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The logic of information flows (LIF) is a general framework in which tasks of a procedural nature can be modeled in a declarative,

logic-based fashion. The first contribution of this paper is to propose semantic and syntactic definitions of inputs and outputs of LIF

expressions.We study how the two relate and show that our syntactic definition is optimal in a sense that is made precise. The second

contribution is a systematic study of the expressive power of sequential composition in LIF. Our results on composition tie in the

results on inputs and outputs, and relate LIF to first-order logic (FO) and bounded-variable LIF to bounded-variable FO.
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1 INTRODUCTION

The Logic of Information Flows (LIF) [25, 26] is a knowledge representation framework designed to model and under-

stand how information propagates in complex systems, and to find ways to navigate it efficiently. The basic idea is that

modules, that can be given procedurally or declaratively, are the atoms of a logic whose syntax resembles first-order

logic, but whose semantics produces new modules. In LIF, atomic modules are modeled as relations with designated in-

put and output arguments. Computation is modeled as propagation of information from inputs to outputs, similarly to

propagation of tokens in Petri nets. The specification of a complex system then amounts to connecting atomic modules

together. For this purpose, LIF uses the classical logic connectives, i.e., the boolean operators, equality, and existential

quantification. The goal is to start from constructs that are well understood, and to address the fundamental question

of what logical means are necessary and sufficient to model computations declaratively. The eventual goal, which goes

beyond the topic of this paper, is to come upwith restrictions or extensions of LIF that make the computations efficient.
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2 Aamer et al.

In its most general form, LIF is a rich family of logics with recursion and higher-order variables. Atomic modules

are given by formulae in various logics, and may be viewed as solving the task of Model Expansion [22]: the input

structure is expanded to satisfy the specification of a module thus producing an output. The semantics is given in terms

of pairs of structures. We can, for example, give a graph (a relational structure) on the input of a module that returns a

Hamiltonian cycle on the output, and compose it sequentially with a module that checks whether the produced cycle

is of even length. One can vary both the expressiveness of logics for specifying atomic modules and the operations for

combining modules, to achieve desirable complexity of the computation for the tasks of interest.

Many issues surrounding LIF, however, are already interesting in a first-order setting (see, e.g., [1]); and in fact such

a setting is more generic than the higher-order setting, which can be obtained by considering relations as atomary

data values. Thus, in this paper, we give a self-contained, first-order presentation of LIF. Syntactically, atomic modules

here are relation atoms with designated input and output positions. Such atoms are combined using a set of algebraic

operations into LIF expressions. The semantics is defined in terms of pairs of valuations of first-order variables; the

first valuation represents a situation right before applying the module, while the second represents a possible situation

immediately afterwards. The results in this paper are then also applicable to the case of higher-order variables.

Our contributions can be summarized as follows.

(1) While the input and output arguments of atomic modules are specified by the vocabulary, it is not clear how

to designate the input and output variables of a complex LIF expression that represents a compound module.

Actually, coming up with formal definitions of what it means for a variable to be an input or output is a techni-

cally and philosophically interesting undertaking. We propose semantic definitions, based on natural intuitions,

which are, of course, open to further debate. The semantic notions of input and output turn out to be undecid-

able. This is not surprising, since LIF expressions subsume classical first-order logic formulas, for which most

inference tasks in general are undecidable.

(2) We proceed to give an approximate, syntactic definition of the input and output variables of a formula, which is

effectively computable. Indeed, our syntactic definition is compositional, meaning that the set of syntactic input

(or output) variables of a formula depends only on the top-level operator of the formula, and the syntactic inputs

and outputs of the operands. We prove our syntactic input–output notion to be sound: every semantic input or

output is also a syntactic input or output, and the syntactic inputs and outputs are connected by a property that

we call input–output determinacy. Moreover, we prove an optimality result: our definition provides the most

precise approximation to semantic input and outputs among all compositional and sound definitions.

(3) We investigate the expressive power of sequential composition in the context of LIF. The sequential composition

of two modules is fundamental to building complex systems. Hence, we are motivated to understand in detail

whether or not this operation is expressible in terms of the basic LIF connectives. This question turns out to be

approachable through the notion of inputs and outputs. Indeed, there turns out to be a simple expression for

the composition of io-disjoint modules. Here, io-disjointness means that inputs and outputs do not overlap. For

example, a module that computes a function of G and returns the result in ~ is io-disjoint; a module that stores

the result back in G , thus overwriting the original input, is not.

(4) We then use the result on io-disjoint expressions to show that composition is indeed an expressible operator in

the classical setting of LIF, where there is an infinite supply of fresh variables. (In contrast, the expression for

io-disjoint modules does not need extra variables.)
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(5) Finally, we complement the above findings with a result on LIF in a bounded-variable setting: in this setting,

composition is necessarily a primitive operator.

Many of our notions and results are stated generally in terms of transition systems (binary relations) on first-order

valuations. Consequently, we believe our work is also of value to settings other than LIF inasmuch as they involve

dynamic semantics. Several such settings, where input–output specifications are important, are discussed in the related

work section.

The rest of this paper is organized as follows. In Section 2, we formally introduce the Logic of Information Flows

from a first-order perspective. Section 3 presents our study concerning the notion of inputs and outputs of complex

expressions. Section 7 then presents our study on the expressibility of sequential composition. Section 8 discusses

related work. We conclude in Section 9. In Sections 4, 5, and 6, we give extensive proofs of theorems we discuss in

Section 3.

2 PRELIMINARIES

A (module) vocabulary S is a triple (Names, ar, iar) where:

• Names is a nonempty set, the elements of which are called module names;

• ar assigns an arity to each module name in Names;

• iar assigns an input arity to each module name " in Names, where iar (") ≤ ar (").

We fix a countably infinite universe dom of data elements. An interpretation � of S assigns to each module name

" in Names an ar (")-ary relation � (") over dom.

Furthermore, we fix a universe of variables V. This set may be finite or infinite; the size of V will influence the

expressive power of our logic. A valuation is a function from V to dom. The set of all valuations is denoted byV. We

say that a1 and a2 agree on . ⊆ V if a1 (~) = a2 (~) for all ~ ∈ . and that they agree outside . if they agree on V − . .

A partial valuation on . ⊆ V is a function from . to V; we will also call this a . -valuation. If a is a valuation, we use

a |. to denote its restriction to . . Let a be a valuation and let a1 be a partial valuation on . ⊆ V. Then the substitution

of a1 into a , denoted by a [a1], is defined as a1 ∪ (a |V−. ). In the special case where a1 is defined on a single variable G

with a1 (G) = 3 , we also write a [a1] as a [G : 3].

We assume familiarity with the syntax and semantics of first-order logic (FO, relational calculus) over S [8] and use

:= to mean “is by definition”.

2.1 Binary Relations on Valuations

The semantics of LIF will be defined in terms of binary relations on V (abbreviated BRV: Binary Relations on Valua-

tions). Before formally introducing LIF, we define operations on BRVs corresponding to the classical logical connectives,

adapted to a dynamic semantics. For boolean connectives, we simply use the standard set operations. For equality, we

introduce selection operators. For existential quantification, we introduce cylindrification operators.

Let � and � be BRVs, let / be a finite set of variables, and let G and ~ be variables.

• Set operations: � ∪ �,� ∩ �, and � − � are well known.

• Composition

� ; � := {(a1, a2) | ∃a3 : (a1, a3) ∈ � and (a3, a2) ∈ �}.

• Converse

�` := {(a1, a2) | (a2, a1) ∈ �}.
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4 Aamer et al.

• Left and Right Cylindrifications

cyl;/ (�) := {(a1, a2) | ∃a
′
1 : (a

′
1, a2) ∈ � and a ′1 and a1 agree outside / }.

cylA/ (�) := {(a1, a2) | ∃a
′
2 : (a1, a

′
2) ∈ � and a ′2 and a2 agree outside / }.

• Left and Right Selections

f lG=~ (�) := {(a1, a2) ∈ � | a1 (G) = a1 (~)}.

frG=~ (�) := {(a1, a2) ∈ � | a2 (G) = a2 (~)}.

• Left-To-Right Selection

f lrG=~ (�) := {(a1, a2) ∈ � | a1 (G) = a2 (~)}.

If Ḡ and ~̄ are tuples of variables of length =, we write f lrḠ=~̄ (�) for

f lrG1=~1f
lr
G2=~2 . . . f

lr
G==~= (�)

and if I is a variable we write cyl;I for cyl;
{I }

. Intuitively, a BRV is a dynamic system that manipulates the inter-

pretation of variables. A pair (a1, a2) in a BRV represents that a transition from a1 to a2 is possible, i.e., that when

given a1 as input, the values of the variables can be updated to a2. The operations defined above correspond to ma-

nipulations/combinations of such dynamic systems. Union, for instance, represents a non-deterministic choice, while

composition corresponds to composing two such systems. Left cylindrification corresponds, in the dynamic view, to

performing search before following the underlying BRV. Indeed, when given an input a1, alternative values for the

cylindrified variables are searched for which transitions are possible. The selection operations correspond to perform-

ing checks, on the input, the output, or a combination of both in addition to performing what the underlying BRV

does.

