − 1

2
Υ⊤

(m−1)(∆ζ̃) +
ϱ

8
Υ⊤

(m−1)ΣLHΥ(m−1)

}
.

This can be used to compute the ratio:

q
(
ζ̃
(prop)

, ζ̃
(m−1)

)
q
(
ζ̃
(m−1)

, ζ̃
(prop)

)=ker
(
q
(
ζ̃
(prop)

, ζ̃
(m−1)

))
ker−1

(
q
(
ζ̃
(m−1)

, ζ̃
(prop)

))
= exp

{
− 1

2
Υ⊤

(prop)(∆ζ̃)− ϱ

8
Υ⊤

(prop)ΣLHΥ(prop) −
1

2
Υ⊤

(m−1)(∆ζ̃) +
ϱ

8
Υ⊤

(m−1)ΣLHΥ(m−1)

}
= exp

{
− 1

2

(
Υ(prop) +Υ(m−1)

)⊤
(∆ζ̃)− ϱ

8

[ (
Υ(prop) +Υ(m−1)

)⊤
ΣLH

(
Υ(prop) −Υ(m−1)

) ]}
= exp

{
− 1

2

(
Υ(prop) +Υ(m−1)

)⊤ (
∆ζ̃ +

ϱΣLH

4

(
Υ(prop) −Υ(m−1)

) )}
. (40)
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