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Abstract –We study finite-time bit erasure in the context of majority-logic decoding. In partic-
ular, we calculate the minimum amount of work needed to erase a majority-logic bit when one
has full control over the system dynamics. We generally show that although a single unit bit is
easier to erase in the slow-driving limit, the majority-logic bit outperforms the single unit bit in
the fast-erasure limit. Our results also suggest optimal design principles for majority-logic bits
under limited control.

Introduction. – In his seminal 1961 paper, Landauer
showed that there is a fundamental thermodynamic cost
associated with the erasure of a bit [1]. In particular, the
amount of work needed to erase a bit is always greater
than kBT ln 2, where kB is the Boltzmann constant and
T the temperature of the environment. Although mod-
ern computers still dissipate several orders of magnitude
more than the Landauer limit, Koomey’s law predicts that
computers working near the Landauer limit will become
available over the next couple of decades [2]. This raises
questions about how to optimize the erasure of bits and
whether there are any thermodynamic bounds on bit era-
sure beyond the Landauer limit.

The last two decades have seen a surge in studies on the
thermodynamics of bit erasure. On the theoretical side,
the framework of stochastic thermodynamics [3,4] has en-
abled the analysis of specific models and led to general
predictions concerning the thermodynamics of finite-time
bit erasure [5–15]. Meanwhile, Landauer’s principle has
been verified on a broad class of experimental systems
[16–26]. One general prediction is that the extra work
needed to erase a bit over a finite amount of time is in-
versely proportional to the duration of the protocol, where
the proportionality constant depends on the level of con-
trol that one has over the system [6,8, 9, 14,15,27,28].

The focus of these works have generally been on single-
unit (SU) bits, i.e., systems where the state of the bit
is determined by a single spin or the position of a single
colloidal particle. Realistic computers, however, are gen-

erally based on majority logic (ML) decoding [29]. An ML
bit consists of several sub-bits, each of which can be either
in state 0 or 1. The ML bit is then in state 0 or 1 if the
majority of sub-bits is in state 0 or 1 respectively.

Inspired by a case study by Sheng et al. [30], we
present here a thorough analysis of the thermodynamics of
majority-logic decoding. To do so, we consider an ML bit
with a large number of sub-bits under full control. We will
show that SU bits are easier to erase in the slow-erasure
limit but that ML bits are easier in the fast-erasure limit.
In particular, the work required to erase an ML bit goes
as τ−1/2 for fast protocols of duration τ , while an SU bit
requires an amount of work proportional to τ−1 under
similar conditions.

Stochastic thermodynamics of bit erasure . –
An SU bit can generally be described by some microscopic
variable x. One can, for example, think about a supercon-
ducting flux, the position of a particle or the magnetiza-
tion of a spin. We define the bit to be in state 0 if x < 0
and in state 1 if x > 0. Throughout this paper, we will as-
sume that x is a stochastic quantity that can be described
by a probability distribution p(x, t) at time t, evolving via
a one-dimensional, overdamped Fokker-Planck equation,

∂

∂t
p(x, t) =

D

kBT

∂

∂x

(
p(x, t)

∂

∂x
V (x, t)

)
+D

∂2

∂x2
p(x, t) .

(1)
Here, V (x, t) is the potential energy landscape, D is the
diffusion coefficient associated with x, kB is the Boltzmann

p-1



constant and T is the temperature of the environment.
Although we will focus in this paper on one-dimensional
overdamped systems, we expect similar results to hold for
underdamped and higher-dimensional systems. The only
constraints on the potential is that it is initially symmet-
ric, V (−x, 0) = V (x, 0). Furthermore, we assume that the
system is initially in equilibrium,

p(x, 0) = π(x) ≡ e
−V (x,0)

kBT∫∞
−∞ dy e

−V (y,0)
kBT

. (2)

Thus, at t = 0, the probability for the bit to be in state 0,
P0, equals the probability for it to be in state 1, P1.