Some of the above operators are redundant, in the sense that they can be expressed in terms of others, for instance,

� ∩ � = � − (� − �). We also have:

Lemma 2.1. For any BRV �, and any variables G and ~, the following hold:

cylAG (�) = (cyl;G (�
`))`

cyl;G (�) = (cylAG (�
`))`

frG=~ (�) = � ∩ cyl;Gf
lr
(G,G)=(~,G) cyl

;
G (�)

f lG=~ (�) = � ∩ cylAGf
lr
(~,G)=(G,G) cyl

A
G (�)

f lG=~ (�) = frG=~ (�
`)`

The expression for frG=~ can be explained as follows. First, we copy G from right to left by applying cyl;G followed by

f lrG=G . Selection frG=~ can now be simulated by f lrG=~ . The original G value on the left is restored by a final application

of cyl;G and intersecting with the original �.

2.2 The Logic of Information Flows

The language of LIF expressions U over a vocabulary S is defined by the following grammar:

U ::= id | " (I) | U ∪ U | U ∩ U | U − U | U ; U | U` | cyl;/ (U) | cyl
A
/ (U) | f

lr
G=~ (U) | f

l
G=~ (U) | f

r
G=~ (U)
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Here, " is any module name in S; / is a finite set of variables; I is a tuple of variables; and G,~ are variables. For

atomic module expressions, i.e., expressions of the form " (I), the length of I must equal ar ("). In practice, we will

often write" (G ;~) for atomic module expressions, where G is a tuple of variables of length iar (") and ~ is a tuple of

variables of length ar (") − iar (").

We will define the semantics of a LIF expression U , in the context of a given interpretation� , as a BRV which will be

denoted by ÈUÉ� . Thus, adapting Gurevich’s terminology [13, 14], every LIF expression U denotes a global BRV ÈUÉ:

a function that maps interpretations � of S to the BRV U (�) := ÈUÉ� .

For atomic module expressions, we define

È" (G ;~)É� := {(a1, a2) ∈ V×V | a1 (G) · a2 (~) ∈ � (") and a1 and a2 agree outside ~}.

Here, a1 (G) · a2 (~) denotes the concatenation of tuples. Intuitively, the semantics of an expression" (G ;~) represents a

transition from a1 to a2: the inputs of the module are “read” in a1 and the outputs are updated in a2. The value of every

variable that is not an output is preserved; this important semantic principle is a realization of the commonsense law

of inertia [19, 20].

We further define

ÈidÉ� := {(a,a) | a ∈ V}.

The semantics of other operators is obtained directly by applying the corresponding operation on BRVs, e.g.,

ÈU − VÉ� := ÈUÉ� − ÈVÉ� .

Èf lrG=~ (U)É� := f lrG=~ (ÈUÉ� ).

We say that U and V are equivalent if ÈUÉ� = ÈVÉ� for each interpretation � , i.e., if they denote the same global BRV.

2.3 Satisfiability of LIF Expressions

In this section, we will show that the problem of deciding whether a given LIF expression is satisfiable is undecidable.

Thereto we begin by noting that first-order logic (FO) is naturally embedded in LIF in the following manner. When

evaluating FO formulas on interpretations, we agree that the domain of quantification is always dom.

Lemma 2.2. Let S be a vocabulary with iar (') = 0 for every ' ∈ S. Then, for every FO formula i over S, there exists

a LIF expression Ui such that for every interpretation � the following holds:

ÈUiÉ� = {(a,a) | �, a |= i}.

Proof. The proof is by structural induction on i .

• If i is G = ~, take Ui = frG=~ (id).

• If i is '(Ḡ) for some ' ∈ S, take Ui = id ∩ '(; Ḡ).

• If i is i1 ∨ i2, take Ui = Ui1 ∪ Ui2 .

• If i is ¬i1, take Ui = id − Ui1 .

• If i is ∃G i1, take Ui = f lrG=G (cyl
;
G (cyl

A
G (Ui1 ))). �

It is well known that satisfiability of FO formulas over a fixed countably infinite domain is undecidable. This leads

to the following undecidability result.
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6 Aamer et al.

Problem: Satisfiability

Given: a LIF expression U .

Decide: Is there an interpretation � such that ÈUÉ� ≠ ∅?

Proposition 2.3. The satisfiability problem is undecidable.

Proof. The proof is by reduction from the satisfiability of FO formulas. Let i be an FO formula and let Ui be the

LIF expression obtained from Lemma 2.2. It is clear that Ui is satisfiable iff i is. �

3 INPUTS AND OUTPUTS

We are now ready to study inputs and outputs of LIF expressions, and, more generally, of global BRVs. We first investi-

gate what inputs and outputs mean on the semantic level before introducing a syntactic definition for LIF expressions.

3.1 Semantic Inputs and Outputs for Global BRVs

Intuitively, an output is a variable whose value can be changed by the expression, i.e., a variable that is not subject to

inertia.

Definition 3.1. A variable G is a semantic output for a global BRV& if there exists an interpretation � and (a1, a2) ∈

& (�) such that a1 (G) ≠ a2 (G). We use $sem(&) to denote the set of semantic output variables of & . If U is a LIF

expression, we call a variable a semantic output of U if it is a semantic output of ÈUÉ. We also write $sem (U) for the

semantic outputs of U . A variable that is not a semantic output is also called an inertial variable.

Defining semantic inputs is a bit more subtle. Intuitively, a variable is an input for a BRV if its value on the left-

hand side matters for determining the right-hand side (i.e., that if the value of the input would have been different, so

would have been the right-hand side; which is in fact a very coarse counterfactual definition of actual causality [18]).

However, a naive formalization of this intuition would result in a situation in which all inertial variables (variables

that are not outputs) are inputs since their value on the right-hand side always equals to the one on the left-hand side.

A slight refinement of our intuition is that the inputs are those variables whose value matters for determining the

possible values of the outputs. This is formalized in the following definitions.

Definition 3.2. Let & be a global BRV and -,. be sets of variables. We say that - determines & on . if for every

interpretation � , every (a1, a2) ∈ & (�) and every a ′1 such that a ′1 = a1 on - , there exists a a ′2 such that a ′2 = a2 on .

and (a ′1, a
′
2) ∈ & (�).

Definition 3.3. A variable G is a semantic input for a global BRV& if V− {G} does not determine& on$sem (&). The

set of input variables of& is denoted by � sem(&). A variable is a semantic input of a LIF expression U if it is a semantic

input of ÈUÉ; the semantic inputs of U are denoted by � sem(U).

From Definition 3.2, we can rephrase the definition for semantic inputs to:

Proposition 3.4. A variable G is a semantic input for a global BRV& iff there is an interpretation� , a value 3 ∈ dom,

and (a1, a2) ∈ & (�) such that there is no valuation a ′2 that agrees with a2 on $
sem(&) and (a1 [G : 3], a ′2) ∈ & (�).

The following proposition shows that the semantic inputs of & are indeed exactly the variables that determine & .

Proposition 3.5. If a set of variables - determines a global BRV & on $sem(&), then � sem(&) ⊆ - .
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Proof. Let E be any variable in � sem(&). We know that V − {E} does not determine & on $sem (&). If E ∉ - , then

- ⊆ V − {E}, so - would not determine & on $sem(&), which is impossible. Hence, E must be in - as desired. �

Under a mild assumption, also the converse to Proposition 3.5 holds:1

Proposition 3.6. Assume there exists a finite set of variables that determines a global BRV & on $sem(&). Then,

� sem(&) determines& on $sem(&).

Proof. Let (a1, a2) ∈ & (�) and a ′1 = a1 on � sem(&) for some interpretation � and valuations a1, a2, and a ′1. To

show that � sem(&) determines & on$sem (&), we need to find a valuation a ′2 such that (a ′1, a
′
2) ∈ & (�) and a ′2 = a2 on

$sem(&). By assumption, let - be a finite set of variables that determines & on $sem(&).

Thereto, take a ′′1 to be the valuation a ′1 [a1 |- ] which is the valuation a ′1 after changing the values for the variables

in - to be as in a1. Thus, a
′′
1 = a1 on - , while a ′′1 = a ′1 outside - . Since - determines & on $sem(&), we know that

there is a valuation a ′′2 such that (a ′′1 , a
′′
2 ) ∈ & (�) and a ′′2 = a2 on $sem(&). To reach our goal, we would like to do

incremental changes to a ′′1 in order to be similar to a ′1 while showing that each of the intermediate valuations does

satisfy the determinacy conditions.

From construction, we know that a ′′1 = a ′1 on - ∩ � sem(&). Using the finiteness assumption for - , let - − � sem(&)

be the set of variables {G1, . . . , G=}. Define the sequence of valuations `0, `1, . . . , `= such that:

• `0 := a ′′1 ; and

• `8 := `8−1[{G8 ↦→ a ′1 (G8 )}] so `8 is `8−1 after changing the value of G8 to be as in a ′1.

We claim that for 8 ∈ {0, . . . , =}, there exists a valuation ^8 such that (`8 , ^8) ∈ & (�) and ^8 = a2 on $sem (&). Since

`= is clearly the same valuation as a ′1, we can then take a ′2 to be ^= which is the required.

We verify our claim by induction.

Base Case: for 8 = 0, we can see that ^0 = a ′′2 .

