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Abstract-In a recent paper, Rousseau [l] notes the fact that if we give weights of l/m to each 
author in an m-authored paper, Lotka’s law does not apply. However, he also notes that the function 
modeling the number of authors with weights j, j > 0, starts increasing from zero to about one and 
then decreases. In that paper, the present author is quoted as stating that this is not a breakdown of 
Lotka’s law but merely a composition of two Lotka laws: one for j 2 1 modeling papers per author, 
and one for 0 5 j 5 1 modeling authors per paper. The stochastic problem of how these two laws 
fit into each other was not solved in Rousseau’s paper, however. This is done in this paper, where 
we will show that the weight-distribution function has indeed a maximum for the weight equal to 
one. We then study the same problem in the case where only the first author gets weight one and 
the others weight zero. We solve this case completely providing a formula for the probability of the 
weights. Also this function has a maximum for the weight equal to one. The main tool in these 
models is the technique of repeated convolution of continuous or discrete distribution functions. 

1. INTRODUCTION 

The problem studied in this paper goes back to the year 1926, when Alfred Lotka (see [2]) 

introduced his celebrated frequency “law” on the fraction of the authors that publish x papers, 

(z E R) (on a fixed topic and in a fixed time period, e.g., one year): 

where Q is usually 2 1. Most classically, Lotka’s law was expressed for CY = 2, C then being 6/1? 

(this follows from the requirement that C,“=, v(z) = 1 and the fact that C,“=r(1/z2) = g, as is 

well-known, see, e.g., 131); hence C M 0.61, meaning that about 60% of the authors publish only 

one paper. But already in [2], one acknowledges the need for a more general law as in (l), with 

o! 2 1. 

This celebrated law of Lotka was then followed by the apparent different laws of Bradford 

and the law of Mandelbrot (linked with Zipf’s law), see [4-61, formulated differently using, e.g., 

the formalism of articles in journals (as in a bibliography) or of occurrences of words in texts 
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(cf. the terminology of Herdan: a word is the “type” and the occurrence of this word in a text 

is the “token’‘-see [7]). 

Only later the proof of the equivalence of most of these laws was given (see [S] for an extensive 

discussion on this matter and for more references), using the generalized “dual” (cf. [9,IO]) 

framework of sources (the “type,” i.e., the objects that produce) and items (the “token,” i.e., 

the objects that are produced). Examples are given above: authors “produce” articles, journals 

“produce” articles too, word types “produce” the occurrences and so on. In fact, this dual 

mechanism is also encountered outside this field, e.g., employees “produce” their salary, cities 

“have” inhabitants and so on. 

In studying Lotka’s law, in the framework of authors who publish articles, something special 

is going on. Unlike the other examples of dual situations, sources (authors) and items (articles) 

can be interchanged to yield: articles are the sources and they “produce” (i.e., have) authors 

(i.e., the items in this case). For example, an article could be written by 3 authors but an article 

cannot be published by 3 journals! 

The calculation of author weights in such situations is not uniquely determined. One method 

is the one of “fractional counting,” i.e., an author receives a weight l/3 in a 3-authored paper 

(one of them being this author). Another method consists of only giving the first named author 

a weight 1 and the others a weight 0. This method is called “straight counting.” Finally, one 

could also give every author a weight 1, called “total counting” or “normal counting.” 

Let us focus on the fractional counting method. In (l), we assumed a total counting procedure 

(i.e., every article (co-)authored by an author counts as one publication). One can ask if this 

law (possibly with another Q) is true in the case of fractional counting. This problem goes back 

to Bookstein [ll] who proved that under certain conditions Lotka’s law is stable for the applied 

method of authors counts. If we can speak of a version of the law with the form C/x0 to describe 

the productivity when we give full weight to every author of a paper, this will also be the case, 

but possibly with another CX, if we give fractional weights of authorship. 

This “property,” however, is easily seen to be false. Indeed, as Rousseau points out [l] only 

a few papers are written by, say 8 authors, so that the weight l/8 will occur only a few times. 

Probably more papers are written by 4 authors, so that the weight l/4 will occur more often. Even 

more frequent should be two-authored papers so that the weight l/2 occurs even more frequently. 

