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ABSTRACT
The study of the residual lifetime received considerable attention in survival anal-
ysis and in other disciplines like reliability theory and actuarial science. The
quantile residual lifetime function, the inverse of the residual lifetime distribution
P (T1−t1 ≤ y | T1 > t1), provides an interesting and well-studied measure to analyse
residual lifetimes. In this paper we generalize the residual lifetime distribution and
the quantile residual lifetime function by adding an extra conditioning of the form
{T2 ≤ t2} or {T2 > t2}, where T2 is a second variable containing extra information
on T1. We propose, for right-censored lifetimes, nonparametric estimators for this
generalized conditional remaining lifetime distribution and the corresponding quan-
tile function and we derive the asymptotic theory. In a simulation study, we show
the good performance of the newly proposed quantile estimators and we discuss an
application to real data on primary biliary cirrhosis.

KEYWORDS
Asymptotic representation; bivariate distribution; conditional residual lifetime;
quantiles; right censoring

1. Introduction

Inference on the remaining or residual lifetime (T1) of patients is of ultimate inter-
est in many medical trials. Residual lifetimes are also important in other disciplines
including reliability theory (remaining lifetime of devices) and actuarial science (re-
maining lifetime of policyholders). In clinical trials event times are typically subject
to right censoring and, often, additional information (T2), such as a prognostic vari-
able or index, is available. Comparing the group of patients having {T2 > t2} with
the group of patients having {T2 ≤ t2} provides a fairly simple way to describe the
impact of T2 on T1. In this paper we broaden the concept of the conditional residual
lifetime distribution by adding an extra conditioning on either {T2 > t2} or {T2 ≤ t2}.
Although the role of T2, as covariate on which conditioning happens, is different from
the one of T1 (i.e., usually an event time of interest subject to censoring), hence, T2 is
not necessarily a time variable, we do use a similar notation for both variables to be in
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line with relevant literature regarding the estimation of conditional residual lifetime
distributions.

Functionals based on these new conditional residual lifetime distributions
P (T1 ≤ t1 + y | T1 > t1, T2 ≤ t2) and P (T1 ≤ t1 + y | T1 > t1, T2 > t2) can
be used to quantify the impact of T2 on T1, e.g., the mean of the conditional residual
lifetimes is a possible way to summarize remaining life expectancy data. However for
censored data it is more appealing (parallel to the Kaplan-Meier case) to consider the
median conditional residual lifetime. In fact we can consider other quantiles of the
conditional residual lifetime.

In some recent papers the study of the (non)parametric estimation of quan-
tiles of residual lifetimes conditioned on {T2 = t2}, i.e., quantiles corresponding to
P (T1 ≤ t1 + y | T1 > t1, T2 = t2) for right-censored lifetime data received
attention (often taking a regression perspective). See, e.g., [1] and [2]. But correspond-
ing results for quantiles of residual lifetimes categorized according to the conditioning
{T2 > t2}, resp. {T2 ≤ t2} are new.

In absence of additional information (T2) the quantiles corresponding to the con-
ditional distribution P (T1 ≤ t1 + y | T1 > t1) have been studied by many au-
thors and the advantages of quantiles when compared to the mean residual lifetime
E(T1 − t1 | T1 > t1) have been discussed, see, e.g., Schmittlein and Morrison [3] and
Joe and Proshan [4].

As main methodological contribution we establish the asymptotic normality results
for nonparametric estimators for quantiles of the conditional residual lifetime for ob-
served data of form Di = (Zi, δi, T2i) where Zi = T1i∧Ci with Ci the censoring variable
(which is allowed to depend on T2i) and δi the censoring indicator, i = 1, . . . , n (see
Section 7). Note that related work by Kayid et al. [5] does not allow that the lifetime
is subject to right censoring.

On the practical side we show - in a small simulation study - the good finite sam-
ple performance of the proposed nonparametric estimators of quantiles of the condi-
tional residual lifetime. In the simulation we use Clayton, Gumbel or Farlie-Gumbel-
Morgenstern copulas to model the association between T1 and T2 (Section 8). Compu-
tational aspects (simulation algorithm) are given in Appendix A of the Supplement.
We further demonstrate (Section 9) the use of the proposed quantile estimator for
data on primary biliary cirrhosis (PBC) (see Fleming and Harrington [6]). A second
application on advanced lung cancer data (a well-known data set derived from a study
of the North Central Cancer Treatment Group) (see Therneau and Grambsch [7]) is
discussed in the Supplementary Material. There we also show that the ratio of the
quantiles of the residual lifetimes conditioned on {T2 > t2} and {T2 ≤ t2} can be used
for risk comparison between groups. This ratio gives visual information on the associ-
ation between T1 and T2 and provides an alternative for risk assessment based on the
ratio of conditional hazard rate functions, i.e., based on λ(t1 | T2 > t2)/λ(t1 | T2 ≤ t2).
Nonparametric estimation of the hazard-based risk ratio has been studied in Abrams
et al. [8].

Appropriate definitions and some working tools, including asymptotic i.i.d.
representations for empirical versions of the conditional distribution functions
P (T1 ≤ t1 + y | T1 > t1, T2 ≤ t2) and P (T1 ≤ t1 + y | T1 > t1, T2 > t2),
needed to prove the asymptotic normality of the nonparametric quantile estimators in
Section 7 are collected in Sections 2–6. Some suggestions for future work are collected
in Section 10.
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2. Conditional residual lifetime

Let (T1, T2) be a random vector, T1 ≥ 0, T2 ≥ 0, with joint distribu-
tion F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2) and marginals F1(t1) = P (T1 ≤ t1),
F2(t2) = P (T2 ≤ t2).

We define the conditional distribution function of T1 given that T2 ≤ t2:

F (t1 | T2 ≤ t2) = P (T1 ≤ t1 | T2 ≤ t2) =
F (t1, t2)

F2(t2)

=: F̃t2(t1) (shorthand notation), (1)

and the conditional residual lifetime distribution function of T1 at t1, given that
T2 ≤ t2:

P (T1 − t1 ≤ y | T1 > t1, T2 ≤ t2) =
P (t1 < T1 ≤ t1 + y, T2 ≤ t2)

P (T1 > t1, T2 ≤ t2)

=
F (t1 + y, t2)− F (t1, t2)

F2(t2)− F (t1, t2)
=
F̃t2(t1 + y)− F̃t2(t1)

1− F̃t2(t1)
.

(2)

For 0 < p < 1, we define the p-th quantile of the conditional residual lifetime of T1,
given that T2 ≤ t2 as

Q̃(p | t1, t2) = inf

{
y :

F̃t2(t1 + y)− F̃t2(t1)

1− F̃t2(t1)
≥ p

}
= inf

{
y : F̃t2(t1 + y) ≥ F̃t2(t1) + p[1− F̃t2(t1)]

}
= −t1 + F̃−1

t2 [p+ (1− p)F̃t2(t1)], (3)

where F̃−1
t2 (p) = inf{y : F̃ (y) ≥ p} is the inverse of F̃t2 .