Inductive Step: for 8 > 0, by assumption, we know that there is a valuation ^8−1 such that (`8−1, ^8−1) ∈ & (�) and

^8−1 = a2 on $sem(&). It is clear that `8 = `8−1 outside {G8 } which is V − {G8 }. Since G8 ∉ � sem(&), we know

that V − {G8 } determines & on $sem (&). Hence, there is a valuation ^8 such that (`8 , ^8) ∈ & (�) and ^8 = ^8−1

on $sem (&). Since ^8−1 = a2 on $
sem(&), we can see that ^8 = a2 on $

sem(&). �

In the next remark, we show that without our assumption, we can find an example of a global BRV that is not

determined on its semantic outputs by its semantic inputs.

Remark 3.7. Let & be the global BRV that maps every � to the same BRV, namely:

& (�) = {(a1, a2) ∈ V ×V | a1 and a2 differ on finitely many variables}.

Since the variables that can be changed by& are not restricted, we see that$sem (&) = V. We now verify that � sem(&) =

∅. Let E be any variable. We can see that E ∉ � sem(&). Thereto, we check that V − {E} determines & on $sem (&). Let

� be an interpretation and a1, a2, and a
′
1 valuations such that (a1, a2) ∈ & (�) and a ′1 = a1 outside {E}. Since a1 and a2

differ on finitely many variables, we can see that a ′1 and a2 also do. Hence, (a
′
1, a2) ∈ & (�).

Finally, we verify that � sem(&) does not determine& on$sem (&). To see a counterexample, let� be an interpretation

and a1 be the valuation that assigns 1 to every variable. We can see that (a1, a1) ∈ & (�). Let a2 be the valuation that

1Proposition 3.6 indeed provides a converse to Proposition 3.5: given that � sem (&) determines& on$sem (&) and � sem (&) ⊆ - for some set- , clearly
also- determines & on$sem (&) .
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8 Aamer et al.

assigns 2 to every variable. It is clear that a2 = a1 on �
sem(&) = ∅, however, clearly (a2, a1) ∉ & (�). By Proposition 3.6,

we know that there is no finite set of variables that does determine & on $sem (&). �

The reader should not be lulled into believing that � sem(&) determines a global BRV& on the set V of all variables

since � sem(&) determines & on $sem(&) and no other variable outside $sem(&) can have its value changed. In the

following remark, we give a simple counterexample.

Remark 3.8. We show that � sem(&) does not necessarily determine & on V for every global BRV & . Take & to be

defined by the LIF expression f lG=~ (id), so, for every � , we have

& (�) = {(a,a) | a ∈ V such that a (G) = a (~)}.

It is clear that $sem(&) = ∅ and � sem(&) = {G,~}.

Let a1 be the valuation that assigns 1 to every variable. Clearly, (a1, a1) ∈ & (�) for any interpretation � . Now take

a ′1 to be the valuation that assigns 1 to G and ~, while it assigns 2 to every other variable. It is clear that a ′1 = a1 on

� sem(&).

If � sem(&)were to determine& onV, we should find a valuationa2 that agrees witha1 onV such that (a ′1, a2) ∈ & (�).

In other words, this means that (a ′1, a1) ∈ & (�), which is clearly not possible. �

Assuming determinacy holds for some global BRV, we next show that it actually satisfies an even stricter version

of determinacy.

Proposition 3.9. Let & be a global BRV. If � sem(&) determines& on $sem(&), then for every interpretation � , every

(a1, a2) ∈ & (�) and every a ′1 that agrees with a1 on � sem(&) and outside $sem(&), we have (a ′1, a2) ∈ & (�).

Proof. Suppose that

(a1, a2) ∈ & (�) and a ′1 = a1 on � sem(&) and outside$sem(&). (1)

We know that all the variables outside$sem(&) are inertial, so

a1 = a2 outside $
sem(&). (2)

Since � sem(&) determines & on $sem(&), we know that there exists a ′2 such that:

(i) a ′2 = a2 on $
sem(&);

(ii) (a ′1, a
′
2) ∈ È&É� .

From (ii), we know that

a1 = a2 outside $
sem(&). (3)

Together Equations (1–3) imply that a ′2 = a2 outside$
sem(&). Combining this with (i), we know that a2 = a ′2, whence

(a ′1, a2) ∈ & (�) as desired. �

Intuitively, the inputs and outputs are the only variables that matter for a given global BRV, similar to how in

classical logic the free variables are the only ones that matter. All other variables can take arbitrary values, but, their

values are preserved by inertia, i.e., remain unchanged by the dynamic system. We now formalize this intuition.

Definition 3.10. Let & be a global BRV and - a set of variables. We say that & is inertially cylindrified on - if:

(1) all variables in - are inertial; and
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(2) for every interpretation � , every (a1, a2) ∈ & (�), and every - -valuation a ′ also (a1 [a
′], a2 [a

′]) ∈ & (�).

Proposition 3.11. Every global BRV& is inertially cylindrified outside the semantic inputs and outputs of& assuming

that � sem(&) determines& on $sem(&).

Proof. Let & be a global BRV such that � sem(&) determines & on $sem(&). Moreover, let - be the set of variables

that are neither semantic inputs nor semantic outputs of & . It is trivial to show that all the variables in - are inertial

since none of the variables in - is a semantic output of & . What remains to show is that for every interpretation � ,

every (a1, a2) ∈ & (�), and every - -valuation a ′ also (a1 [a
′], a2 [a

′]) ∈ & (�).

Let (a1, a2) ∈ & (�) for an arbitrary interpretation � and let a ′1 = a1 [a
′] be a valuation for some - -valuation a ′.

Since a ′1 = a1 on �
sem(&), we know by determinacy that there is a valuation a ′2 such that (a

′
1, a

′
2) ∈ & (�) and a ′2 = a2 on

$sem(&). We now argue that a ′2 = a2 [a
′]. On the variables of$sem (&), we know that a2 = a2 [a

′], whence, a ′2 = a2 [a
′]

on $sem(&). Now we consider the variables that are not in $sem(&). It is clear that a1 = a2 outside$
sem(&), whence,

a1 [a
′] = a ′1 = a ′2 = a2 [a

′] outside $sem(&). �

Remark 3.12. Without the assumption, we can give an example of a global BRV that is not inertially cylindrified

outside its semantic inputs and outputs. Let & be the global BRV that maps every � to the same BRV, namely:

& (�) = {(a,a) | a ∈ V and no value in the domain occurs infinitely often in a}.

It is clear that $sem(&) = ∅ and � sem(&) = ∅.

We proceed to verify that & is not inertially cylindrified on V. Let � be any interpretation and a be any valuation

that maps every variable to a unique value from the domain. We can see that (a, a) ∈ È&É� since every value in a

appears only once. Now fix some 0 ∈ dom arbitrarily and consider the valuation a ′ that maps every variable to 0. We

can see that (a [a ′], a [a ′]) ∉ È&É� since 0 appears infinitely often in a ′ = a [a ′]. �

We remark that the converse of Proposition 3.11 is not true:

Remark 3.13. Consider the same global BRV Q discussed in Remark 3.7 where we showed that � sem(&) does not

determine & on $sem(&). Recall that $sem (&) = V, so the set of variables outside the semantic inputs and outputs is

empty. Trivially, however, & is inertially cylindrified on ∅.

3.2 Semantic Inputs and Outputs for LIF Expressions

3.2.1 Properties of LIF Expressions. As we have discussed in the previous section, a global BRV has the properties of

determinacy and inertial cylindrification under the assumption that there is a finite set of variables that determines the

global BRV on its semantic outputs. From the results of Section 3.3, this assumption indeed holds for LIF assumptions.

Indeed, we will define there, for every expression U , a finite set of “syntactic input variables” and we will show that

this set determines ÈUÉ on a set of “syntactic output variables”. Moreover, the latter set will contain $sem(U).

3.2.2 Determining Semantic Inputs and Outputs. For atomic LIF expressions, the semantic inputs and outputs are easy

to determine, as we will show first. Unfortunately, we show next that the problem is undecidable for general expres-

sions.

We show that semantic inputs and outputs are exactly what one expects for atomic modules:

Proposition 3.14. If U is an atomic LIF expressions " (Ḡ ; ~̄), then
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• � sem(U) = {G8 | Ḡ = G1, . . . , G= for 8 ∈ {1, . . . , =}}; and

• $sem (U) = {~8 | ~̄ = ~1, . . . , ~< for 8 ∈ {1, . . . ,<}}.

Example 3.15. A variable can be both input and output of a given expression. A very simple example is an atomic

module %1 (G ;G). To illustrate where this can be useful, assume dom = Z and consider an interpretation � such that

� (%1) = {(=,= + 1) | = ∈ Z}. In that case, the expression %1 (G ; G) represents a dynamic system in which the value

of G is incremented by 1; G is an output of the system since its value is changed; it is an input since its original value

matters for determining its value in the output.

We will now show that the problem of deciding whether a given variable is a semantic input or output of a LIF

expression is undecidable. Proposition 2.3 showed that satisfiability of LIF expressions is undecidable. This leads to the

following undecidability results.

Problem: Semantic Output Membership

Given: a variable G and a LIF expression U .

Decide: G ∈ $sem(U)?

Proposition 3.16. The semantic output membership problem is undecidable.