Also, l/2 might be reached in the case where an author participates in two 4-authored papers. It 

is also intuitively clear that such an increase continues until about one, after which the classical 

decreasing Lotka law applies. 
Rousseau investigates this idea and finds an initial increase until weights of about one, after 

which the weight distribution function decreases. Rousseau does not give an explanation of this 

fact but suggests a lognormal curve, although without any statistical fitting. In this paper, 

Rousseau acknowledges a remark of the present author as follows: the fact that there is an initial 

increase followed by a decrease does not imply the breakdown of Lotka’s law as suggested by 

Rousseau but is merely a consequence of it. This can be seen as follows. Let: 

cp(x) = g (2) 

be the “classical” distribution of Lotka with (Y > 1 for x 2 1, cp measures the density of authors 

with x publications. For x < 1, we note that we are counting fractional authorships which are 

a consequence of multi-authored papers. So, if z 5 1, the dual Lotka law (dual in the sense 

explained above) +(y) could be used, where y 2 1. Here +(y) is the density of papers with y 

authors. As for cp, we can suppose $ to decrease. Hence, for each such paper, each author receives 
a weight x = l/y, and this corresponds to a function $J* 

+*(x) = 1cI (5) 9 

0 < z < 1. Note that $* is an increasing function of x. 



Fractional Counting of Authorship 65 

As an example, T/, could be a Lotka function ss in (2): 

(p 2 1) and in this case, G*(z) = Dxp, indeed an increasing function of x. 

F’rom this first idea, we end up with a function < illustrated in Figure 1. Note that $‘**(x) is 

proportional to g*(x)/ z, since there are l/x times as much authors in papers with l/x authors 

than there are papers with l/z authors (see further on for the exact proof). Here the function c 

can be written as: 

C(x) = ti**(x) X[O,l](X) + V(X) X]l,co[(4> (5) 

where XA denotes the characteristic function of a certain set A, i.e., XA(x) 

XA (x) = O iff x 6 A. 
= 1 iff x E A, and 

Figure 1. Lotka’s law and its dual: primitive model of the fraction of the authors 

with z papers. 

Of course, the above argument is not totally correct, since it assumes that every weight j comes 

from a publication with l/j authors. This is clearly not true since, for example, a weight of 312 

could come from one publication with one author and the fractional weight from a 2-authored 

paper. This weight could also come from three 2-authored papers or six I-authored papers, or 

other combinations. Intuitively, we need a stochastic argument to “mix” all these possibilities. 

This will be done in this paper. The tool that will be used hereby will be convolution theory as 

explained in, e.g., [12,13]. The reason for using this theory will be explained in the sequel. 

We will investigate the problem in the next sections. Section 2 deals with the problem in 

its full generality, using repeated convolutions of functions of continuous variables. It is indeed 

so that, since we deal here with the case of fractional counting, discrete convolutions involving 

rational numbers are needed. It is not clear how to implement these in this context. Therefore, 

the continuous approach is followed. Note that, theoretically, any rational number can occur 

as the total fractional weight of an author, and that the rational numbers are dense (in the 

mathematical sense) in the set of the real numbers. The validity of Rousseau’s conjecture will be 

proved for a class of functions $, including the function $(z) = 1/x3. 

There is also a general interest in this result: from the dual frequency laws ‘p and $J (based on 

counting entire numbers of items) we can deduce the fractional frequency law of the distribution 

of the authors with certain “fractions” of authorships. 

In Section 3, the case of $J(x) = l/r2 (which was not covered in the previous section) is 

investigated, by directly calculating the repeated convolutions. Here, for computational reasons, 

we had to restrict the calculations to the case of one, two or three papers per author. Already in 
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these simpler cases, the observation of Rousseau is proved, and we conjecture that this continues 
for productivities higher than 3. 

We will then investigate the same problem in the case of “straight counts” (i.e., only the first 
author receives weight 1 and all other authors receive weight 0). We now are able to prove, 
for any number of papers per author, that the weight distribution function attains its absolute 
maximum at 1. 

Only in the case “normal counts,” which give weights 1 to all authors do we find that the 
weight distribution function decreases and in fact it is the Lotka distribution itself. 