For conditioning on T2 > t2 we can consider the corresponding quantities:

F (t1 | T2 > t2) = P (T1 ≤ t1 | T2 > t2) =
F1(t1)− F (t1, t2)

1− F2(t2)

=: ˜̃F t2(t1) (shorthand notation), (4)

P (T1 − t1 ≤ y | T1 > t1, T2 > t2) =
˜̃F t2(t1 + y)− ˜̃F t2(t1)

1− ˜̃F t2(t1)
, (5)

˜̃Q(p | t1, t2) = −t1 + ˜̃F−1
t2 [p+ (1− p) ˜̃F t2(t1)]. (6)

Nonparametric estimation of Q̃(p | t1, t2) and ˜̃Q(p | t1, t2) will require nonparametric

estimators for the conditional distribution functions F̃t2 and ˜̃F t2 and their quantile
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functions F̃−1
t2 and ˜̃F−1

t2 , respectively. From (1) and (4) we see that we need estimators
for the bivariate distribution function F (t1, t2) and the marginals F1(t1) and F2(t2).

3. Setting the scene

The setting for this paper is the following. For the bivariate random vector (T1, T2),
the first component T1 is subject to random right censoring by a censoring variable
C. Let Z = T1 ∧ C and δ = I(T1 ≤ C). The second component T2 is always observed
(uncensored). The censoring variable C is allowed to depend on T2 and it is assumed
that, given T2, the variables T1 and C are independent.

The observed data are

Di = (Zi, δi, T2i), i = 1, . . . , n

where Zi = T1i ∧ Ci and the censoring indicator δi = I(T1i ≤ Ci). We construct

estimators based on a sample Di
iid∼ D = (Z, δ, T2) for i = 1, . . . , n.

We introduce some further notation, related to the observations:

H(z | t) = P (Z ≤ z | T2 = t),

Hu(z | t) = P (Z ≤ z, δ = 1 | T2 = t).

Because of conditional independence of T1 and C, we have

1−H(z | t) = [1− F (z | t)][1−G(z | t)],

where

F (z | t) = P (T1 ≤ z | T2 = t) and G(z | t) = P (C ≤ z | T2 = t).

We also have

Hu(z | t) =

z∫
0

[1−G(s− | t)]dF (s | t).

In estimation problems with right-censored observations, the support of the distribu-
tion of Z plays an important role. If there is no conditioning on T2 (e.g., on {T2 ≤ t2}),
then we know that it is only possible to estimate F1(t1) for t1 values below the upper
endpoint of support of the distribution of Z. Also known is that uniformity of the re-
mainder term in the asymptotic representation can only be achieved if t1 stays strictly
away from this upper endpoint of support. In the presence of T2, it will only be possi-
ble to estimate F (t1, t2) for (t1, t2)-values for which t1 is below the upper endpoint of
the support of the conditional distribution of Z, given T2 = t, for all t ≤ t2. Indeed,
as worked out in the next section, the estimator for F (t1, t2) will be obtained from
relation (7) by plugging in the empirical distribution function for the (uncensored) ob-
servations of F2(t) and the conditional Kaplan-Meier estimator for F (t1|t). Therefore,
we will have to stay strictly away from the right endpoint of support of F2 as well as
from the right endpoint of support of P (Z ≤ z|T2 = t), for all t ∈ [0, t2] (the range of
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the integral in (7)).
Hence, in order to define the domain for our estimators, we introduce the following
notation (as in Akritas [9] and Akritas and Van Keilegom [10]):

τ1(t) = any number < inf{z : H(z | t) = 1}, the upper endpoint of the
support of H(z | t) = P (Z ≤ z | T2 = t),

τ2 = any number, 0 ≤ τ2 < inf{t : F2(t) = 1}, the upper endpoint of the
support of F2(t) = P (T2 ≤ t).

Throughout, we will use the following domain:

Ω =

{
(t1, t2) : t2 ≤ τ2, t1 ≤ inf

t≤t2
τ1(t)

}
.

4. Estimation of the joint distribution

The estimator for F (t1, t2) is obtained from the relation

F (t1, t2) =

t2∫
0

F (t1 | t)dF2(t) (7)

by plugging in estimators Fn(t1 | t) for F (t1 | t) and F2n(t) for F2(t) where F2n(t)
represents the usual empirical distribution function as estimator for F2(t). This gives

Fn(t1, t2) =
1

n

n∑
i=1

Fn(t1 | T2i)I(T2i ≤ t2). (8)

Here we describe some properties of this estimator for F (t1, t2), which appear in papers
by Akritas [9] and Akritas and Van Keilegom [10].

An estimator for F (t1 | t) is given by the Beran estimator [11,12], which is a gener-
alization of the Kaplan-Meier estimator and therefore is sometimes referred to as the
conditional Kaplan-Meier estimator. For any (t1, t) ∈ Ω it is defined as

Fn(t1 | t) = 1−
n∏

i = 1
Zi ≤ t1
δi = 1

1− wni(t, hn)
n∑
j=1

wnj(t, hn)I(Zj ≥ Zi)



= 1−
n∏

Z(i) ≤ t1

1−
wn(i)(t, hn)

1−
i−1∑
j=1

wn(j)(t, hn)


δ(i)

where Z(1) ≤ Z(2) ≤ . . . ≤ Z(n) denote the ordered Zj-values, j = 1, . . . , n, and δ(j)

represents the censoring indicator for Z(j). The weights wni(t, hn) (and wn(i)(t, hn)

5
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corresponding to Z(j)) are Nadaraya-Watson weights with

wni(t, hn) = K

(
t− T2i

hn

)/ n∑
j=1

K

(
t− T2j

hn

)

where K is a known probability density function (kernel) and {hn} a sequence of
positive constants, tending to 0 as n → ∞ (bandwidth sequence). Note that in [9],
nearest neighbour weights were used instead of the aforementioned ones. Alternatively,
Gasser-Müller weights could be considered. Note that putting the weights wni(t, hn)
(and wn(i)(t, hn)) all equal to n−1 leads to the classical Kaplan-Meier estimator for
the cumulative distribution function.

As Lo and Singh [13] did for the ordinary Kaplan-Meier estimator, an almost sure
asymptotic representation has been proved for the Beran estimator in Van Keilegom
and Veraverbeke [12]. This result is used to propose the following approximation

Fn(t1 | T2i)− F (t1 | T2i) ∼=
n∑
j=1

wnj(T2i, hn)ξ(t1, Zj , δj , T2i)

where the function ξ(t1, Z, δ, t) is given by

ξ(t1, Z, δ, t)

= [1− F (t1 | t)]

{
−

Z∧t1∫
0

dHu(s | t)
[1−H(s | t)]2

+
I(Z ≤ t1, δ = 1)

1−H(Z | t)

}

= [1− F (t1 | t)]

{
t1∫
0

I(Z ≤ s)−H(s | t)
[1−H(s | t)]2

dHu(s | t)

+
I(Z ≤ t1, δi = 1)−Hu(t1 | t)

1−H(t1 | t)
−

t1∫
0

I(Z ≤ s, δ = 1)−Hu(s | t)
[1−H(s | t)]2

dH(s | t)

 .