Proof. The proof is by reduction from the satisfiability of LIF expressions. Let U be a LIF expression. Take V to be

cyl;G (U). What remains to show is that G ∈ $sem(V) ⇔ U is satisfiable.

(⇒) Let G ∈ $sem(V). Then, there is certainly an interpretation � and valuations a1 and a2 such that (a1, a2) ∈

Ècyl;G (U)É� . Hence, there is also a valuation a ′1 such that (a ′1, a2) ∈ ÈUÉ� . Certainly, U is satisfiable.

(⇐) Let U be satisfiable. Then, there is an interpretation � and valuations a1 and a2 such that (a1, a2) ∈ ÈUÉ� . Also,

let a ′ be an {G}-valuation that maps G to 0 with 0 ≠ a2 (G). It is clear then that (a [a ′], a) ∈ Ècyl;G (U)É� . We thus see

that G ∈ $sem(V). �

Problem: Semantic Input Membership

Given: a variable G and a LIF expression U .

Decide: G ∈ � sem(U)?

Proposition 3.17. The semantic input membership problem is undecidable.

Proof. Let U be a LIF expression. Take V to be f lG=I (U), where I is a variable that is not used in U and different from

G . What remains to show is that G ∈ � sem(V) ⇔ U is satisfiable.

(⇒) Let G ∈ � sem(V). Then, certainly, there is an interpretation � and valuations a1 and a2 such that (a1, a2) ∈

Èf lG=I (U)É� ⊆ ÈUÉ� . Certainly, U is satisfiable.

(⇐) Let U be satisfiable. Then, there is an interpretation � and valuations a1 and a2 such that (a1, a2) ∈ ÈUÉ� .

Without loss of generality, we can assume that a1 (I) = a1 (G) since I is a fresh variable. Hence, (a1, a2) ∈ Èf lG=I (U)É� .

Let a ′1 be a valuation that agrees with a1 outside G such that a ′1 (G) ≠ a1 (G). Since G and I are different variables, also

a ′1 (G) ≠ a ′1 (I), so clearly there is no valuation a ′2 such that (a ′1, a
′
2) ∈ Èf lG=I (U)É� . We then see that G ∈ � sem(V). �

3.3 Syntactic Inputs and Outputs

Since both the membership problems for semantic inputs and outputs are undecidable, to determine inputs and outputs

in practice, we will need decidable approximations of these concepts. Before giving our syntactic definition, we define

some properties of candidate definitions.
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Definition 3.18. Let � and $ be functions from LIF expressions to sets of variables. We say that (� ,$) is a sound

input–output definition if the following hold:

• If U = " (G ;~), then � (U) = G and $ (U) = ~,

• $ (U) ⊇ $sem (U), and

• � (U) determines ÈUÉ on $ (U).

The first condition states that on atomic expressions (of which we know the inputs), � and $ are defined correctly.

The next condition states $ approximates the semantic notion correctly. We only allow for overapproximations; that

is, false positives are allowed while false negatives are not. The reason for this is that falsely marking a variable as

non-output while it is actually an output would mean incorrectly assuming the variable cannot change value. The last

condition establishes the relation between � and$ , and is called input–output determinacy. It states that the inputs need

to be large enough to determine the outputs, as such generalizing the defining condition of semantic inputs. Essentially,

this means that whenever we overapproximate our outputs, we should also overapproximate our inputs to compensate

for this; that correspondence is formalized in Lemma 3.22.

We first remark that a proposition similar to Proposition 3.5 can be made about sound output definitions.

Proposition 3.19. Let (� ,$) be a sound input-output definition, U be a LIF expression, and - a set of variables. Then,

� sem(U) ⊆ - if - determines ÈUÉ on $ (U).

Proof. The proof follows directly from Proposition 3.5 and knowing that$ (U) ⊇ $sem (U). Indeed, in general, if -

determines ÈUÉ on some . and . ⊇ / , then clearly also - determines ÈUÉ on / . �

This proposition along with the input-output determinacy condition imply a condition similar to the second condi-

tion about � :

Proposition 3.20. Let (� ,$) be a sound input-output definition and U be a LIF expression. Then, � (U) ⊇ � sem(U).

Proof. The proof follows from Proposition 3.19 and knowing that � (U) determines ÈUÉ on$ (U). �

Besides requiring that our definitions to be sound, we will focus on definitions that are compositional, in the sense

that definitions of inputs and outputs of compound expressions can be given in terms of their direct subexpressions

essentially treating subexpressions as black boxes. This means that the definition nicely follows the inductive definition

of the syntax. Formally:

Definition 3.21. Suppose � and$ are functions from LIF expression to sets of variables. We say that (� ,$) is composi-

tional if for all LIF expressions U1, U2, V1, and V2 with � (U1) = � (U2),$ (U1) = $ (U2), � (V1) = � (V2), and$ (V1) = $ (V2)

the following hold:

• For every unary operator � : � (�U1) = � (�U2), and $ (�U1) = $ (�U2); and

• For every binary operator ⊡: � (U1 ⊡ V1) = � (U2 ⊡ V2), and $ (U1 ⊡ V1) = $ (U2 ⊡ V2).

The previous definition essentially states that in order to be compositional, the inputs and outputs of U1 ⊡ V1 and

�U1 should only depend on the inputs and outputs of U1 and V1, and not on their inner structure.

The following lemma rephrases input–output determinacy in terms of the inputs and outputs: in order to determine

the output-value of an inertial variable, we need to know its input-value.
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Lemma 3.22. Let (� ,$) be a sound input–output definition and let U be a LIF expression. If U is satisfiable, then

$ (U) −$sem(U) ⊆ � (U).

If (� ,$) is compositional, this holds for all U .

Proof. Let G ∈ $ (U)−$sem(U). For the sake of contradiction, assume that G ∉ � (U), so Proposition 3.11 is applicable

since G ∉ � sem(U) as we know by the soundness of (� ,$). Hence, ÈUÉ is inertially cylindrified on {G}. We claim that

this contradicts the fact that (� ,$) is a sound definition. In particular, we can verify that � (U) can not determine ÈUÉ

on $ (U) in case U is satisfiable. Let � be an interpretation and a1 and a2 be valuations such that (a1, a2) ∈ ÈUÉ� . We

also know that a1 (G) = a2 (G) since ÈUÉ is inertially cylindrified on {G}. Take a ′1 to be the valuation a1 [{G ↦→ 0}]

where 0 ≠ a1 (G). By determinacy, we know that there is a valuation a ′2 such that (a ′1, a
′
2) ∈ ÈUÉ� and a ′2 = a2 on$ (U).

Thus, a ′2 (G) = a2 (G) ≠ 0 since G ∈ $ (U). On the other hand, a ′2 (G) = a ′1 (G) = 0 since ÈUÉ is inertially cylindrified on

{G}. Hence, a contradiction.

For the compositional case, we can always replace subexpressions by atomic expressions with the same inputs and

outputs to ensure satisfiability. It is clear that when U is an atomic module expression, it is always satisfiable. Now,

consider any LIF expression U which is of the form �U1 or U1 ⊡ U2, where � is any of the unary operators and ⊡ is

any of the binary operator. Construct two atomic expressions "1 and "2 such that � ("8) = � (U8) and $ ("8) = $ (U8)

for 8 = 1, 2. By compositionality, we know that � (�U1) = � (�"1) and $ (�U1) = $ (�"1) for any unary operator,

while � (U1 ⊡ U2) = � ("1 ⊡ "2) and $ (U1 ⊡ U2) = $ ("1 ⊡ "2) for any binary operator. Next, we give examples for

an interpretation � in which any È�"1É� and È"1 ⊡ "2É� can be shown not be empty, so �"1 and "1 ⊡ "2 are

satisfiable expressions.

In what follows, let a1 be the valuation that assigns 1 to every variable.

Case ⊡ is −. Let � be the interpretation with

• � ("1) = {(1, . . . , 1; 1, . . . , 1)}; and

• � ("2) = ∅.

It is clear that (a1, a1) ∈ È"1É� , and (a1, a1) ∉ È"2É� , whence, (a1, a1) ∈ È"1 −"2É� .

All other cases. Let � be the interpretation with

• � ("1) = {(1, . . . , 1; 1, . . . , 1)}; and

• � ("2) = {(1, . . . , 1; 1, . . . , 1)}.

We can see that (a1, a1) ∈ È"1É� . Consequently, (a1, a1) ∈ È�"1É� for any unary operator �. We can also see that

(a1, a1) ∈ È"2É� , whence, (a1, a1) ∈ È"1 ⊡"2É� for any binary operator ⊡ ∈ {∪,∩, ; }. �

We now provide a sound and compositional input–output definition. While the definition might seem complex,

there is a good reason for the different cases. Indeed, as we show below in Theorem 3.28, our definition is optimal

among the sound and compositional definitions. In the definition, the condition G =syn ~ simply means that G and ~ are

the same variable and △ denotes the symmetric difference of two sets.