2. MODELING FRACTIONAL COUNTS-GENERAL THEORY 

As explained above, since fractional author counts involve, in principle, all rational numbers, 
we adapt a continuous approach, since discrete convolutions over the rational numbers are very 
difficult to calculate. 

2.1. DEFINITIONS AND NOTATIONS. Let $I -+ $(y) : [l, co+ R+ be the density of papers with 
y authors, y 2 1 and cp -+ (p(z) : [l, CCI[ + R+ be the density of authors with x papers. For cp, 
there is no complication to consider cp : N -+ Rf and hence this approach will be followed. 
Hence, for every i E: N, cp(i) denotes the probability that an author has i papers. Fix i E N 
and suppose we consider only those authors with i publications. Then we denote by fi(z) the 

density of these authors with a fractional count z. Let f(z) denote the density of the authors 
with a fractional count z, when all author productions are allowed. We will also assume that the 
maximal number of authors per paper is finite; we will denote it by N. Hence, it is trivial to see 
that fi(z) = 0, for z E [0, i/N[ (f or all i E N). Of course, also fi(z) = 0, for z > i. 

PROPOSITION 2.1. For every z E [l/N, 11, 

fl(Z) = w, 
z3 P 

where p is the average number of authors per paper. 

PROOF. For every z E [l/N, 11: 

fi(z) dz = P(weight of an author E [z, z + dz]) 

= # authors with weight E [z, z + dz] 

total # authors 

Since authors have exactly 1 publication, we see that: 

fi(z) dt = 
i 

( 
# papers with authors between & and i 

total # authors 

Now, since dz is small 

,‘y=;($+(1-d;i): 

we have: 

fl(z) dz = 
$ (# papers with weight E [i - $, i]) 

total # authors 

= 4 11, ($) $? (total # papers) 
total # authors 

_ ’ (?I dz. 
z3 P 

(6) 
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Note that z + fl(z) is indeed a density on [l, N], since J1>/N f~(z) dz = 1, by definition of $. 

EXAMPLES. 

1. For $(z) = z, we see that C = & (since $J is a density) and then, by (6), 

h(z) = (N yl, $’ 

2. For $(z) = g, we have C = h and then, by (6), 

1 
h(x) = -. 

zln N 

3. For $J(z) = g, we have C = & and then, by (6), 

N 
h(z) = - N- 1’ 

a constant. 

4. For G(x) = 5, we have C = & and then, by (6), 

2N2 .z 
fl(X) = -. 

N2 - 1 

We now invoke the following well-known results from probability theory (cf. [12, pp. 144-146)). 

THEOREM 2.1. Let X1 and X2 be independent random variables with distribution functions Fl 

and F2, respectively. Then X1 + X2 has the distribution function Fl * F2, where 

(J’l * Fz)(x) = SW Fl(z - Y) dl;i(y), (7) 
-co 

is the convolution of the two distribution functions. 

When the distribution functions have densities, we have the following theorem. 

THEOREM 2.2. The convolution of two distribution functions with densities g1 and g2 is a dis- 

tribution function with density g1 * g2, where (91 * 92) (x) = J_” g1 (x - y) g2 (y) dy. 

We can now continue with our main theory. 

PROPOSITION 2.2. For every i E N, i > 2, and every z E [i/N, i] 

fi(Z) = (U)(z). (8) 
i times 

PROOF. Let i = 2. A weight z E [2/N, 2), in case we only consider authors with two publications, 

comes from a weight y E [l/N, i] in the first publication and a weight .z - y E [l/N, 11 in the 

second one. Here y is arbitrary. Hence, using Theorems 2.1 and 2.2 above: 

J-i(Z) = Lfl * fd(z) 

= s fl(Y) fl(Z - Y) dY7 (9) 
DZ 

where the integration is over this region such that y and z - y f (l/N, l], the domain of definition 

of fl. In general, a weight z E [i/N, i], in case we only consider authors with i publications, comes 
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from a weight y E [(i - 1)/N, i - l] in the first i - 1 publications and a weight z - y E [l/N, l] 
in the ith one. Here y is arbitrary. Hence 

h(z) = 1 h-l(Y) fl(Z - Y)dY, (10) 
D. 

where the integration is over this region such that y E [(i - 1)/N, i - l] and z - y E [l/N, 11, 
the domains of definition of fi-1, respectively, fi. Consequently, by the associative property of 
convolutions, 

fi(Z) = (,fi * * * * * f;,<z> I 

i times 

PROPOSITION 2.3. For all z E [l/N, oo[, 

(11) 

where we put fi(z) = 0 for z $ [i/N, i]. 