The conditional expectation of ξ(t1, Z, δ, T2) given T2 = t is equal to 0 for all t1 and
the conditional covariance of ξ(t1, Z, δ, T2) and ξ(t′1, Z, δ, T2), given T2 = t is equal to

[1− F (t1 | t)][1− F (t′1 | t)]


t1∧t′1∫
0

dHu(s | t)
[1−H(s | t)]2

 ,

[see, e.g., 12–14].
We make the following decomposition of (8):

Fn(t1, t2)− F (t1, t2)

=
1

n

n∑
i=1

{F (t1 | T2i)I(T2i ≤ t2)− F (t1, t2)}

+
1

n

n∑
i=1

{Fn(t1 | T2i)− F (t1 | T2i)}I(T2i ≤ t2).

6
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We now formulate the assumptions as they appear in Akritas and Van Keilegom [10].

(A1)
log n

nhn
→ 0, nh4

n → 0;

K is a probability density function with support [−1, 1], K is twice differentiable,∫
uK(u)du = 0.

(A2) F2(t2) is three times continuously differentiable w.r.t. t2;
H(z | t2) and Hu(z | t2) are twice continuously differentiable w.r.t. z and t2 and
for (z, t2) ∈ Ω, all derivatives are uniformly bounded.

As in Lemma’s 3.2–3.4 of Akritas [9] it follows that, uniform in Ω,

1

n

n∑
i=1

 n∑
j=1

wnj(T2i, hn)ξ(t1, Zj , δj , T2)

 I(T2i ≤ t2)

=
1

n

n∑
i=1

ξ(t1, Zi, δi, T2i)I(T2i ≤ t2) + oP (n−1/2).

Theorem 4.1 (Akritas [9], Akritas and Van Keilegom [10]). Under assumptions (A1)
and (A2), we have for fixed t1 and t2

Fn(t1, t2) = F (t1, t2) +
1

n

n∑
i=1

ψ(t1, Zi, δi, T2i) + rn(t1, t2)

with

ψ(t1, Zi, δi, T2i) = [F (t1 | T2i)I(T2i ≤ t2)− F (t1, t2)] + ξ(t1, Zi, δi, T2i)I(T2i ≤ t2)

and

sup
(t1,t2)∈Ω

| rn(t1, t2) |= oP (n−1/2).

Also, as n→∞,

n1/2[Fn(t1, t2)− F (t1, t2)]
d→ N(0;σ2(t1, t2))

where

σ2(t1, t2) =

∫ t2

0
F 2(t1|t)dF2(t)− F 2(t1, t2)

+

∫ t2

0
[1− F (t1 | t)]2


t1∫

0

dHu(s | t)
[1−H(s | t)]2

 dF2(t).

Remark 1. The two terms in the expression for ψ are uncorrelated.

Remark 2. Beran estimators Fn(t1 | t) are known to have typical convergence rate
(nhn)−1/2, but due to the averaging over the covariates, it turns out that the resulting
estimator Fn(t1, t2) has the faster rate of convergence n−1/2.
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5. Estimation of the conditional distribution functions of T1 given T2 ≤ t2
or given T2 > t2

For the conditional distribution function F̃t2(t1) of T1, given that T2 ≤ t2, as in (3) we
propose the following estimator

F̃t2,n(t1) =
Fn(t1, t2)

F2n(t2)

with Fn(t1, t2) as in (8) and F2n(t2) the empirical distribution function of F2(t2).

Theorem 5.1. Under assumptions (A1) and (A2), we have for fixed t1 and t2

F̃t2,n(t1) = F̃t2(t1) +
1

n

n∑
i=1

ψ̃(t1, Zi, δi, T2i) + r̃n(t1, t2)

with

ψ̃(t1, Zi, δi, T2i) =
1

F2(t2)
[F (t1 | T2i)I(T2i ≤ t2)− F (t1, t2)]

−F (t1, t2)

F 2
2 (t2)

[I(T2i ≤ t2)− F2(t2)] +
1

F2(t2)
ξ(t1, Zi, δi, T2i)I(T2i ≤ t2)

and

sup
(t1,t2)∈Ω

| r̃n(t1, t2) |= oP (n−1/2).

The proof follows from Theorem 4.1 and Slutski’s theorem applied to the lineariza-
tion

F̃t2,n(t1)− F̃t2(t1) =
1

F2n(t2)
[Fn(t1, t2)− F (t1, t2)]

− F (t1, t2)

F2n(t2)F2(t2)
[F2n(t2)− F2(t2)].

A long but straightforward calculation gives the following expression for the covariance
function:

E[ψ̃(t1, Z, δ, T2)ψ̃(t′1, Z, δ, T2)]

=
1

F 2
2 (t2)

t2∫
0

F (t1 | t)F (t′1 | t)dF2(t)− F (t1, t2)F (t′1, t2)

F 3
2 (t2)

+
1

F 2
2 (t2)

t2∫
0

[1− F (t1 | t)][1− F (t′1 | t)]
t1∧t′1∫
0

dHu(s | t)
[1−H(s | t)]2

dF2(t).

(9)

For the conditional distribution function ˜̃F t2(t1) of T1, given T2 > t2, as in (4), we

8
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propose the following estimator

˜̃F t2,n(t1) =
Fn(t1,+∞)− Fn(t1, t2)

1− F2n(t2)
.

Note that

Fn(t1,+∞) =

∞∫
0

Fn(t1 | t)dF2n(t) =
1

n

n∑
i=1

Fn(t1 | T2i)

where Fn(t1 | t) is the Beran estimator for F (t1 | t).
Again, by linearization and Theorem 4.1, we obtain

Theorem 5.2. Under assumptions (A1) and (A2), we have for fixed t1 and t2

˜̃F t2,n(t1) = ˜̃F t2(t1) +
1

n

n∑
i=1

˜̃ψ(t1;Zi, δi, T2i) + ˜̃rn(t1, t2)

with

˜̃ψ(t1, Zi, δi, T2i) =
1

1− F2(t2)
[F (t1 | T2i)− F1(t1)] +

F1(t1)− F (t1, t2)

(1− F2(t2))2
[I(T2i ≤ t2)− F2(t2)]

− 1

1− F2(t2)
[F1(t1 | T2i)I(T2i ≤ t2)− F (t1, t2)]

+
1

1− F2(t2)
ξ(t1, Zi, δi, T2i)I(T2i > t2)

and

sup
(t1,t2)∈Ω

| ˜̃rn(t1, t2) |= oP (n−1/2).

Again, by direct calculation,

E[˜̃ψ(t1, Z, δ, T2)˜̃ψ(t′1, Z, δ, T2)]

=
1

[1− F2(t2)]2

∞∫
t2

F (t1 | t)F (t′1 | t)dF2(t)

− 1

[1− F2(t2)]3
[F1(t1)− F (t1, t2)][F1(t′1)− F (t′1, t2)]

+
1

[1− F2(t2)]2

∞∫
t2

[1− F (t1 | t)][1− F (t′1 | t)]
t1∧t′1∫
0

dHu(s | t)
[1−H(s | t)]2

dF2(t).

(10)
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6. Asymptotic representation for the quantile functions of F̃ and ˜̃F
In this section we deal with the quantile functions F̃−1

t2 (p) and ˜̃F−1
t2 (p) of the conditional

distribution functions F̃t2(t1) and ˜̃F t2(t1) of T1, given T2 ≤ t2 and T2 > t2 respectively.
Asymptotic representations of quantile functions as sums of i.i.d. random variables

can be obtained via so called Bahadur type theorems. We use here the version of
Ghosh [15], which aims at a remainder term of order oP (n−1/2). Proofs are not given
since they parallel that of a similar result in Gijbels and Veraverbeke [16, Theorem
2.1] for Kaplan-Meier quantiles.