Definition 3.23. The syntactic inputs and outputs of a LIF expression U , denoted � syn(U) and $syn (U) respectively,

are defined recursively as given in Table 1.
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U � syn(U) $syn(U)

id ∅ ∅

" (G ;~) {G1, . . . , G=} where G = G1, . . . , G= {~1, . . . , ~=} where ~ = ~1, . . . , ~=

U1 ∪ U2 � syn(U1) ∪ � syn(U2) ∪ ($syn(U1) △$syn(U2)) $syn(U1) ∪$syn (U2)

U1 ∩ U2 � syn(U1) ∪ � syn(U2) ∪ ($syn(U1) △$syn(U2)) $syn(U1) ∩$syn (U2)

U1 − U2 � syn(U1) ∪ � syn(U2) ∪ ($syn(U1) △$syn(U2)) $syn(U1)

U1 ; U2 � syn(U1) ∪ (� syn(U2) −$syn (U1)) $syn(U1) ∪$syn (U2)

U`1 $syn(U1) ∪ � syn(U1) $syn(U1)

cyl;G (U1) � syn(U1) − {G} $syn(U1) ∪ {G}

cylAG (U1) � syn(U1) $syn(U1) ∪ {G}

f lrG=~ (U1)





� syn(U1) if G =syn ~ and ~ ∉ $syn(U1)

� syn(U1) ∪ {G,~} if G ≠syn ~ and ~ ∉ $syn (U1)

� syn(U1) ∪ {G} otherwise

{
$syn(U1) − {G} if G =syn ~

$syn(U1) otherwise

f lG=~ (U1)

{
� syn(U1) if G =syn ~

� syn(U1) ∪ {G,~} otherwise
$syn(U1)

frG=~ (U1)

{
� syn(U1) if G =syn ~

� syn(U1) ∪ ({G,~} −$syn (U1)) otherwise
$syn(U1)

Table 1. Syntactic inputs and outputs for LIF expressions.

While it would be tedious to discuss the motivation for all the cases of Definition 3.23 (their motivation will be

clarified in Theorem 3.28), we discuss here one of the most difficult parts, namely the case where U = f;AG=~ (U1). For a

given interpretation � ,

ÈUÉ� = {(a1, a2) ∈ ÈU1É� | a1 (G) = a2 (~)}.

First, since ÈUÉ� ⊆ ÈU1É� , it is clear that the outputs of U should be a subset of those of U1 (if U1 admits no pairs in

its semantics that change the value of a variable, then neither does U). For the special case in which G and ~ are the

same variable, this selection enforces G to be inertial, i.e., it should not be an output of U .

Secondly, all inputs of U1 remain inputs of U . Since we select those pairs whose ~-value on the right equals the

G-value on the left, clearly G must be an input of U (the special case G =syn ~ and ~ ∉ $syn (U1) only covers cases

where U1 and U are actually equivalent). Whether ~ is an input depends on U1: if ~ ∉ $syn (U1), ~ is inertial. Since we

compare the input-value of G with the output-value of ~, essentially this is the same as comparing the input-values of

both variables, i.e., the value of ~ on the input-side matters. On the other hand, if ~ ∈ $syn (U1), the value of ~ can be

changed by U1 and thus this selection does not force ~ being an input.

Our syntactic definition is clearly compositional (since we only use the inputs and outputs of subexpressions). An

important result is that our definition is also sound, i.e., our syntactic concepts are overapproximations of the semantic

concepts.

Theorem 3.24 (Soundness Theorem). (� syn,$syn) is a sound input–output definition.
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Proof. The proof is given in Section 4. �

Of course, since the semantic notions of inputs and outputs are undecidable and our syntactic notions clearly are

decidable, expressions exist in which the semantic and syntactic notions do not coincide. We give some examples.

Example 3.25. Consider the LIF expression

U := f lG=~f
r
G=~ ('(G ;~))

In this case, $sem (U) = ∅. However, it can be verified that $syn(U) = {G,~}.

Example 3.26. Consider the LIF expression

U := f lrG=G cyl
A
G cyl

;
G (% (G ; )).

Thus, we first cylindrify G on both sides and afterwards only select those pairs that have inertia, therefore, we reach

an expression U that is equivalent to id. As such, G is inertially cylindrified in U where G ∉ $sem (U) and G ∉ � sem(U).

However, � syn(U) = {G}.

These examples suggest that our definition can be improved. Indeed, one can probably keep coming up with ad-hoc

butmore precise approximations of inputs and outputs for various specific patterns of expressions. Such improvements

would not be compositional, as they would be based on inspecting the structure of subexpressions. In the following

results, we show that (� syn,$syn) is actually the most precise sound and compositional input–output definition.

Theorem 3.27 (Precision Theorem). Let U be a LIF expression that is either atomic, or a unary operator applied to

an atomic module expression, or a binary operator applied to two atomic module expressions involving different module

names. Then

$sem(U) = $syn (U) and � sem(U) = � syn(U).

Proof. The proof is given in Section 5. �

Now, the precision theorem forms the basis for our main result on syntactic inputs and outputs, which states that

Definition 3.23 yields the most precise sound and compositional input–output definition.

Theorem 3.28 (Optimality Theorem). Suppose (� ,$) is a sound and compositional input–output definition. Then for

each LIF expression U :

� syn(U) ⊆ � (U) and $syn (U) ⊆ $ (U).

Proof. The proof is given in Section 6. �

4 SOUNDNESS THEOREM PROOF

In this section, we prove Theorem 3.24. Thereto, we need to verify its three conditions for every LIF expression U

according to Definition 3.18:

Atomic Module Case: If U = " (G ;~), then � syn(U) = G and $syn(U) = ~.

This is clear from the definitions.

Output Approximation: $syn (U) ⊇ $sem(U).

The output approximation property is shown in Proposition 4.1, which is given in Section 4.1.
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Syntactic Input-Output Determinacy: � syn(U) determines ÈUÉ on $syn (U).

The syntactic input-output determinacy property is shown in Lemma 4.6, which is given in Section 4.3. First,

however, in Section 4.2, we need to prove a syntactic version of Property 3.11, which will be used in the proof

of the syntactic input-output determinacy property.

4.1 Proof of Output Approximation

In this section, we prove:

Proposition 4.1. Let U be a LIF expression. Then,$sem(U) ⊆ $syn (U).

To prove this proposition, we introduce the following notion which is related to Definition 3.10.

Definition 4.2. A BRV � has inertia outside a set of variables / if for every (a1, a2) ∈ �, we have a1 = a2 outside / .

A global BRV & has inertia outside a set of variables / if & (�) has inertia outside / for every interpretation � .

Using this notion, Proposition 4.1 can be equivalently formulated as follows.

Proposition 4.3 (Inertia Property). Let U be a LIF expression. Then, ÈUÉ has inertia outside $syn(U).

In the remainder of this sectionwe prove the inertia property by structural induction on the shape of LIF expressions.

Also, we remove the superscript from $syn and refer to it simply by$ .

4.1.1 Atomic Modules. Let U be of the form " (Ḡ ; ~̄). Recall that $ (U) = . where . is the set of variables in ~. The

property directly follows from the definition of the semantics for atomic modules.

4.1.2 Identity. Let U be of the form id. Recall that $ (U) = ∅. The property directly follows from the definition of id.

4.1.3 Union. Let U be of the form U1 ∪ U2. Recall that $ (U) = $ (U1) ∪ $ (U2). If (a1, a2) ∈ ÈU1 ∪ U2É� , then at least

one of the following holds:

(1) (a1, a2) ∈ ÈU1É� . Then, by inductionwe know that a1 = a2 outside$ (U1). Since$ (U1) ⊆ $ (U1)∪$ (U2) = $ (U),

we know that a1 = a2 outside$ (U).

(2) (a1, a2) ∈ ÈU2É� . Similar.

4.1.4 Intersection. Let U be of the form U1 ∩ U2. Recall that $ (U) = $ (U1) ∩ $ (U2). If (a1, a2) ∈ ÈU1 ∩ U2É� , then

(a1, a2) ∈ ÈU1É� and (a1, a2) ∈ ÈU2É� . By induction, a1 = a2 outside $ (U1) and also a1 = a2 outside $ (U2). Hence,

a1 = a2 outside $ (U1) ∩$ (U2).

4.1.5 Composition. Let U be of the form U1 ;U2. Recall that$ (U) = $ (U1) ∪$ (U2). If (a1, a2) ∈ ÈU1 ;U2É� , then there

exists a valuation a such that (a1, a) ∈ ÈU1É� and (a, a2) ∈ ÈU2É� . By induction, a1 = a outside$ (U1) and also a = a2

outside$ (U2). Hence, a1 = a2 = a outside$ (U1) ∪$ (U2).

4.1.6 Difference. Let U be of the form U1 − U2. Recall that $ (U) = $ (U1). The proof then follows immediately by

induction.

4.1.7 Converse. Let U be of the form U`1 . Recall that $ (U) = $ (U1). The proof is immediate by induction.

4.1.8 Le� and Right Selections. Let U be of the form f lG=~ (U1) or f
r
G=~ (U1). Recall that $ (U) = $ (U1). The proof is

immediate by induction.

Manuscript submitted to ACM



16 Aamer et al.

4.1.9 Le�-to-Right Selection. Let U be of the form f lrG=~ (U1). Recall the definition:

$ (U) =




$ (U1) if G ≠syn ~

$ (U1) − {G} otherwise

If (a1, a2) ∈ Èf lrG=~ (U1)É� , then we know that:

(1) (a1, a2) ∈ ÈU1É� ;

(2) a1 (G) = a2 (~).