PROOF. This follows from the above and Bayes’ rule. I 

NOTE. Formula (11) above gives a direct relationship between the total frequency counts cp and $J 
and the fractional frequency counts: for all z E [l/N, oo[, 

f(z) = pl * ‘,’ * f?)(z) 4% 
i times 

(12) 

where 

It is however clear that the concrete calculation of f, based on ‘p and $J is far from trivial. We 
therefore continue our qualitative study of formulae (10) and (11). 

The main points that have to be proved (to confirm Rousseau’s observation) are 

(i) f increases on [l/N, 11; 
(ii) f decreases on 11, 21; 

(iii) Iii f(z) 1 lili f(z). 

These conditions will be investigated now. For computational reasons, we will replace l/N by 

zero in the next theorem. This is never a problem for functions $J such that + (‘1 2 is bounded 

around zero: then fi(z) is bounded and the integrals that have to be calculated (t$ind fi, i E N), 

approach the ones we are calculating if N is sufficiently high. * is bounded for, e.g., all 
functions 11, of the form 

Under this assumption, the domain of integration in (lo), for each z E [0, i] is shown in Figure 2. 
We have the following result (proving assertion (i)). 

THEOREM 2.3. The function f increases on [0, l] for all functions $J such that the function 
e(z) = xs $(Z) d ecreases on [l, oo[ (e.g., for all functions $J(x) = C/xa, cr L 3). 
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Figure 2. Integration domain for fi, for every z, i = 2,3,. . . 

PROOF. It is clear that fi(z) = (11, (t) /z3~) increases on [0, 11, since x3$(z) decreases on [l, oo[. 

Consequently, for all i E N, i _> 2 and by Figure 2. 

increases on [0, l] since fi does, and since fi-1 2 0 for all i. Finally, f increases on [0, l], since 

cp>Oand 
cm 

At the point z = 1, we have the following situation: 

f(l) = 2 h(l) 4% 
i=l 

and 

!Fl f(z) = g- h(l) 49 
i=2 

Hence, 

f(1) - iiiif(Z) = fl(1) V(l) > 0. (13) 

This proves (iii). Finally, we prove (ii) and even on the interval [l, m[. 

THEOREM 2.4. The function f decreases on [l, oo[ for al1 functions T,!J, such that 0(z) = x3 $J(z) 

increases on [l, oo[ and Jirnm x3 $(t) 5 T/J(~) (e.g., the function q!~(r) = C/x3). 

PROOF. 

(A) Let z ~11, 21. By Figure 2, note that, for z ~11, 21, 

and for i = 3,4,. . . , 

fi(Z) = II, fl (Y) fl(Z - ?/I dY7 (14) 

fib) = i;, f&l(Y) fl(Z - Y) dY* (15) 
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We invoke Lemma A in the Appendix, yielding 

f;(z)= I’ fl(Y)f:(Z.-Y)~Y-fl(~-wl(~) 
Jz-1 

3; 0 +i) = s z-1 Y3P2 (* - 1)3 p2 W). 

Hence, f;(z) < 0 if 

for all z E [0, 11. This is so since x3 $(x) increases. Analogously, formula (15) and Lemma A 

yield, for all i 2 3, 

f;(z) = 11, fi-l(Y) ; ( ti’ (A> 31cI (&) 
G(1) - 

(2 -Y)5 - (z-Y)4 
) 

dy + f&i(Z) p - fi-l(Z - 1) T’ 

Applying complete induction, we see that formula (IS), together with f,!_ i (z) < 0 implies f,!(z) < 

0, since we assumed that 

A = &irz” $(z) I 1(1(l). 

Since we already proved that f;(z) < 0, we have shown that, for all i = 2,3,. . . , _fi decreases on 

11, 21. Since, for z E]l, 21, 

f(z) = 2 fi(Z) V(i), 
i=2 

this is also the case for f. By (13), f decreases on [l, 21. 