For further use, we allow the order of the quantile to be random.

Theorem 6.1. Assume (A1), (A2) and also

(Ã3) 0 < p < 1 and F̃−1
t2 (p) < inf

t≤t2
τ1(t).

(Ã4) F (1)(t1, t2) =
∂

∂t1
F (t1, t2) exists at

(
F̃−1
t2 (p), t2

)
and F (1)

[
F̃−1
t2 (p), t2

]
> 0;

F (t1 | t2) is Lipschitz continuous in t1 for t1 in a neighborhood of F̃−1
t2 (p).

If {pn} is a sequence of random variables with pn − p = OP (n−1/2), then, as n→∞,

F̃−1
t2,n(pn) = F̃−1

t2 (p) +
pn − F̃t2,n

[
F̃−1
t2 (p)

]
f̃t2

[
F̃−1
t2 (p)

] + oP (n−1/2)

where

f̃t2(t1) =
∂

∂t1
F̃t2(t1) =

F (1)(t1, t2)

F2(t2)
.

Theorem 6.2. Assume (A1), (A2) and also

(˜̃A3) 0 < p < 1 and ˜̃F−1
t2 (p) < inf

t≤t2
τ1(t).

(˜̃A4) F (1)(t1, t2) =
∂

∂t1
F (t1, t2) exists at

(˜̃F−1
t2 (p), t2

)
and F (1)

[˜̃F−1
t2 (p), t2

]
> 0;

f1(t1) = F ′1(t1) exists at ˜̃F−1
t2 (p);

F (t1 | t2) is Lipschitz continuous in t1 for t1 in a neighborhood of ˜̃F−1
t2 (p).

If {pn} is a sequence of random variables with pn − p = OP (n−1/2), then, as n→∞,

˜̃F−1
t2,n(p) = ˜̃F−1

t2 (p) +
pn − ˜̃F t2,n [˜̃F−1

t2 (p)
]

˜̃f t2 [˜̃F−1
t2 (p)

] + oP (n−1/2)

where

˜̃f t2(t1) =
∂

∂t1

˜̃F t2(t1) =
f1(t1)− F (1)(t1, t2)

1− F2(t2)
.
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7. Asymptotic normality for the quantiles of the conditional residual
lifetime

Natural plug-in estimators for Q̃(p | t1, t2) in (3) and ˜̃Q(p | t1, t2) in (6) are

Q̃n(p | t1, t2) = −t1 + F̃−1
t2,n[p+ (1− p)F̃t2,n(t1)]

and

˜̃Qn(p | t1, t2, ) = −t1 + ˜̃F−1
t2,n[p+ (1− p) ˜̃F t2,n(t1)]

where F̃t2,n and ˜̃F t2,n are the estimators discussed in Section 5.

Denote q̃ = p+(1−p)F̃t2(t1) and ˜̃q = p+(1−p) ˜̃F t2(t1) and let q̃n = p+(1−p)F̃t2,n(t1)

and ˜̃qn = p+ (1− p) ˜̃F t2,n(t1) be the empirical counterparts.
We have the following asymptotic normality results, where

V (p, v, t1, t) = (1− p)2[1− F (t1 | t)]2
t1∫
0

dHu(s | t)
[1−H(s | t)]2

+[1− F (v | t)]2
v∫
0

dHu(s | t)
[1−H(s | t)]2

−2(1− p)[1− F (t1 | t)(1− F (v | t)]
t1∧v∫
0

dHu(s | t)
[1−H(s | t)]2

.

Theorem 7.1. Assume (A1), (A2) and also (Ã3), (Ã4) with p replaced by q̃.
Then, as n→∞,

n1/2[Q̃n(p | t1, t2)− Q̃(p | t1, t2)]
d→ N(0; σ̃2

p(t1, t2))

where

σ̃2
p(t1, t2) =

1

f̃2
t2 [F̃

−1
t2 (q)]

 1

F 2
2 (t2)

t2∫
0

V (p, F̃−1
t2 (q̃), t1, t)dF2(t)

+
1

F 2
2 (t2)

t2∫
0

[(1− p)F (t1 | t)− F (F̃ −1
t2 (q̃) | t)]2dF2(t)

− 1

F 3
2 (t2)

[(1− p)F (t1, t2)− F (F̃−1
t2 (q̃), t2)]2

}
.

Proof. By using Theorem 5.1 and Theorem 6.1:

Q̃n(p | t1, t2)− Q̃(p | t1, t2) =
1

f̃t2 [F̃
−1
t2 (q̃)]

{
q̃n − F̃t2,n[F̃−1

t2 (q̃)]
}

+ oP (n−1/2)

=
1

f̃t2 [F̃
−1
t2 (q̃)]

(
q̃n − q̃ −

{
F̃t2,n[F̃−1

t2 (q̃)]− F̃t2 [F̃−1
t2 (q̃)]

})
+ oP (n−1/2)

=
1

f̃t2 [F̃
−1
t2 (q̃)]

1

n

n∑
i=1

{
(1− p)ψ̃(t1, Zi, δi, T2i)− ψ̃[F̃−1

t2 (q̃), Zi, δi, T2i]
}

+ oP (n−1/2).
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Asymptotic normality follows from this representation. The formula for the asymptotic
variance σ̃2

p(t1, t2) is obtained by direct calculation and using the covariance expression
(9) after Theorem 5.1:

σ̃2
p(t1, t2) =

1

f̃2
t2 [F̃

−1
t2 (q̃)]

E

{[
(1− p)ψ̃(t1, Z, δ, T2)− ψ̃(F̃−1

t2 (q̃), Z, δ, T2)
]2
}
.

Remark 3. In case of no censoring, this asymptotic variance simplifies to

σ̃2
p(t1, t2) =

1

f̃2
t2 [F̃

−1
t2 (q̃)]

×{
1

F 2
2 (t2)

[(1− p)2F1(t1)− F1[F̃−1
t2 (q̃)]− 2(1− p)F1(t1)]

− 1

F 3
2 (t2)

[(1− p)F (t1, t2)− F (F̃−1
t2 (q̃), t2)]2

}
.

Remark 4. A further special case is the absence of T2. If we let t2 → ∞, then
F2(t2)→ 1, F (t1, t2)→ F1(t1) and F̃t2 = F1. The asymptotic variance becomes

p(1− p)[1− F1(t1)]

f2
1 {F

−1
1 [p+ (1− p)F1(t)]}

(11)

which is a known result for the p-th quantiles of the residual lifetime in that case [16].

Theorem 7.2 gives the parallel asymptotic normality result for ˜̃Qn(p | t1, t2). The
proof is similar to Theorem 7.1 but now using Theorems 5.2 and 6.2 and the covariance
expression (10) after Theorem 5.2.

Theorem 7.2.