By induction from (1), we know that a1 = a2 outside$ (U1). Hence, for G ≠syn ~ case we are done. In the other case, we

must additionally show that a1 (G) = a2 (G), which follows from (2).

4.1.10 Right and Le� Cylindrifications. Let U be of the form cylAG (U1). The case for left cylindrification is analogous.

Recall that $ (U) = $ (U1) ∪ {G}. If (a1, a2) ∈ ÈcylAG (U1)É� , then there exists a such that:

(1) (a1, a) ∈ ÈU1É� ;

(2) a = a2 outside {G}.

By induction from (1), we know that a1 = a outside $ (U1). Combining this with (2), we know that a1 = a2 outside

$ (U1) ∪ {G} as desired.

4.2 Proof of Syntactic Free Variable Property

Lemma 4.4 (Syntactic Free Variable Property). Let U be a LIF expression. Denote � syn(U) ∪$syn(U) by fvars(U).

Then, U is inertially cylindrified on V − fvars(U).

In the proof of this Lemma, we will often make use of the Lemma 4.5. In what follows, for a set of variables - , we

define - to be V − - . In the rest of the section, we remove the superscript from$syn and refer to it simply by $ .

Lemma 4.5. Let � be a BRV that has inertia on . . Then, � is inertially cylindrified on . if and only if � is inertially

cylindrified on every - ⊆ . .

Proof. The ‘if’-direction is immediate. Let us now consider the ‘only if’. To this end, suppose that (a1, a2) ∈ � and

that a is a partial valuation on- . Extend a to a valuation a ′ by a ′ = a1 on . −- . Since � has inertia on . , we know that

a1 = a2 = a ′ on . − - . Thus, a1 [a
′] = a1 [a] and a2 [a

′] = a2 [a]. The lemma now directly follows since � is inertially

cylindrified on . . �

This Lemma is always applicable for any LIF expression U and . = V− fvars(U). Indeed, for every interpretation � ,

we know by Proposition 4.3 that ÈUÉ� has inertia outside$ (U) ⊆ fvars(U).

We are now ready to prove Lemma 4.4.

4.2.1 Atomic Modules. Let U be of the form" (Ḡ ; ~̄). Recall that fvars(U) = - ∪. where - and . are the variables in

G and ~, respectively. The property directly follows from the definition of the semantics for atomic modules.

4.2.2 Identity. Let U be of the form id. Recall that fvars(U) = ∅. The property directly follows from the definition of

id.
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4.2.3 Union. Let U be of the form U1 ∪ U2. Recall that fvars(U) = fvars(U1) ∪ fvars(U2). If (a1, a2) ∈ ÈUÉ� , then

(a1, a2) ∈ ÈU1É� or (a1, a2) ∈ ÈU2É� . Let . = V − fvars(U) and let a be a partial valuation on . . Assume without

loss of generality that (a1, a2) ∈ ÈU1É� . Clearly, . ⊆ V − fvars(U1) since fvars(U1) ⊆ fvars(U). By induction and

Lemma 4.5, we know that (a1[a], a2 [a]) ∈ ÈU1É� ⊆ ÈUÉ� as desired.

4.2.4 Intersection. Let U be of the form U1 ∩ U2. Recall that fvars(U) = fvars(U1) ∪ fvars(U2). If (a1, a2) ∈ ÈUÉ� ,

then (a1, a2) ∈ ÈU1É� and (a1, a2) ∈ ÈU2É� . Let . = V − fvars(U) and let a be a partial valuation on . . Clearly,

. ⊆ V− fvars(U8 ) with 8 = 1, 2 since fvars(U8 ) ⊆ fvars(U). By induction and Lemma 4.5, we know that (a1[a], a2 [a]) ∈

ÈU8É� with 8 = 1, 2, whence (a1 [a], a2 [a]) ∈ ÈUÉ� as desired.

4.2.5 Composition. Let U be of the form U1 ; U2. Recall that fvars(U) = fvars(U1) ∪ fvars(U2). If (a1, a2) ∈ ÈUÉ� ,

then there exists a valuation a3 such that (a1, a3) ∈ ÈU1É� and (a3, a2) ∈ ÈU2É� . Let . = V − fvars(U) and let a

be a partial valuation on . . Clearly, . ⊆ V − fvars(U8) with 8 = 1, 2 since fvars(U8) ⊆ fvars(U). By induction and

Lemma 4.5, we know that (a1 [a], a3 [a]) ∈ ÈU1É� and (a3 [a], a2 [a]) ∈ ÈU2É� . Therefore, we may conclude that

(a1 [a], a2 [a]) ∈ ÈU1 ; U2É� .

4.2.6 Difference. Let U be of the form U1 − U2. Recall that fvars(U) = fvars(U1) ∪ fvars(U2). If (a1, a2) ∈ ÈUÉ� , then

we know that:

(1) (a1, a2) ∈ ÈU1É� . By inertia, we know that a1 = a2 outside$ (U1) ⊆ fvars(U1) ⊆ fvars(U).

(2) (a1, a2) ∉ ÈU2É� .

Let . = V − fvars(U) and let a be a partial valuation on . . Clearly, . ⊆ V − fvars(U8 ) with 8 = 1, 2 since fvars(U8 ) ⊆

fvars(U). By induction from (1) and Lemma 4.5, we know that (a1 [a], a2 [a]) ∈ ÈU1É� . All that remains is to show

that (a1 [a], a2[a]) ∉ ÈU2É� Now, suppose for the sake of contradiction that (a1 [a], a2[a]) ∈ ÈU2É� . By induc-

tion and Lemma 4.5, we know that ((a1[a])[a1 |. ], (a2 [a])[a1 |. ]) ∈ ÈU2É� . Clearly, (a1 [a])[a1 |. ] = a1. Moreover,

(a2 [a])[a1 |. ] = a2 since a1 = a2 outside fvars(U) by (1). We have thus obtained that (a1, a2) ∈ ÈU2É� , which contra-

dicts (2).

4.2.7 Converse. Let U be of the form U`1 . Recall that fvars(U) = fvars(U1). The property follows directly by induction

since fvars(U1) = fvars(U`1 ).

4.2.8 Le� Selection. Let U be of the form f lG=~ (U1). Recall the definition:

fvars(U) =




fvars(U1) if G =syn ~

fvars(U1) ∪ {G,~} otherwise

In case of G =syn ~, clearly Èf lG=~ (U1)É� = ÈU1É� . The property holds trivially by induction. In the other case when

G ≠syn ~, if (a1, a2) ∈ ÈUÉ� , then (a1, a2) ∈ ÈU1É� . Let . = V − fvars(U) and let a be a partial valuation on . . Clearly,

. ⊆ V − fvars(U1) since fvars(U1) ⊆ fvars(U). By induction and Lemma 4.5, we know that (a1[a], a2 [a]) ∈ ÈU1É� .

Moreover, since {G,~} ∩ . = ∅, we know that the selection does not look at a , whence (a1[a], a2 [a]) ∈ Èf lG=~ (U1)É�

as desired.
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4.2.9 Right Selection. Let U be of the form frG=~ (U1). Recall the definition:

fvars(U) =




fvars(U1) if G =syn ~

fvars(U1) ∪ {G,~} otherwise

In case of G =syn ~, clearly ÈfrG=~ (U1)É� = ÈU1É� . Hence, the property holds trivially by induction. In the other case,

it is analogous to f lG=~ (U1) since here also {G,~} ∩ (V − fvars(U)) = ∅.

4.2.10 Le�-to-Right Selection. Let U be of the form f lrG=~ (U1). Recall the definition:

fvars(U) =





fvars(U1) if G =syn ~ and ~ ∉ $ (U1)

fvars(U1) ∪ {G,~} otherwise

In case of G =syn ~ and ~ ∉ $ (U1), clearly Èf lrG=~ (U1)É� = ÈU1É� . Hence, the property holds trivially by induction. In

the other case, it is analogous to f lG=~ (U1) since here also {G,~} ∩ (V − fvars(U)) = ∅.

4.2.11 Right and Le� Cylindrifications. Let U be of the form cylAG (U1). The case for left cylindrification is analogous.

Recall that fvars(U) = fvars(U1) ∪ {~}. If (a1, a2) ∈ ÈUÉ� , then there exists a valuation a3 such that:

(1) (a1, a3) ∈ ÈU1É� ;

(2) a3 = a2 outside {G}.

Let . = V − fvars(U) and let a be a partial valuation on . . Clearly, . ⊆ V − fvars(U1) since fvars(U1) ⊆ fvars(U).

By induction from (1) and Lemma 4.5 we know that (a1 [a], a3 [a]) ∈ ÈU1É� . Since G ∉ . , we know from (2) that

a3 [a] = a2 [a] outside {G}. Hence, we can conclude that (a1 [a], a2 [a]) ∈ ÈUÉ� .

4.3 Proof of Syntactic Input-Output Determinacy

Syntactic Input-Output determinacy is certainly proved if we can prove the following Lemma.

Lemma 4.6 (Syntactic Input-Output Determinacy). Let U be a LIF expression. Then, for every interpretation � ,

every (a1, a2) ∈ ÈUÉ� and every a ′1 that agrees with a1 on � syn(U), there exists a valuation a ′2 that agrees with a2 on

$syn(U) and (a ′1, a
′
2) ∈ ÈUÉ� .