(B) Let z ~]i, i + 11, i = 1,2,. . . . More generally but analogously with the above arguments, 

we have, for all z ~]i, i + 11, 

fi+l(Z) = J/y, fi(Y) fl(z - Y) dye 

and, for all j 2 i + 2, 

fj(Z) = l;, fj-1(Y) fib - Y> dY; 

and 

f(z) = 2 fj(Z)(P(j). 
j=i+1 

It is now clear that the same conditions on II, imply that f decreases on Ii, i + 11. 

(C) Furthermore, in the connecting points, we have (analogously to (13)), for all i = 1,2,. . . , 

This proves that f decreases on 11, oo[, and even on [l, co[. I 

COROLLARY 2.1. For $(E) = (N22Ni) 23 (cf. Example 3), we have that the fractional counting 

function f increases on [0, l] and decreases on [l, OD[ and has negative jumps in every i E N. 

PROOF. This follows readily from Theorems 2.3 and 2.4. I 
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COROLLARY 2.2. For T/J(Z) = C/xc” (o 2 3), we have that the fractional counting function f 
increases on [0, l] and has negative jumps in every i E N. 

PROOF. This follows from Theorem 2.3 and the proof (part C) of Theorem 2.4. I 
NOTE 1. The estimates in Theorems 2.3 and 2.4 are rough (but we do not know how to refine 

them), so that, most probably, the results can be extended to a much larger class of cr’s. 

NOTE 2. In [14], these findings are confirmed in practice by using extensive computer simulations. 
Also, for the power functions $J(x) = C/X~ the Rousseau observation is tested by simulation and 
shown to be true. These cases escape, my general theory, however. Nevertheless, in the next 
section, we can calculate fi, fi, f3, for $(z) = C/ x4 and we can show that the approximation 

2 fi(z) (P(i) 
i=l 

of f is indeed increasing on [0, l] and decreasing on [l, 21. 

3. MODELING FRACTIONAL COUNTS- 
APPROXIMATIVE THEORY 

In this section, we restrict ourselves to the csse (cf. Example 2 in the previous section), for 

x E [LNI, 

G(x) = 5. (17) 

3N3 
Here C = N3 _ I. - Now 

2N2 z 
fl(Z) = - 

N2-1’ (18) 

for z E [l/N, 11. 
Direct calculations now yield (putting l/N M 0 in the integration interval), for z E [0,2], 

4 

f2(z) = (N:! 1)2 $ X(O,l](4 + , $2+2+]l,2],z,). (19) 

The second order approximation g2 of f is now (using only ~(1) and (p(2) now), for z E [0,2], 

gs(z) = 2N2 
N2 - 1 zcp(l) + & ; (P(2) X[O&) 

. ) 

$2 + 2.z - ; 
) 

(P(2) X]l,S]W * 1 (20) 
It is clear that gs increases on [0, l] (cf., also the proof of Theorem 2.3). On ]1,2], we have that 

gi (2) is proportional to 

z2 - 32 + 2, 

which has z = 1 and z = 2 as its roots; hence g;(z) < 0 on ] 1,2[ and so, g2 decreases on ]1,2]. 

Furthermore, 

92(l) - gz(l+) = $&v(l) > 0. 

For fs, we find for a E (0,3] 

f3(‘) = 
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Formulae (18) (19), and (21) together yield, for z E [0,3], 

z5 t4 5z3 .z2 52 13 
s + 12 - _2 - -4- - 120 

25 24 23 13 
z2 

17 
---- E - 6 12 z - ; 

I 
* (22) 

Again it is clear that gs increases on [O,l]. Let us approximate by putting (p(3) < (p(2) so that 

the sign of g$ on ] 1,2] equals the sign of z2 - 32. + 2 < 0 on ] 1,2(. Furthermore, using (p(3) < cp( l), 

we have 

93(l) - 93(1+) M 

So this sequel shows that the second and third approximations of f satisfy 

(i) increasing on [0, 11, 

(ii) decreasing on [l, 21, and 

(iii) negative jump in 1. 

So this section and Corollaries 2.1 and 2.2 give substantial proof of the observation of Rousseau. 

Furthermore, in the next section we are also able to prove the conjecture of Rousseau in the case 

of straight author counts. 