Assume (A1), (A2) and also (˜̃A3), (˜̃A4) with p replaced by ˜̃q.
Then, as n→∞,

n1/2[ ˜̃Qn(p | t1, t2)− ˜̃Q(p | t1, t2)]
d→ N(0; ˜̃σ2

p(t1, t2))

where

˜̃σ2
p(t1, t2) =

1˜̃f2
t2 [
˜̃F−1
t2 (˜̃q)]

 1

[1− F2(t2)]2

∞∫
t2

V (p, ˜̃F−1
t2 (˜̃q), t1, t)dF2(t)

+
1

[1− F2(t2)]2

∞∫
t2

[(1− p)F (t1 | t)− F ( ˜̃F−1
t2 (˜̃q) | t)]2dF2(t)

− 1

[1− F2(t2)]3

[
(1− p)[F1(t1)− F (t1, t2)]−

{
F1( ˜̃F−1

t2 [˜̃q)]− F [ ˜̃F−1
t2 (˜̃q), t2]

}] }
.

Remark 5. We can again simplify in case of no censoring. And if we put t2 = 0,
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F2(t2) = 0, F (t1, t2) = 0, ˜̃F t2 = F1, we again obtain expression (11) as in Gijbels and
Veraverbeke [16].

8. Simulation study

To evaluate the finite sample behaviour of the proposed quantile estimators, we set up
a simulation study.

8.1. Simulation set-up

For Tj , j = 1, 2, we use a Weibull distribution with sj = 1.5 as shape parameter and

dj = 0.5 as decay parameter (i.e., the scale parameter is d
−1/sj
j ), i.e.,

Fj(tj) = 1− exp
(
−djtsjj

)
, j = 1, 2. (12)

For the censoring random variable C we use a Weibull distribution with shape parame-
ter sC = 1.5, for the decay parameter we consider two cases: dC = 0.15 and dC = 0.85.
Since P (C < T1) = dC/(dC + d1), we have approximately 23% (moderate) censoring
for dC = 0.15 and approximately 63% (heavy) censoring for dC = 0.85.
In order to arrive at bivariate Weibull distributions, we use

1. the Clayton copula, θ ≥ 0,

CC(u, v) = (u−θ + v−θ − 1)−1/θ;

2. the Gumbel copula, θ ≥ 1,

CG(u, v) = exp

(
−
{

[− log(u)]θ + [− log(v)]θ
}1/θ

)
;

3. the Farlie-Gumbel-Morgenstern (FGM) copula, 0 ≤ θ ≤ 1,

CFGM (u, v) = uv [1 + θ(1− u)(1− v)] .

Let F (t1, t2) = C [F1(t1), F2(t2)], with C ∈ Cθ (i.e., a one-parameter copula family).

To obtain Q̃(p | t1, t2) we need to solve the following equation with respect to y

C(u(y), v) = pv + (1− p)C(u, v), (13)

where u(y) = F1(t1+y), u = u(0) = F1(t1), v = F2(t2). We use, as shorthand notation,

B(p | t1, t2, θ) = pv + (1− p)C(u, v).

For the Clayton, resp. the Gumbel, copula we have an explicit expression for
Q̃(p | t1, t2). We can, indeed, show that for the Clayton copula (for arbitrary
marginals F1 and F2)

Q̃(p | t1, t2) = −t1 + F−1
1

[
A−1/θ(p | t1, t2, θ)

]
(14)
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with

A(p | t1, t2, θ) = 1− F−θ2 (t2) + [B(p | t1, t2, θ)]−θ

= 1− F−θ2 (t2) +
[
pF2(t2) + (1− p)(F−θ1 (t1) + F−θ2 (t2)− 1)−1/θ

]−θ
.

For the Gumbel copula, we have

Q̃(p | t1, t2) = −t1 + F−1
1

{
exp

[
−
(
{− log [B(p | t1, t2, θ)]}θ − {− log [F2(t2)]}θ

)1/θ
]}

,

B(p | t1, t2, θ) = pF2(t2) + (1− p) exp

[
−
(
{− log[F1(t1)]}θ + {− log[F2(t2)]}θ

)1/θ
]
.

(15)

For the FGM copula it can be shown that, for arbitrary marginals F1 and F2,

Q̃(p | t1, t2) = −t1 + F−1
1 (Y0), (16)

with Y0 the smallest root of the quadratic equation

θS2(t2)Y 2 − [1 + θS2(t2)]Y + {p+ (1− p)F1(t1) [1 + θS1(t1)S2(t2)]} = 0.

By definition, the discriminant of the quadratic equation is larger than zero and the
smallest root lies within the interval [0, 1].

In the three simulation settings we apply this with F1 and F2 the cumulative dis-
tribution functions for the Weibull distributions in (12). Details on (14) – (16) are
provided in Appendix B of the Supplement.

In general, we generate data (zi, δi, t2i), given the aforementioned copula functions,
and for different values of θ corresponding to Kendall’s τ equal to 0.1, 0.2 and 0.5 (see
Table 1). More specifically, M = 500 datasets with sample size n = 250 are generated
under each scenario. Simulation results based on M = 100 datasets of sample size
n = 500 are presented in Appendix C of the Supplement.

Table 1. Choices for θ in the simulation study

and corresponding Kendall’s τ values expressing
the bivariate association in the data.

Copula function Kendall’s τ Value θ

0.10 0.22

Clayton
θ

θ + 2
0.20 0.50

0.50 2.00

0.10 1.11

Gumbel
θ − 1

θ
0.20 1.25

0.50 2.00

FGMa 4θ

18
0.10 0.45

0.20 0.90

aGiven that 0 ≤ θ ≤ 1, we have τ ∈ [0, 2/9] (i.e.,
only weak dependence can be captured)
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8.2. Simulation results

In Figure 1 we graphically depict the estimated quantile function Q̃n(p | t1, t2),
based on the algorithm presented in Appendix A of the Supplement, as a function
of p for t1 and t2 equal to the median of the marginal Weibull distributions, i.e.,

ti = d
−1/si
i [ln(2)]1/si ≈ 1.243 for i = 1, 2. More specifically, simulation results are

based on the Clayton copula used to generate 500 simulation sets with sample size
equal to 250 observations and θ = 0.22 (upper panels), θ = 0.50 (middle panels) and
θ = 2.00 (lower panels). In the left panels we show the results under moderate censor-
ing whereas results under heavy censoring are presented in the right panels. Similar
to the estimation of the Kaplan-Meier estimator in a univariate setting, Q̃(p | t1, t2)
can only be estimated for p-values for which

A−1/θ(p | t1, t2, θ) ≤ F1[z(j)],

with z(j) the largest uncensored observation (i.e., δ(j) = 1). Consequently, this upper
bound is determined by the amount of censoring and similar inequalities can be ob-
tained for other copula functions (see Appendix C of the Supplement for more details).
Given the fact that the bound depends on the simulation run, we show the performance
of the estimator for the minimum of these boundary values over the various simulation
runs. The lower bound decreases with decreasing sample size and increasing censoring
percentage. In each of the simulation runs a local cross-validation bandwidth selector
as described in Geerdens et al. [17] is used to determine the step sizes of the Beran
estimator.

In general, the averaged estimated quantiles Q̃n(p | t1, t2) (green dashed lines) are
close to the true quantiles (black solid line) for the entire range of possible p-values
determined by the inequalities mentioned above. The simulation-based variability in-
creases with increasing censoring percentage. Similar graphs for the Gumbel and FGM
copula settings are presented in Appendix C of the Supplement.