In the proof, we will make use of a useful alternative formulation of syntactic input-output determinacy which is

defined next.

Definition 4.7 (Alternative Input-Output Determinacy). A LIF expression U is said to satisfy alternative input-output

determinacy if for every interpretation � , every (a1, a2) ∈ ÈUÉ� and every a ′1 that agrees with a1 on � syn(U) and

outside$syn (U), we have (a ′1, a2) ∈ ÈUÉ� .

The following Lemma shows that the two definitions are equivalent. In what follows, will remove the superscript

from � syn and $syn and refer to them as � and $ , respectively.

Lemma 4.8. Let U be a LIF expression. U satisfies alternative input-output determinacy iff it satisfies syntactic input-

output determinacy.

Proof. The proof of the “if”-direction is similar to the proof of Proposition 3.9. Now, we proceed to verify the other

direction. Suppose that (a1, a2) ∈ ÈUÉ� and a ′1 = a1 on � (U). We now construct a new valuation a ′′1 such that it agrees

with a ′1 on fvars(U) and it agrees with a1 elsewhere. We thus have the following properties for a ′′1 :

Manuscript submitted to ACM



Inputs, Outputs, and Composition in the Logic of Information Flows 19

(1) a ′′1 = a ′1 on fvars(U), and

(2) a ′′1 = a1 on V − fvars(U).

We know that a ′1 = a1 on � (U) by assumption, whence (1) implies thata ′′1 = a1 on � (U) since � (U) ⊆ fvars(U). Combining

this with (2), we know that a ′′1 = a1 on � (U) and outside fvars(U). Thus, alternative input-output determinacy implies

that (a ′′1 , a2) ∈ ÈUÉ� . Since a
′′
1 = a ′1 on fvars(U), we know that there is a partial valuation a on V− fvars(U) such that

a ′′1 [a] = a ′1. By syntactic free variable, we know that (a ′′1 [a], a2 [a]) ∈ ÈUÉ� . Thus, (a
′
1, a2 [a]) ∈ ÈUÉ� as desired. �

We are now ready for the proof of Lemma 4.6. In the following proof, we will use the notation - to mean V − - .

Moreover, since we established by Lemma 4.8 that the two definitions for input-output determinacy are equivalent, we

will verify any of them for each LIF expression.

4.3.1 Atomic Modules. Let U be of the form" (Ḡ ; ~̄). Recall the definitions:

• � (U) = - where - are the variables in G .

• $ (U) = . where . are the variables in ~.

Syntactic input-output determinacy directly follows from the definition of the semantics for atomic modules.

4.3.2 Identity. Let U be of the form id. Recall that the definition for � (U) = $ (U) = ∅. We proceed to verify that U

satisfies alternative input-output determinacy. Indeed, this is true since $ (U) ∪ � (U) = V.

4.3.3 Union. Let U be of the form U1 ∪ U2. Recall the definitions:

• � (U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

• $ (U) = $ (U1) ∪$ (U2).

We proceed to verify that U satisfies alternative input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then (a1, a2) ∈ ÈU1É�

or (a1, a2) ∈ ÈU2É� . Assume without loss of generality that (a1, a2) ∈ ÈU1É� . Now, let a
′
1 be a valuation such that

a ′1 = a1 on $ (U) ∪ � (U). Moreover, we have the following:

$ (U) ∪ � (U) = $ (U1) ∪$ (U2) ∪ � (U1) ∪ � (U2) ∪ ($ (U1) △ $ (U2))

= $ (U1) ∩$ (U2) ∪ � (U1) ∪ � (U2)

= $ (U1) ∪$ (U2) ∪ � (U1) ∪ � (U2)

Therefore, certainly a ′1 = a1 on $ (U1) ∪ � (U1). Thus, (a
′
1, a2) ∈ ÈU1É� by induction and Lemma 4.8, whence (a ′1, a2) ∈

ÈUÉ� as desired.

4.3.4 Intersection. Let U be of the form U1 ∩ U2. Recall the definitions:

• � (U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

• $ (U) = $ (U1) ∩$ (U2).

We proceed to verify that U satisfies alternative input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then (a1, a2) ∈ ÈU1É�

and (a1, a2) ∈ ÈU2É� . Now, let a
′ be a valuation such that a ′1 = a1 on$ (U) ∪ � (U). Just as in the case for ∪, we have that

$ (U) ∪ � (U) = $ (U1) ∪$ (U2) ∪ � (U1) ∪ � (U2). Therefore, certainly a
′
1 = a1 on $ (U1) ∪ � (U1). Thus, (a

′
1, a2) ∈ ÈU1É�

and (a ′1, a2) ∈ ÈU2É� by induction and Lemma 4.8, whence (a ′1, a2) ∈ ÈUÉ� as desired.
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4.3.5 Composition. Let U be of the form U1 ; U2. Recall the definitions:

• � (U) = � (U1) ∪ (� (U2) −$ (U1)).

• $ (U) = $ (U1) ∪$ (U2).

We proceed to verify thatU satisfies syntactic input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then there exists a valuation

a such that

(i) (a1, a) ∈ ÈU1É� ;

(ii) (a, a2) ∈ ÈU2É� .

Now, let a ′1 be a valuation such that

a ′1 = a1 on � (U) = � (U1) ∪ (� (U2) −$ (U1)) (1)

Since � (U1) ⊆ � (U), then by induction there exists a valuation a ′ such that:

(iii) (a ′1, a
′) ∈ ÈU1É� ;

(iv) a ′ = a on $ (U1).

By applying inertia to (i) and (iii) we get that a1 = a and a ′1 = a ′ outside $ (U1). Combining this with (1) we have that

a ′ = a ′1 = a1 = a on � (U) ∩$ (U1) = (� (U1) ∪ � (U2)) −$ (U1). Together with (iv), this implies that

a ′ = a on � (U1) ∪ � (U2) ∪$ (U1) (2)

By induction from (ii), there exists a ′2 such that:

(v) (a ′, a ′2) ∈ ÈU2É� ;

(vi) a ′2 = a2 on $ (U2).

From (iii) and (vi) we get that (a ′1, a
′
2) ∈ ÈUÉ� . All that remains to be shown is that a ′2 = a2 on $ (U). By applying

inertia to (ii) and (v) we get that:

a = a2 outside$ (U2)

a ′ = a ′2 outside$ (U2)

Combining this with 2 we have that a ′2 = a2 on (� (U1) ∪ � (U2) ∪$ (U1)) ∩ $ (U2) = (� (U1) ∪ � (U2) ∪$ (U1)) −$ (U2).

Together with (vi) this implies that a ′2 = a2 on � (U1) ∪ � (U2) ∪$ (U1) ∪$ (U2), whence a
′
2 = a2 on $ (U) as desired.

4.3.6 Difference. Let U be of the form U1 − U2. Recall that:

• � (U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

• $ (U) = $ (U1).

We proceed to verify that U satisfies alternative input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then we know that:

(1) (a1, a2) ∈ ÈU1É� ;

(2) (a1, a2) ∉ ÈU2É� .

Now, let a ′1 be a valuation such that a ′1 = a1 on $ (U) ∪ � (U). Since $ (U1) ⊆ $ (U) and � (U1) ⊆ � (U), then a ′1 = a1 on

$ (U1) ∪ � (U1). Thus, by induction from (1) and Lemma 4.8, we know that (a ′1, a2) ∈ ÈU1É� .

To prove that (a ′1, a2) ∈ ÈUÉ� , all that remains is to show that (a ′1, a2) ∉ ÈU2É� . Assume for the sake of contradiction

that (a ′1, a2) ∈ ÈU2É� . Since a
′
1 = a1 on $ (U) ∪ � (U) and $ (U) ∪ � (U) = $ (U1) ∪$ (U2) ∪ � (U1) ∪ � (U2), we know that

a ′1 = a1 on $ (U2) ∪ � (U2). Hence, (a1, a2) ∈ ÈU2É� by induction and Lemma 4.8, which contradicts (2).
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4.3.7 Converse. Let U be of the form U`1 . Recall the definitions:

• � (U) = � (U1) ∪$ (U1).

• $ (U) = $ (U1).

Alternative input-output determinacy holds since $ (U) ∪ � (U) = V.

4.3.8 Le� Selection. Let U be of the form f lG=~ (U1). Recall the definitions:

• � (U) =




� (U1) G =syn ~

� (U1) ∪ {G,~} otherwise

• $ (U) = $ (U1)

We proceed to verify that U satisfies alternative input-output determinacy. Clearly, the property holds trivially by

induction in case of G =syn ~. Indeed, in this case, ÈUÉ� = ÈU1É� . In the other case when G ≠syn ~, if (a1, a2) ∈ ÈUÉ� ,

then we know that:

(1) (a1, a2) ∈ ÈU1É� ;

(2) a1 (G) = a1 (~);

Let a ′1 be a valuation such that a ′1 = a1 on $ (U) ∪ � (U). In all cases, $ (U) ⊆ $ (U1). Hence, $ (U1) ⊆ $ (U). Moreover,

in all cases � (U1) ⊆ � (U). Thus, a ′1 = a1 on $ (U1) ∪ � (U1). By induction from (1) and Lemma 4.8, we know that

(a ′1, a2) ∈ ÈU1É� .