Next, we review the design of protocols that erase an SU
bit to state 0 over an amount of time τ with an erasure
error ε [15]; i.e., the probability for the bit to be in the
wrong state is ε. The final distribution pτ (x) should then
satisfy P0 ≡ p(x < 0, τ) = 1− ε and P1 ≡ p(x > 0, τ) = ε.
To find such protocols, we assume we have full control over
the potential V (x, t) for 0 < t < τ . The time-dependent
function V (x, t) then defines the protocol. As a further re-
quirement, the potential-energy landscape should return
to its original form at the end of the (cyclic) protocol,
V (x, τ) = V (x, 0). The work, on average, needed to com-
plete this process has two contributions,

W = ∆F + T∆iS , (3)

where ∆F is the non-equilibrium free energy difference be-
tween p0(x) and pτ (x), and ∆iS is the amount of entropy
produced during the protocol.

Using ideas from stochastic thermodynamics and requir-
ing cyclic protocols, one can show that ∆F is given by the
Kullback–Leibler divergence between the initial and final
states [31],

∆F = kBT

∫ ∞
−∞

dx p(x, τ) ln
p(x, τ)

p(x, 0)
. (4)

The entropy production ∆iS to transform a state p(x, 0)
to a state p(x, τ) in a given time τ generally depends on
the protocol, V (x, t). Its minimum value, however, can be
shown to be given by [6, 14,15,27,32,33]

∆iSmin;SU = kB

∫ 1

0
dy
(
f−1

0 (y)− f−1
τ (y)

)2
Dτ

, (5)

with y = f0/τ (x) =
∫ x
−∞ dx′ p0/τ (x′) the cumulative dis-

tribution function of the initial/final probability distribu-
tion.

Eq. (3), together with Eqs. (4)–(5) gives the least av-
erage work to erase a bit given initial and final distribu-
tions. One can further reduce the required work by re-
laxing the assumption that pτ (x) be specified in advance.
It is enough that pτ (x) satisfy fτ (0) = 1 − ε. Although
minimizing W over these allowed final distributions can-
not generally be done analytically, one can show that in
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Fig. 1: Schematic diagram illustrating how N = 5 sub-bits
combine to form one majority-logic (ML) bit.

the fast-erasure limit, τ → 0, the minimum work Wmin;SU

is [14]

Wmin;SU =
kBT

Dτ

∫ f−1
0 (1−ε)

0

dx p0(x)x2 + o

(
1

τ

)
, (6)

while in the slow-erasure limit

Wmin;SU = kBT [ε ln(2ε) + (1− ε) ln(2(1− ε))] +O
(

1

τ

)
.

(7)
Note that Eq. (7) reduces to the Landauer bound in the
zero-error limit, ε = 0.

Majority-logic decoding. – Figure 1 shows how the
state of an ML bit is determined by the sum of N sub-bits.
We will assume that the sub-bits do not interact with each
other and that each can be described as an SU bit that
obeys Eq. (1). Since all sub-bits are equivalent, the ML
bit is in state 0 if more than half of the sub-bits are in
state 0 and in state 1 if more than half are in state 1.
Throughout this paper, we will assume that N is odd, to
avoid the possibility of a tie in deciding which state has a
majority. If the probability for each sub-bit to be in state
0 is 1/2 + δ, one can show that the ML bit is in state 0
with probability [30]

P0 =
1

2
+

∫ 1
2 +δ

0
dx (x(1− x))

N−1
2∫ 1

0
dx (x(1− x))

N−1
2

. (8)

We show in the appendix that, for large N and letting√
Nδ ∼ O(1), a saddle-point approximation gives

P0 ≈
1

2

(
1 + erf(

√
2Nδ)

)
. (9)

Thus, to erase an ML bit with an erasure error ε, we
need to erase all sub-bits by an amount δ, given by

δ ≈ erf−1(1− 2ε)√
2N

. (10)

Note that δ = 0 corresponds to no erasure, as the proba-
bilities to be in state 0 and 1 remain equal.