9. Data application

We consider data on primary biliary cirrhosis (PBC) of the liver, a rare but fatal
chronic liver condition of unknown cause that has been recognised since at least 1851
and that was renamed primary biliary cholangitis in 2014 [18] given the fact that liver
cirrhosis is only a possible feature which arises when the disease is in an advanced
stage. This autoimmune disease leads to the destruction of the small bile ducts in the
liver and progression is slow, eventually leading to cirrhosis and liver decompensation.

Between January 1974 and May 1984, the Mayo Clinic conducted a double-blinded
randomized clinical trial in PBC patients, comparing the survival time in patients
treated with the drug D-penicillamine (DPCA) and of those in a placebo group. In
total, 424 PBC patients met the eligibility criteria of the trial and 312 out of the 424
eligible patients agreed to participate in the trial. Next to the date of randomization,
a large number of biochemical, serological and histological parameters were recorded
for the clinical trial patients. For the additional 112 patients that did not participate
in the trial, basic measurements were recorded and these patients agreed to follow-up
for survival. Six of the later ones were lost to follow-up shortly after diagnosis, hence,
were excluded from the data. The data analysis presented here included data on 418
study participants. The number of days between the start of the study and the earlier
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Figure 1. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based on

500 simulation sets of sample size 250 under the Clayton copula setting with θ = 0.22 (upper panels), θ = 0.50
(middle panels) and θ = 2.00 (lower panels). Left panels show the results under moderate censoring and right

panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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of death or transplantation is represented by T1. Next to the survival time the serum
bilirubin (expressed in mg/dl) for each of the patients is recorded.

In Figure 2, we show the survival times for PBC patients in the different treatment
groups (DPCA, placebo, unrandomized patient) in relation to the serum bilirubin
level, with the type of dot indicating whether the observation is right-censored or not
(i.e., combining all-cause death or liver transplantation). As previously investigated by
Fleming and Harrington [6], despite the immunosuppresive properties of DPCA, the
survival time distributions of the DPCA group and the placebo group are similar. Also
the survival time distribution of the unrandomized group is comparable to these of
the DPCA and placebo groups. Hence, in this exercise, we will combine data from all
patients to investigate the relationship between survival time T1 and serum bilirubin
levels prior to study entry. More specifically, we estimated the median residual lifetime
for patients with a serum bilirubin level smaller than 3.4 (the 75% percentile of all
serum bilirubin values) as compared to patients with levels exceeding this threshold.
Needless to say, a stratified analysis could be conducted to study the median residual
lifetimes in DPCA and placebo (+ unrandomized patients) separately (not shown
here).
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Figure 2. Observed survival time T1 in relation with the serum bilirubin level (in mg/dl) for PBC patients
in the DPCA (black dots), placebo (red dots) or unrandomized patients (blue dots). Open and closed dots

represent censored and uncensored observations, respectively.

In Figure 3 the median residual lifetime is graphically depicted for patients with
a serum bilirubin level less or equal than 3.4 mg/dl (left panel) and for patients
with a level exceeding 3.4 mg/dl (right panel). More specifically, the black solid lines
present the estimated median residual lifetimes based on the PBC data. Pointwise
bootstrap-based 95% confidence bounds are shown as a pink shaded area and the
average bootstrap-based quantile functions are displayed using red solid lines. In gen-
eral, the median residual lifetime is substantially lower for patients with a high serum
bilirubin level (T2 > 3.4) as compared to patients with a low (T2 ≤ 3.4) level. This
confirms earlier findings regarding the prognostic performance of the serum bilirubin
level [6].

The estimated ratio of the median residual lifetimes for these two patient groups is
shown in Figure 4 (see Appendix D of the Supplement for more details). Given the
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Figure 3. Estimated median residual lifetime (black solid lines) for patients with a serum bilirubin level less

or equal than 3.4 mg/dl (left panel) and for patients with a serum bilirubin level exceeding 3.4 mg/dl (right
panel). Pointwise bootstrap-based 95% confidence bounds are shown as a pink shaded area and the average

bootstrap-based median residual lifetime are represented by red solid lines.

fact that the ratio is well below one, we can conclude that patients with a high serum
bilirubin levels have a median residual lifetime which is much lower than the median
residual lifetime for patients with smaller bilirubin levels.

10. Discussion

In this manuscript, we present, for right-censored time-to-event data, novel nonpara-
metric estimators for the quantiles of the conditional residual lifetime distribution

Q̃(p | t1, t2) and ˜̃Q(p | t1, t2) based on plug-in estimators for the conditional cumulative

distribution functions F̃t2(t1) = P (T1 ≤ t1 | T2 ≤ t2), ˜̃F t2(t1) = P (T1 ≤ t1 | T2 > t2)
and their corresponding quantiles.

A key ingredient in the estimators of the quantiles of the conditional residual
lifetimes is the Beran estimator [11]. The fact that the Beran estimator relies on
kernel-based Nadaraya-Watson weights implies the selection of optimal local or global
bandwidths. In the implementation considered in the simulation study, we use the
Epanechnikov kernel and local bandwidths are selected using cross-validation based
on the approach proposed by Geerdens et al. [17].

The finite sample performance of our estimators is demonstrated in a simulation
study. Although attention is mainly confined to the estimator for Q̃(p | t1, t2), similar

results can be produced for the estimator ˜̃Qn(p | t1, t2).
Note that, in the simulation procedure, we use the smallest observed Z(l2)-value for

which

F̃−1
t2,n[p+ (1− p)F̃t2,n(t1)] ≤ Z(l2)

to estimate the p-th quantile of the conditional residual lifetime for survival time
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Figure 4. Ratio of estimated median residual lifetimes (black solid lines) for patients with a serum bilirubin

level less or equal than 3.4 mg/dl and for patients with a serum bilirubin level exceeding 3.4 mg/dl. Pointwise

bootstrap-based 95% confidence bounds are shown as a pink shaded area and the average bootstrap-based ratio
of median residual lifetimes is represented by a red solid line.

t1, i.e., −t1 + Z(l2). This implies an overestimation of the quantile function, which
asymptotically vanishes for n → ∞. Alternatively, one could define the estimated
quantile as a function of the largest ordered Z(l1) for which δ(l1) = 1 and

Z(l1) < F̃−1
t2,n[p+ (1− p)F̃t2,n(t1)],

i.e., −t1 + Z(l1). This provides an upper and lower bound estimator for the quantile
function. Simulations provide very similar results with decreasing differences between
these estimators asymptotically (not shown).

Our theoretical results provide an asymptotic variance expression σ̃2
p(t1, t2) for Q̃(p |

t1, t2) which, in theory, can be estimated based on plug-in estimators for F1(t1), F2(t2),

F (t1, t2), F̃t2(t1) and f̃t2(t1). Instead of estimating all the unknown quantities in the
asymptotic variance, we use pointwise bootstrap-based confidence bounds in the data
application. In the PBC data application, we illustrate the use of our novel estimators
to estimate the median residual lifetime for patients with a high versus low bilirubin
level. An additional data application based on lung cancer data is provided in the
Supplementary Material.