4. MODELING STRAIGHT AUTHOR COUNTS 

In this case, only the first author receives a weight of 1 and, hence, the only possible weights 

belong to the set (0) U N, the natural numbers extended with 0. For this reason, we will try 

to work with discrete distributions, although-in general-taking consecutive convolutions of 

discrete distributions is very difficult (cf. [13]). W e will solve the problem completely and in an 

exact way (i.e., without any approximations). 

Now we must find the discrete distribution 

Now, 

Hence, 

pi(e) = P(weight = z in one article). (23) 

Y-I - , if there are y authors and if x = 0, 

P(weight = x in one article) = I ’ 

Y 
if there are y authors and if x = 1. 

Plb) = 
(S 1 

m +tYbiY) X{O)W + (lW ;@(YvY) xw(x)l (24) 

where $ is the density function of the number of authors per paper. Formula (24) is rewritten 

Bs: 

Plb) = ax(o)(x) + bX{l)W (25) 

Let p,-,(z) be the probability to have a cumulative weight x over n articles (n = 1,2,3,. . . ) for 

straight author counts. Hence x E (0, 1,2,. . . , n}, necessarily. 
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PROPOSITION 4.1. For any function 1c, as in the previous section 

&(X) = c, b” a-, (26) 

for every 2 = 0, 1,2, . . . , 71. 

PROOF. We give the proof by complete induction. For n = 1, we have PI(Z) = a if z = 0, and 

pi(z) = b if z = 1. This is in accordance with formula (26). Let us now assume (26) to be true 

for n E N and we must prove it for n + 1. By [13], we see that 

Pn+l(Z) = ~Pn(i)Plb -i), 

i=O 
(27) 

for all z = O,l,. . . , n+l,wherei=O,l,... , n and 2 - i = 0,l (the discrete convolution). 

(a) Let z # 0 and 2 # n + 1. Th en, in (27), i = 2 or i = z - 1, (since z - i = 0,l). Hence, 

by (27) and (26), (for n) 

Pn+l(Z) = Pn(Z)Pl(O) +Pn(z - l)Pl(l) 
= C; b5 an-z a + C;-1 #y-l an-“+l 6 = (C, + q-l) bZ an-z+l, 

p,+l(z) = CE+l b” an+l-“, 

i.e., formula (26) for n + 1. 

(b) Let z = 0. Now i = 0 is the only possible value. So 

p,+l(O) =p,(O)pl(O) = CzbOana= Ct+lbOa”+l, 

i.e., formula (26) is true for n + 1. 

(c) Let 2 = n + 1. Now i = n is the only possible value. Hence, 

p,+i(n+ 1) =p,(n)p,(l) = CzbnaOb = C~~~a”P+‘, 

i.e., formula (26) is true for n + 1. I 

Let p(z) denote the probability to have a weight of 2 in the general case. By Bayes’ rule we 

have, for all x = 0, 1,2,3,. . . , 

p(z) = 2 CT b” aj+ p(j), (28) 
j=x 

for any function cp as in the previous section. Here, we assume that Ct =: 0. In this way, the 

formula (28) is also correct for p(O). 

THEOREM 4.1. For any function II, and cp as above, 

P(0) < P(l)7 

if a 5 b. This is true for all functions $I, e.g., of the form I/I(X) = C/x0, CY 2 2 (and any cp). 

PROOF. By (28), 

P(O) = fJ aj 43, 
j=l 

p(1) = Cjbaj-l cp(j). 
j=l 
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Hence, p(0) < p(1) is satisfied if (sufficient but not necessary condition) j b 2 a, for all j 2 1 

(and at least one “greater or equal” is a “greater”). This is true for a < b. This condition is 

equivalent to (see (24)): 

J 

O”y-1 

1 
y$(Y)dY I 

s 
m 1 1 i ti(y)dy. 

For $(z) = C/S?, we find the condition QI 2 2. I 

NOTE. Theorem 4.1 is true for all functions + such that: 

s 22-y 
- Y!‘(Y) dy > 

1 Y s 2 
O” q ,4(y) dy. 

It is possible to satisfy this inequality in the important case of densities II, who are initially 

increasing and then decreasing, if only the maximum is attained for small y. As pointed out by 

Rousseau, a Poisson-type function Q is natural in this context (cf. [14]). 