The total work associated with the erasure of an ML bit
with a large number of sub-bits now equals N times the
thermodynamic erasure cost of a single bit with erasure
error 1/2 − δ. To calculate the work associated with the
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erasure of an ML bit, we first introduce the coordinate
transformation

Γsb(x) = f−1
sb,τ (fsb,0(x)) , (11)

where fsb,0/τ (x) is the cumulative distribution associated
with the state of the sub-bit at time 0 or τ , psb,0/τ (x),
respectively. Within the mathematical framework of opti-
mal transport theory, Γ(x) is known as the transport map.
Physically, it can be interpreted as the position to which
one moves the probability density that was originally at
position x. If δ = 0, the final macroscopic state of each
sub-bit bit equals its initial state, P0 = P1 = 1/2, and
the final microscopic state of the sub-bits is the same as
the distribution psb,τ (x) = psb,0(x). This implies that
Γsb(x) = x. Therefore, in the limit of many sub-bits, one
can Taylor expand Γsb(x) to first order,

Γsb(x) = x+
Γ1(x)√
N

+O
(

1

N

)
, (12)

where Γ1(x) depends on the erasure protocol and can be
interpreted physically as the total distance that the prob-
ability density originally at position x is transported by
time τ . In the appendix, we use Eq. (3) to show that one
can now write

Wmin;ML = NWmin;sb

≈
∫ ∞
−∞

dx

(
(p0(x)Γ′1(x) + p′0(x)Γ1(x))

2

2p0(x)

+
p0(x)Γ1(x)2

Dτ

)
. (13)

Furthermore, the constraint fsb,τ (0) = 1/2 + δ can be
rewritten as

Γ1(0) = −erf−1(1− 2ε)√
2p0(0)

. (14)

To calculate the minimum average work needed to erase
an ML bit with erasure error ε, one can minimize Eq. (13)
over all Γ1(x) that satisfy Eq. (14). Lagrange’s method of
constrained optimization then leads to,

d

dx

(V ′(x)Γ1(x))

kBT
− d2

dx2
Γ1(x) +

2

Dτ
Γ1(x) = λδ(x) , (15)

where λ is a Lagrange multiplier. As Eq. (15) is a lin-
ear differential equation, once the initial potential-energy
landscape of the sub-bits, V (x, 0), is specified, one can in
principle determine analytically Γ1(x) and therefore the
minimum work to erase an ML bit with many sub-bits.

In the slow- and fast-erasure limits, one can calculate
Wmin;ML exactly, even without specifying the V (x, 0). In-
deed, in the slow-erasure limit, the work needed to erase
the bit just reduces to the total change in Shannon en-
tropy,

Wmin;ML ≈ kBT (erf−1(1− 2ε))2 . (16)
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Fig. 2: Minimum average work Wmin for a single-unit bit (blue
dashed line) and a majority-logic bit (solid red line) in the
slow-erasure limit.

In Fig. 2, we compare the slow-erasure costs of SU bit,
Eq. (7) with that of an ML bit, Eq. (16). One can im-
mediately see that it always takes more work to erase an
ML bit than an SU bit, whatever the erasure error. In the
fast-erasure limit, a WKB calculation leads to

Wmin;ML ≈
kBT (erf−1(1− 2ε))2

p0(0)
√

2Dτ
. (17)

In the fast-erasure limit, the work needed to erase an ML
bit scales as τ−1/2; by contrast, this cost for an SU bit
scales as τ−1,c.f., Eq. (6). Therefore, in the fast-erasure
limit, the cost associated with an SU bit scales quadrati-
cally worse than the cost associated with an ML bit.

Finite-N effects. To arrive at the above results,
Eq. 15, we first took the limit N →∞ and then the limit
τ → 0. Any realistic ML bit does, however, have a finite
number of sub-bits. Therefore, for very fast erasure, the
limit τ → 0 becomes the dominant limit and should be
taken prior to the N →∞ limit. Using Eq. (6), one then
arrives at

Wmin;ML ≈
kBT (erf−1(1− 2ε))3

√
72Np0(0)2Dτ

. (18)

Comparing this result with Eq. (17), one can see that the

finite-N scaling becomes relevant for τ ∼
(
Dp0(0)2N

)−1
.