Finally, the quantile functions of the conditional residual lifetime distributions, and
their estimators, can be used to define a relative local association measure, similar to
earlier association measures defined in terms of conditional hazards (see Appendix D
of the Supplement). The advantage of such a local association measure over existing
hazard-based methods is the direct interpretability in terms of the relative difference in,
for example, median residual lifetime between two patients groups. Such interpretation
is quintessential from a clinical perspective, for example, in the context of prognostic
research.
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Appendix A. Simulation algorithm

Given a specific simulation setting (including a copula function, parameter value θ and
sample size n), we have information (Zj , δj , T2j), j = 1, . . . , n with Zj = min(T1j , Cj),
δj the censoring indicator corresponding to event time T1j and censoring time Cj , and
T2j the second random variable on which we will condition.

(i) Fix t1 and t2
(ii) Let Z(1) ≤ Z(2) ≤ . . . ≤ Z(n) denote the ordered Zj , j = 1, . . . , n as defined

previously; let δ(j) denote the censoring indicator attached to Z(j)

(iii) For a fixed i (i = 1, . . . , n) obtain the Beran estimator Fn(t1|t2i) for the condi-
tional distribution function F (t1|t2i), i.e.,

Fn(t1|t2i) =

n∑
j=1

Wnj(t2i)I(Z(j) ≤ t1),

where, see, e.g., Van Keilegom and Veraverbeke [3],

Wnj(t2i) = δ(j)

wn(j)(t2i, hn)

1−
∑j−1

k=1wn(k)(t2i, hn)

j−1∏
l=1

(
1−

wn(l)(t2i, hn)

1−
∑l−1

k=1wn(k)(t2i, hn)

)δ(l)
(j < n),

Wnn(t2i) =

n−1∏
l=1

(
1−

wn(l)(t2i, hn)

1−
∑l−1

k=1wn(k)(t2i, hn)

)δ(l)
,

and where wn(j)(t2i, hn) are the previously defined weights wnj(t2i, hn) corre-
sponding to the ordering of the Z(j) as defined in (ii) above. Note that the Beran
estimator only jumps at Z(j) values with δ(j) = 1 and that in case of no right
censoring, Wnj(t2i) = wn(j)(t2i,hn) such that Fn(t1|t2i) simplifies to the kernel
estimator of Stone [4] for the conditional distribution function F (t1 | t2).

(iv) As a result, we obtain an (n× n)-matrix W = {Wnj(t2i)}j=1,...,n;i=1,...,n.

(v) Define, for j = 1, . . . , n,

W̃nj(t2) =

∑n
i=1Wnj(T2i)I(T2i ≤ t2)∑n

i=1 I(T2i ≤ t2)
.

We then have

F̃t2,n(t1) =

n∑
j=1

W̃nj(t2)I(Z(j) ≤ t1).

Similar quantities can be obtained for ˜̃Wnj(t2) and ˜̃F t2,n(t1). See Appendix B.2.
for more details on these formulas and the derivation of the expression for

F̃t2,n(t1) and ˜̃F t2,n(t1).
(vi) Define, for j = 1, . . . , n,

Snj(t2) =

j∑
l=1

W̃nl(t2).
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Obtain the largest l1 and the smallest l2 > l1 ∈ {1, . . . , n}, such that

Snl1(t2) < p+ (1− p)F̃t2,n(t1) ≤ Snl2(t2).

Then

Z(l1) < F̃−1
t2,n[p+ (1− p)F̃t2,n(t1)] ≤ Z(l2),

where Z(1), Z(2), . . . , Z(n) are the ordered Zj ’s (see (ii)). In the simulations, we
define

F̃−1
t2,n[p+ (1− p)F̃t2,n(t1)] := Z(l2),

(vii) Finally, obtain

y = −t1 + Z(l2).
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Appendix B. Additional derivations

B.1. Formulas for Q̃(p | t1, t2, θ)

Let F (t1, t2) = C [F1(t1), F2(t2)], with C ∈ Cθ (i.e., a one-parameter copula family).

To obtain Q̃(p | t1, t2) we need to solve the following equation with respect to y

C(u(y), v) = pv + (1− p)C(u, v), (B1)

where u(y) = F1(t1+y), u = u(0) = F1(t1), v = F2(t2). We use, as shorthand notation,

B(p | t1, t2, θ) = pv + (1− p)C(u, v).

B.1.1. Clayton copula

For the Clayton copula, we have

CC(u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

Consequently,

[CC(u, v)]−θ = u−θ + v−θ − 1.

Equation (B1) renders

u(y)−θ + v−θ − 1 = [B(p | t1, t2, θ)]−θ

⇔ u(y)−θ = [B(p | t1, t2, θ)]−θ − v−θ + 1

⇔ F1(t1 + y) =
{

[B(p | t1, t2, θ)]−θ − v−θ + 1
}−1/θ

⇔ y = −t1 + F−1
1

({
[B(p | t1, t2, θ)]−θ − v−θ + 1

}−1/θ
)

⇔ y ≡ −t1 + F−1
1

[
A−1/θ(p | t1, t2, θ)

]
.

B.1.2. Gumbel copula

For the Gumbel copula, we have

CG(u, v) = exp

(
−
{

[− log(u)]θ + [− log(v)]θ
}1/θ

)
.

Hence,

{− log [CG(u, v)]}θ = [− log(u)]θ + [− log(v)]θ .

4
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Therefore, equation (B1) can be rewritten as

{− log[u(y)]}θ + [− log(v)]θ = {− log [B(p | t1, t2, θ)]}θ

⇔ log[u(y)] = −
(
{− log [B(p | t1, t2, θ)]}θ − [− log(v)]θ

)1/θ

⇔ F1(t1 + y) = exp

[
−
(
{− log [B(p | t1, t2, θ)]}θ − [− log(v)]θ

)1/θ
]

⇔ y = −t1 + F−1
1

{
exp

[
−
(
{− log [B(p | t1, t2, θ)]}θ − [− log(v)]θ

)1/θ
]}

.

B.1.3. Farlie-Gumbel-Morgenstern copula

In contrast to Archimedean copulas, an analytical solution for equation (B1) is not
guaranteed for non-Archimedean copulas like the Farlie-Gumbel-Morgenstern copula.

B.2. Formulas for F̃t2,n(t1) and ˜̃F t2,n(t1)

F̃t2,n(t1) =
Fn(t1, t2)

F2n(t2)
=

∑n
i=1 Fn(t1|T2i)I(T2i ≤ t2)∑n

i=1 I(T2i ≤ t2)

=
1∑n

i=1 I(T2i ≤ t2)

n∑
i=1


n∑
j=1

Wnj(T2i)I(Z(j) ≤ t1)

 I(T2i ≤ t2)

=

n∑
j=1

{∑n
i=1Wnj(T2i)I(T2i ≤ t2)∑n

i=1 I(T2i ≤ t2)

}
I(Z(j) ≤ t1)

=:

n∑
j=1

W̃nj(t2)I(Z(j) ≤ t1).