The general behavior of p for z > 1 is left open in this very general case. However, we have 

the following result, valid for cx = 2 and for v(j) = &, j = 1,2,. . . , (note that cz, p(j) = 1 

since C3m,l + = f - see [3]). 

THEOREM 4.2. For Q(X) = 3, 2 E [l, oo[, and p(j) = $$ (j = 1,2,. . .), we have that 

P(l) > P(2). 

PROOF. It follows from (28) that in this case (a = b = f): 

p(2)=-$(~-~(ln2-~)) =O.O1728<p(l). 

NOTE. 

(I) 

(2) 

(3) 

We can also verify directly here that p(0) < p(l), since 

0.35396 

(see [15, p. 91). 
After x = 2,p does not continue to decrease, even in this simple case: 

p(3)=$gg$=$ g3$-35;+2g$7 ; 
3=3 ( 

j=3 
1 

p(3) = 0.03914 > p(2). 

See Figure 3 for a partial graph of p in this simple case. 
After x = 3, the behavior of p is unclear, but it is also an unimportant issue. Note in any 

case the absolute maximum is x = 1. The problem of the weight distribution in the case 

of straight counts is hereby solved to a good extent. 

We close the paper by adding a trivial section on total (also called normal) author counts. 
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Figure 3. Partial graph of p. 

5. MODELING TOTAL AUTHOR COUNTS 

For the sake of completeness, we add also the important (but simple) case of total author 

counts: each author receives a weight of one per paper. In the notation of the previous sections, 

this means that 

Pi(S) = 1, 

if and only if 5 = 1. Since, by (27), 

Pz(S) = -&(iMz -i), 

i=O 

we have that 

if and only if 2 = 2. More generally, 

Pm(X) = X{n}(d z = 0, 1,2, . . . , n. (2% 

Hence, 

P(X) = CP&-4 cp(j)l 
j=2 

(where ‘p is a general distribution as above); 

P(X) = 54x), z = 1,2,3, . . . ) (30) 

i.e., the probability of having weight z is equal to p(x), being the probability of an author writing 

x papers. This case is hence the only case that gives a decreasing p but note that x only starts 

from one here. 

6. SUMMARY 

In this paper, we studied the distribution of the weights among authors if we count authorship 

fractionally, in a straight way, or totally. Apart from the trivial case of total author counts, 

we showed that this distribution increases on [0, l] and then starts decreasing from one onward. 

This result has been reached under fairly normal assumptions on the frequency functions cp and $ 

(respectively, the densities of papers per author and authors per paper). 

@l 18:9-F 
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A general model, involving continuous convolutions, has been developed in the case of fractional 
counting and a general model, involving discrete convolutions, has been developed in the case of 
straight counting. 

We leave open the study of the same problem for functions $ that are initially increasing and 
then decreasing. 

LEMMA A.. 

APPENDIX 

1. Let h be an integrable function on [a, b] and g a differentiable function on [a, b]. Then, for 

f(z) = 1” h(y) g(x - Y) do, 

we have, for z E [a, b], 

f’W = 1” h(y) g’@ - y> dy + h(~MOL 

2. Under the same conditions, we also have for 

where g’(z) = g(z). (A-1) 

that 

3. Analogously, for 

f’(z) = l’, h(y) 9% - Y) dy - h(z - 1) g(1). 

f(z) = /d”-’ h(y) dz - Y> dy, 

(A.21 

we have that 

f’(z) = 1=-l h(y) g’(x - Y) dy + 0 - 1) g(1). (A-3) 

PROOF. We only show that (A.l) is valid; the proof of the other formulae is exactly the same. 

f’(z) = $i ; (/.+’ h(y) g(a: + P - Y) dy - IS h(y) dx - y) @) 
0 0 

x+P x+P 

h(y)(g(z+p-y)-g(s-y))dy+ 
s 

h(y)g(a:--y)dy- 
0 s 

ozh(y)g(s - Y)~Y 

J 
5 

= h(y) g’b - Y) dy + $ (J oz h(y) gb - Y> dy > (~1 
0 

J 

z 

= h(y) g’b - Y> dy + h(z) g(O) 
0 

(cf. [31). I 
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