Furthermore, by comparing Eq. (18) with Eq. (6), one can
see that the ML bit can still outperform an SU bit by a
factor

√
N .

Example: Flat well . – Let us now apply our frame-
work to a simple example, where we assume a large num-
ber of sub-bits (N → ∞) and where the initial potential
has a flat bottom of width 2L and infinite walls,

V (x, 0) =

{
0 −L < x < L

∞ otherwise
. (19)
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Fig. 3: Minimum average work Wmin;ML to erase an ML bit as
a function of scaled protocol duration τ ′ = τD/L2, for ML bits
with ε = 0.1. The thick black curve corresponds to N = 1 sub-
bit. The thin red curves show N = 3, 9, 33, 99, and the thick
black curve is the N → ∞ result given in Eq. (3). Light-shaded
arrows show trends as N is increased from 1 to ∞.

To calculate the minimum work needed to erase the bit,
we first need to find Γ1(x) from Eq. (15), with V (x, 0)
given by Eq. (19). From Eqs. (11) and (12), it is clear
that the solution should satisfy the boundary conditions

Γ1 (−L) = Γ1 (L) = 0 . (20)

Together with the constraint provided by Eq. (14), this
leads to the solution (see appendix)

Γ1(x) =


−
√

2L erf(1−2ε) sinh(
√

2
τ′ (

x
L+1))

sinh
(√

2
Dτ L

) x < 0 ,

−
√

2L erf(1−2ε) sinh(
√

2
τ′ (( xL−1))

sinh(−
√

2
τ′ )

x > 0 .

(21)

Plugging this expression for Γ1(x) into Eq. (13) then gives
us the minimum work to erase an ML bit made up of a
large number of sub-bits that each have an initial flat-well
potential described by Eq. (19):

Wmin;ML =
kBT (erf−1(1− 2ε))2

√
2τ ′

sinh
(

2
√

2
τ ′

)
cosh2

(√
2
τ ′ )
)
− 1

,

(22)
with τ ′ ≡ τD/L2 the scaled protocol time.

In Fig. 3, we plot the minimum work needed to erase
an ML bit, for various numbers of sub-bits. For large
τ , the cost to erase an SU bit is lower than the cost to
erase an ML bit; however, for τ . Var(x)/D, ML bits are
easier to erase. In other words, an optimal protocol would
use a single unit for slow erasure and majority logic for
fast erasure. This conclusion that the optimal strategy
shifts suddenly as a function of a parameter (the number

of sub-bits N) recalls the scenarios of phase-transitions in
optimal protocols studied in [34]. One can also see that
for very small τ , the finite-size effects of ML bits become
important, making them more costly to erase.

Discussion. – We have shown, for a broad class of po-
tentials (i.e., all symmetric potentials with a stable equi-
librium state), that erasing a majority-logic bit is more
efficient for sufficiently fast erasure protocols. What is
the origin of this behaviour? In an ML bit, one neglects
some microscopic degrees of freedom. As a result, both
the entropy and free-energy difference between the initial
and final states of an ML bit exceed those of an SU bit.
For fast erasure, the dissipative part of the work needed
to erase the bit dominates. Following Eq. (21) and in-
terpreting Γsb,1(x) as the displacement of the probability
distribution, one can see that optimal fast erasure for ML
bits consists of changing the states only for sub-bits where
x ≈ 0. Meanwhile, sub-bits that have x� 0 and are there-
fore harder to erase remain untouched. The lower cost of
sub-bits with x ≈ 0 also explains why the erasure cost of
an ML bit is inversely proportional to the probability that
x ≈ 0, as suggested by Eq. (17).