˜̃F t2,n(t1) =

∑n
i=1 Fn(t1|T2i)I(T2i > t2)∑n

i=1 I(T2i > t2)

=
1∑n

i=1 I(T2i > t2)

n∑
i=1


n∑
j=1

Wnj(T2i)I(Z(j) ≤ t1)

 I(T2i > t2)

=

n∑
j=1

{∑n
i=1Wnj(T2i)I(T2i > t2)∑n

i=1 I(T2i > t2)

}
I(Z(j) ≤ t1)

=:

n∑
j=1

˜̃Wnj(t2)I(Z(j) ≤ t1).
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Appendix C. Additional simulation results

C.1. Clayton copula

In Figure C1 we show the estimated quantile function Q̃n(p | t1, t2) as a function
of p for t1 and t2 equal to the median of the marginal Weibull distributions, i.e.,

ti = d
−1/si
i [ln(2)]1/si ≈ 1.243 for i = 1, 2. Simulation results are based on the Clayton

copula used to generate 100 simulation sets with sample size equal to 500 observations
and θ = 0.22 (upper panels), θ = 0.50 (middle panels) and θ = 2.00 (lower panels). In
the left panels we show the results under moderate censoring whereas results under
heavy censoring are presented in the right panels. Clearly, the increase in sample size
reduces the simulation-based uncertainty.
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Figure C1. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based on

100 simulation sets of sample size 500 under the Clayton copula setting with θ = 0.22 (upper panels), θ = 0.50
(middle panels) and θ = 2.00 (lower panels). Left panels show the results under moderate censoring and right

panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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C.2. Gumbel copula

In Figure C2 we show the estimated quantile function Q̃n(p | t1, t2) as a function of
p for t1 and t2 equal to the median of the marginal Weibull distributions. Simulation
results are based on the Gumbel copula used to generate 500 simulation sets with
sample size equal to 250 observations and θ = 1.11 (upper panels), θ = 1.25 (middle
panels) and θ = 2.00 (lower panels). In the left panels we show the results under
moderate censoring whereas results under heavy censoring are presented in the right
panels. The same simulation scenarios are explored for an increased sample size of 500
observations per simulation run (see Figure C3).
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Figure C2. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based on

500 simulation sets of sample size 250 under the Gumbel copula setting with θ = 1.11 (upper panels), θ = 1.25
(middle panels) and θ = 2.00 (lower panels). Left panels show the results under moderate censoring and right

panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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Figure C3. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based on

100 simulation sets of sample size 500 under the Gumbel copula setting with θ = 1.11 (upper panels), θ = 1.25
(middle panels) and θ = 2.00 (lower panels). Left panels show the results under moderate censoring and right

panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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C.3. Farlie-Gumbel-Morgenstern copula

In Figure C4 we show the estimated quantile function Q̃n(p | t1, t2) as a function of
p for t1 and t2 equal to the median of the marginal Weibull distributions. Simulation
results are based on the FGM copula used to generate 500 simulation sets with sample
size equal to 250 observations and θ = 0.45 (upper panels) and θ = 0.90 (lower panels).
In the left panels we show the results under moderate censoring whereas results under
heavy censoring are presented in the right panels. The same simulation scenarios are
explored for an increased sample size of 500 observations per simulation run (see
Figure C5).
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Figure C4. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based

on 500 simulation sets of sample size 250 under the Farlie-Gumbel-Morgenstern copula setting with θ = 0.45

(upper panels) and θ = 0.90 (lower panels). Left panels show the results under moderate censoring and right
panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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Figure C5. True quantile function Q̃(p | t1, t2) (black solid line) and averaged estimated quantile function

Q̃n(p | t1, t2) as a function of p (green dashed lines) for ti = d
−1/si
i [ln(2)]1/si ≈ 1.243, i = 1, 2 and based

on 100 simulation sets of sample size 500 under the Farlie-Gumbel-Morgenstern copula setting with θ = 0.45
(upper panels) and θ = 0.90 (lower panels). Left panels show the results under moderate censoring and right

panels under heavy censoring. Pointwise 95% confidence limits are shown as green shaded area.
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Appendix D. Advanced lung cancer data application

As a second illustrative example, we consider the North Central Cancer Treatment
Group (NCCTG) dataset, available in the R package survival, describing the survival
of patients with advanced lung cancer [2]. More specifically, information is available
for 228 patients suffering from lung cancer with T1 the survival time between onset of
lung cancer and death (nd = 165) or censoring (nc = 63). Next to performance scores
representing how well the patient can perform usual daily activities, weight loss in the
last six months before entering the study, denoted by T2, was available.

In Figure D1 the median residual lifetime is graphically depicted for patients with
a Karnofsky performance score, measured at a 0-100 scale and rated by the physi-
cian, less or equal than the median score of 80 points (left panel) and for patients
with a score exceeding this median value (right panel). More specifically, the black
solid lines present the estimated median residual lifetimes based on the data. Point-
wise bootstrap-based 95% confidence bounds are shown as a pink shaded area and
the average bootstrap-based quantile functions are displayed using red solid lines. In
general, the median residual lifetime increases substantially for patients with a high
score (T2 > 80) as compared to patients with a low (T2 ≤ 80) performance score.
Hence, the figure provides graphical evidence that the Karnofsky score might be a
useful predictor for the (residual) lifetime distribution. This confirms earlier findings
regarding the prognostic performance of the score [2].
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Figure D1. Estimated median residual lifetime (black solid lines) for patients with a Karnofsky performance

score less or equal than the median score of 80 points (left panel) and for patients with a score exceeding the

median score of 80 points (right panel). Pointwise bootstrap-based 95% confidence bounds are shown as a pink
shaded area and the average bootstrap-based median residual lifetime are represented by red solid lines.

In Abrams et al. [1], a risk measure was studied based on the ratio of two conditional
hazard rate functions. An alternative for this association measure can now be proposed
as follows:

R(t1, t2) =
˜̃Q(p | t1, t2)

Q̃(p | t1, t2)
.
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Figure D2. Ratio of estimated median residual lifetimes (black solid lines) for patients with a Karnofsky

performance score exceeding the median score of 80 points and for patients with a score smaller or equal to

this median value. Pointwise bootstrap-based 95% confidence bounds are shown as a pink shaded area and the
average bootstrap-based ratio of median residual lifetimes is represented by a red solid line.

This ratio compares the p-th quantile of the residual lifetime of T1 after t1, in the
group with T2 > t2 and the group with T2 ≤ t2. If T1 and T2 are independent then

F̃t2(t1) = ˜̃F t2(t1) = F1(t2).

Consequently, R(t1, t2) = 1 under independence. A natural estimator for R(t1, t2) is
then

Rn(t1, t2) =
˜̃Qn(p | t1, t2)

Q̃n(p | t1, t2)
.

Combining the asymptotic representations of Theorems 6 and 7, we can easily derive
that

n1/2 [Rn(t1, t2)−R(t1, t2)]

is asymptotically normal. The ratio of the estimated median residual lifetimes for
the abovementioned patient groups is shown in Figure D2. The estimated ratio of
the median residual lifetimes for these patient groups is shown in Figure D2. The
figure provides clear evidence that, for conditioning on the smaller survival times, the
estimated ratio of the median residual lifetimes is larger than one, hence, patients with
high scores have a higher median residual lifetime, at least for small survival times t1.

A comparison (not shown) of median residual lifetimes based on age (younger versus
older) or weight loss (low versus high) suggests that the predictive potential of age
and weight loss is small.
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