This conclusion points to an important design principle
for realistic ML bits: Generally, one does not have full con-
trol over the energy landscape of the sub-bits, and control
is limited to the possibilities provided by a finite number
of parameters. Limiting the space of control algorithms
will increase the minimum work given by Eq. (17). The
above argument does, however, show that the main ingre-
dient to reduce the operational cost of an ML bit is the
possibility to modify the energy landscape around x = 0
without modifying it away from this region. That kind
of manipulation of the potential can be created using a
limited set of control parameters.

It is worth noting that other effects might also lead
to sublinear scaling of the work cost in the fast-erasure
limit. For example, Pancotti et al. have recently sug-
gested that a time-dependent system-bath coupling might
lead to similar effects [35]. Furthermore, effects inside the
bath, such as viscoelasticity, might influence the erasure
cost [32]. These mechanisms are quite distinct from the
one proposed here, which has the advantage of applying to
the types of memories used in technological applications,
where a single bit consists of many spins and the average
magnetization records the bit of information.

Can one extend our analysis to other types of systems?
Optimal transport theory predicts that the minimum dis-
sipation to transform a microscopic system from an initial
to a final state is inversely proportional to the duration of
the protocol. Here, we showed that if the mapping from
microscopic to macroscopic dynamics is non-trivial, this
conclusion need not hold for macroscopic transformations.
Similar analyses might then be possible in other settings,
such as chemical reaction networks or heat engines.
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Appendix: erasure error. – Here, we find the era-
sure error of an ML bit given the erasure errors of its
sub-bits. First, we calculate the probability, P0, that an
MLB with N sub-bit is in state 0 when all of the sub-bits
are in state 0 with probability p.

It was shown in [30] that

P0 =

∫ p
0

dt (t(1− t))
N−1

2∫ 1

0
dt (t(1− t))

N−1
2

. (23)

Let us now look at the large-N limit, where the integrands
in both the numerator and denominator of Eq. (23) are
exponentially small unless t ≈ 1/2. We can then do a
saddle-point approximation:

P0 ≈
∫ p

0
dt e
−N

(
ln 2+4(t− 1

2 )
2
)

∫ 1

0
dt e
−N

(
ln 2+4(t− 1

2 )
2
)

≈ 1

2

[
1 + erf

(√
N(2p− 1)

)]
, (24)

where we used the Taylor expansion of the log term around
t = 1/2,

ln (t(1− t)) ≈ −2 ln 2− 4

(
t− 1

2

)2

+O

((
t− 1

2

)4
)
(25)

to get the second equality. Note that when
√
N(p−1/2)�

0 or
√
N(p− 1/2)� 0, one gets P0 ≈ 0 or P0 ≈ 1 respec-

tively, up to an exponentially small correction.

Appendix: optimal work. – Let us look at the
large-N limit and assume that Γsb(x) is of the form

Γsb(x) = x+
Γ1(x)√
N

+O
(

1

N

)
. (26)

The dissipation associated with the erasure of one sub-bit
is given by

∆iSmin;sb =

∫ 1

0
dy
(
f−1

sb,0(y)− f−1
sb,τ (y)

)
Dτ

=

∫∞
−∞ dx p0(x) (Γsb(x)− x)

Dτ

≈
∫ ∞
−∞

dx
p0(x)Γ1(x)2

NDτ
, (27)

where we changed variables from x→ f0(x) in the second
line. For the nonequilibrium free-energy difference, we
first note that as fsb,0 (x) = fsb,τ (Γsb(x)), we can write,

psb,0(x) = Γ′sb(x)psb,τ (Γsb(x)) . (28)

This leads to

∆F
kBT

=

∫ ∞
−∞

dx p0(x) ln
p0(x)

Γ′(x)p0(Γ(x))
, (29)

where we changed variables, x→ Γ(x) in the second line.
Plugging in Eq. (26) and doing a lowest-order expansion
in 1/

√
N leads to

∆F
kBT

=
1

N

∫ ∞
−∞

dx

((
d

dx (p0(x)Γ1(x))
)2

2p0(x)

)
, (30)

and therefore we arrive at

Wmin;ML

kBT
=

∫ ∞
−∞

dx

((
d

dx (p0(x)Γ1(x))
)2

2p0(x)
+
p0(x)Γ1(x)2

Dτ

)
.

(31)
Now let us reformulate the constraint

fsb,τ (0) =
1

2
+ δ, or Γsb

(
f−1

sb,0

(
1

2
+ δ

))
= 0 (32)

in terms of Γ1(x). First, we note that f−1
0 (1/2) = 0. We

then use a first-order Taylor expansion and Eq. (24) to
show that

f−1
sb,0

(
1

2
+ δ

)
=

δ

f ′sb,0

(
f−1

sb,0

(
1
2

)) +O(δ2)

=
erf−1(1− 2ε)

p0(0)
√

2N
+O

(
1

N

)
. (33)

This leads to

Γsb

(
f−1

sb,0

(
1

2
+ δ

))
≈ erf−1(1− 2ε)

p0(0)
√

2N
+

Γ1(0)√
N

= 0 , (34)

or

Γ1(0) = −erf−1(1− 2ε)√
2p0(0)

, (35)

which can be rewritten to∫ ∞
−∞

dxΓ1(x)δ(x) = −erf−1(1− 2ε)√
2p0(0)

. (36)

The minimization of Eq. (31) under the constraint of
Eq. (36) can now be done by introducing the Lagrangian

L =
∫∞
−∞ dx

(
( d

dx (p0(x)Γ1(x)))
2

2p0(x) + p0(x)Γ1(x)2

Dτ

)
+λ
(∫∞
−∞ dxΓ1(x)δ(x) + erf−1(1−2ε)√

2p0(0)

)
(37)

and solving the Euler-Lagrange equation

d

dx

δL
δΓ′1(x)

=
δL

δΓ1(x)
, (38)
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which leads to

d

dx
(p0(x)Γ′1(x)) + p′′0(x)Γ1(x)− p′0(x)2Γ1(x)

p0(x)

− 2p0(x)Γ1(x)

Dτ
= λδ(x), (39)

or using the fact that the system was initially in a Boltz-
mann distribution,

d
dx (Γ1(x)V ′(x))

kBT
− d2

dx2
Γ1(x) +

2Γ1(x)

Dτ
= λδ(x) (40)

Appendix: slow- and fast-erasure limits. – For
slow erasure (τ →∞), the minimum work needed to erase
a bit is dominated by the free-energy difference between
the initial and final states of the system,

Wmin;ML

kBT
≈ ∆F

kBT

= −N []εsb ln εsb + (1− εsb) ln(1− εsb)− ln 2] ,
(41)

where the second line follows from the fact that the local
equilibrium distribution,

pτ (x) =

{
2(1− ε)p0(x) x < 0

2εp0(x) x > 0
(42)

minimizes the free-energy difference between the initial
and final states [15]. Using, εsb = 1/2− δ with δ small, we
can rewrite this as

Wmin;ML ≈ 2NkBTδ
2

= kBT erf−1 (1− 2ε)
2
. (43)

For fast erasure (τ → 0), we first need to solve Eq. (40).
To do this, we first make a WKB ansatz for Γ1(x),

Γ1(x) ∼ exp

(
α0(x)√

τ
+ α1(x) +O(

√
τ)

)
. (44)

Eq. (40) then becomes

2−Dα′0(x)2

Dτ
+
a′0(x)

(
V ′(x)
kBT

− 2a′1(x)
)
− a′′0(x)

√
τ

+O(1) = λδ(x). (45)

We can now approximate Γ1(x) by solving the above equa-
tion order-by-order in τ :

2−Dα′0(x)2 = 0 (46)

a′0(x) (V ′(x)− 2a′1(x))− a′′0(x) = 0 . (47)

This leads to

α0(x) = ±
√

2

D
x, α1(x) =

V (x)

2kBT
. (48)

Finally, as Eq. (14) is a homogeneous linear differential
equation for x 6= 0, any linear combination of solutions is
itself a solution. The delta function has the effect that the
first derivative of Γ1(x) need not be continuous at x 6= 0.
Therefore, the general solution can be written as

Γ1(x) =

e
V (x)
2kBT

(
C0,− e

√
2
Dτ x +C1,− e−

√
2
Dτ x

)
x < 0 ,

e
V (x)
2kBT

(
C0,+ e

√
2
Dτ x +C1,+ e−

√
2
Dτ x

)
x > 0 .

(49)
One can now fix C0,−, C1,−, C0,+ and C1,+ by us-
ing the boundary conditions, Eq. (35), and Γ1(xmin) =
Γ1(xmax) = 0. Using these conditions, we can write

Γ1(x) =


erf−1(1−2ε)√

2p0(0)
e
V (x)−V (0)

2kBT
sinh

(√
2
Dτ (x−xmin)

)
sinh

(√
2
Dτ xmin

) x < 0 ,

erf−1(1−2ε)√
2p0(0)

e
V (x)−V (0)

2kBT
sinh

(√
2
Dτ (x−xmax)

)
sinh

(√
2
Dτ xmax

) x > 0 .

(50)
For small τ , it is clear that Γ1(x) is exponentially small
unless |x| ≈ 0, where one can write

Γ1(x) ≈ erf−1(1− 2ε)√
2p0(0)

e−
√

2
Dτ |x| . (51)

Therefore, we can do a saddle-point-like approximation on
Eq. (31), which leads to

Wmin;ML

kBT
≈

∫ ∞
−∞

dx

(
p′0(0) e−

√
2
Dτ |x|−p0(0)

√
2
Dτ e−

√
2
Dτ |x|

)2

2p0(0)

+

∫ ∞
−∞

dx
p0(0) e−2

√
2
Dτ |x|

Dτ

)(
erf−1(1− 2ε)√

2p0(0)

)2

≈2 erf−1(1− 2ε)2

p0(0)Dτ

∫ ∞
−∞

dx e−2
√

2
Dτ |x|

=

√
2 erf−1(1− 2ε)2

p0(0)
√
Dτ

. (52)

Appendix: flat well. – As an example, let us look
at a bit consisting of a particle in a flat potential well of
width 2L,

V (x) =

{
0 −L < x < L

∞ otherwise
(53)

The equilibrium distribution is given by

p0(x) =
1

2
L , (54)

for −L < x < L and zero otherwise. Eq. (14) then be-
comes

− d2

dx2
Γ1(x) +

2Γ1(x)

Dτ
= λδ(x) , (55)
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Erasing a majority-logic bit
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Fig. 4: Minimum average work Wmin;ML to erase an ML bit
as a function of scaled protocol duration τ ′ = τD/L2, for an
ML bit with ε = 0.1. The thick blue curve corresponds to the
exact N = ∞ solution (Eq. 57). The dashed red curve shows
the WKB approximation from Eq. (52), with p0(0) = 1

2
L.

with boundary conditions Γ1(−L) = Γ1(L) = 0 and
Γ1(0) = −

√
2l erf−1(1− 2ε). Therefore, one gets

Γ1(x) =


√

2L erf−1(1− 2ε)
sinh

(√
2
Dτ (x+L)

)
sinh

(√
2
Dτ L

) x < 0

−
√

2L erf−1(1− 2ε)
sinh

(√
2
Dτ (x−L)

)
sinh

(√
2
Dτ L

) x > 0

(56)
This leads to

Wmin;ML =

∫ L

−L
dx

(
Γ′1(x)2

4L
+

Γ1(x)2

2LDτ

)

=
kBTL (erf−1(1− 2ε))2

√
2Dτ

sinh
(

2L
√

2
Dτ

)
(

cosh
(√

2
DτL)

)2

− 1

) .

(57)
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