All that remains to be shown is thata ′1 (G) = a ′1 (~). Since {G,~} ⊆ � (U), we know thata ′1 = a1 on {G,~} by assumption.

Hence, a ′1 (G) = a ′1 (~) by (2).

4.3.9 Right Selection. Let U be of the form frG=~ (U1). Recall the definitions:

• � (U) =




� (U1) G =syn ~

� (U1) ∪ ({G,~} −$ (U1)) otherwise

• $ (U) = $ (U1)

We proceed to verify that U satisfies alternative input-output determinacy. Clearly, the property holds trivially by

induction in case of G =syn ~. Indeed, in this case, ÈUÉ� = ÈU1É� . In the other case when G ≠syn ~, if (a1, a2) ∈ ÈUÉ� ,

then we know that:

(1) (a1, a2) ∈ ÈU1É� ;

(2) a2 (G) = a2 (~);

Let a ′1 be a valuation such that a ′1 = a1 on $ (U) ∪ � (U). In all cases, $ (U) ⊆ $ (U1). Hence, $ (U1) ⊆ $ (U). Moreover,

in all cases � (U1) ⊆ � (U). Thus, a ′1 = a1 on $ (U1) ∪ � (U1). By induction from (1) and Lemma 4.8, we know that

(a ′1, a2) ∈ ÈU1É� . Together with (2), we know that (a ′1, a2) ∈ ÈUÉ� .

4.3.10 Le�-to-Right Selection. Let U be of the form f lrG=~ (U1). Recall the definitions:

• � (U) =




� (U1) G =syn ~ and ~ ∉ $ (U1)

� (U1) ∪ {G,~} G ≠syn ~ and ~ ∉ $ (U1)

� (U1) ∪ {G} otherwise
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• $ (U) =




$ (U1) − {G} G =syn ~

$ (U1) otherwise

We proceed to verify that U satisfies alternative input-output determinacy. Clearly, ÈUÉ� = ÈU1É� in case of G =syn ~

and ~ ∉ $ (U1). Hence, the property holds trivially by induction. In the other cases, if (a1, a2) ∈ ÈUÉ� , then we know

that:

(1) (a1, a2) ∈ ÈU1É� ;

(2) a1 (G) = a2 (~).

Let a ′1 be a valuation such that a ′1 = a1 on $ (U) ∪ � (U). In all cases, $ (U) ⊆ $ (U1). Hence, $ (U1) ⊆ $ (U). Moreover,

in all cases � (U1) ⊆ � (U). Thus, a ′1 = a1 on $ (U1) ∪ � (U1). By induction from (1) and Lemma 4.8, we know that

(a ′1, a2) ∈ ÈU1É� . All that remains to be shown is that a ′1 (G) = a2 (~). Since G ∈ � (U) and a ′1 = a1 on $ (U) ∪ � (U), we

have a ′1 (G) = a1 (G). Together with (2), we get that a ′1 (G) = a2 (~) as desired, whence (a ′1, a2) ∈ ÈUÉ� .

4.3.11 Right Cylindrification. Let U be of the form cylAG (U1). Recall the definitions:

• � (U) = � (U1).

• $ (U) = $ (U1) ∪ {G}.

• fvars(U) = fvars(U1) ∪ {G}.

We proceed to verify that U satisfies alternative input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then there exists a

valuation a ′2 such that:

(1) (a1, a
′
2) ∈ ÈU1É� ;

(2) a ′2 = a2 outside {G}.

Now, let a ′1 be a valuation such that a ′1 = a1 on $ (U) ∪ � (U). We now split the proof in two cases:

• Suppose that G ∈ fvars(U1). Then, fvars(U) = fvars(U1). Thus, we know that a ′1 = a1 on fvars(U1) ∪ � (U1),

whence a ′1 = a1 on $ (U1) ∪ � (U1). Thus, by induction from (1) and Lemma 4.8, we know that (a ′1, a
′
2) ∈ ÈU1É� .

Hence, (a ′1, a2) ∈ ÈUÉ� .

• Conversely, suppose that G ∉ fvars(U1). We have $ (U) ∪ � (U) = ($ (U1) ∪ � (U1)) − {G}. Thus, a ′1 [a1 | {G }] = a1

on $ (U1) ∪ � (U1) since a
′
1 = a1 on $ (U) ∪ � (U). By induction and Lemma 4.8, then (a ′1 [a1 | {G }], a

′
2) ∈ ÈU1É� .

By syntactic free variable, we know that (a ′1[a1 | {G }] [a
′
1 | {G }], a

′
2 [a

′
1 | {G }]) ∈ ÈU1É� since G ∉ fvars(U1). Clearly,

a ′1 [a1 | {G }] [a
′
1 | {G }] = a ′1, whence (a ′1, a

′
2 [a

′
1 | {G }]) ∈ ÈU1É� . Consequently, (a

′
1, a2) ∈ ÈUÉ� as desired.

4.3.12 Le� Cylindrification. Let U be of the form cyl;G (U1). Recall the definitions:

• � (U) = � (U1) − {G}.

• $ (U) = $ (U1) ∪ {G}.

We proceed to verify that U satisfies alternative input-output determinacy. If (a1, a2) ∈ ÈUÉ� , then there exists a

valuation a ′1 such that:

(i) a ′1 = a1 outside {G};

(ii) (a ′1, a2) ∈ ÈU1É� .

Now, let a be a valuation such that

a = a1 on $ (U) ∪ � (U). (1)
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Clearly, a [a ′1 | {G }] = a outside {G}. Since G ∉ $ (U) ∪ � (U), we also know that a [a ′1 | {G }] = a on$ (U) ∪ � (U). Combining

this with (1), we get that a [a ′1 | {G }] = a ′1 on $ (U) ∪ � (U) ∪ {G}. Clearly, $ (U) ∪ � (U) ∪ {G} ⊇ $ (U1) ∪ � (U1), whence

a [a ′1 | {G }] = a ′1 on $ (U1) ∪ � (U1). By induction from (ii) and Lemma 4.8, we get that (a [a ′1 | {G }], a2) ∈ ÈU1É� , whence

also (a, a2) ∈ ÈU1É� .

5 PRECISION THEOREM PROOF

In this section, we prove Theorem 3.27. By soundness and Proposition 3.20, it suffices to prove $syn(U) ⊆ $sem(U)

and � syn(U) ⊆ � sem(U) for every LIF expression U . For the latter inequality, it will be convenient to use the equivalent

definition of semantic input variables introduced in Proposition 3.4. Moreover, in the proof of the Precision Theorem,

we will often make use of the following two technical lemmas.

Lemma 5.1. Let" be a nullary relation name and let � be an interpretation where � (") is nonempty. Then È" ()É�

consists of all identical pairs of valuations.

Proof. The proof follows directly from the semantics of atomic modules. �

Lemma 5.2. Suppose U1 = "1 (Ḡ1; ~̄1) and U2 = "2 (Ḡ2; ~̄2) where "1 ≠ "2. Let U be either U1 ∪ U2 or U1 − U2.

Assume that $syn(U8 ) ⊆ $sem(U8 ) and � syn(U8 ) ⊆ � sem(U8 ) for 8 = 1, 2. Let 9 ≠ : ∈ {1, 2}. If ÈUÉ� = ÈU:É� for any

interpretation � where � ("9 ) is empty, then $syn(U: ) ⊆ $sem(U) and � syn(U: ) ⊆ � sem(U).

Proof. First, we verify that$syn(U: ) ⊆ $sem(U). Let E ∈ $syn(U: ). Since$
syn(U: ) ⊆ $sem (U: ), then E ∈ $sem(U: ).

By definition, we know that there is an interpretation � ′ and (a1, a2) ∈ ÈU:É�′ such that a1 (E) ≠ a2 (E). Take �
′′ to be

the interpretation where � ′′ (") = � ′ (") for any" ≠ "9 while�
′′ ("9 ) is empty. Clearly, (a1, a2) ∈ ÈUÉ�′′ , whence,

"9 ≠ ": and ÈUÉ�′′ = ÈU:É�′ . It follows then that E ∈ $sem(U).

Similarly, we proceed to verify � syn(U: ) ⊆ � sem(U). Let E ∈ � syn(U: ). Since �
syn(U: ) ⊆ � sem(U: ), then E ∈ � sem(U: ).

By definition, we know that there is an interpretation � ′, (a1, a2) ∈ ÈU:É�′ , and a ′1 (E) ≠ a1 (E) such that (a ′1, a
′
2) ∉

ÈU:É�′ for every valuation a ′2 that agrees with a2 on$
sem (U: ).

Take� ′′ to be the interpretation where� ′′ (") = � ′ (") for any" ≠ "9 while�
′′ ("9 ) is empty. Clearly, ÈUÉ�′′ =

ÈU:É�′ , whence, "9 ≠ ": . Therefore, $
sem (U: ) ⊆ $sem(U). Hence, E ∈ � sem(U). Indeed, (a1, a2) ∈ ÈUÉ�′′ and for

any valuation a ′2 if a
′
2 agrees with a2 on $

sem(U), then a ′2 agrees with a2 on $
sem(U: ). �

The proof of Theorem 3.27 is done by extensive case analysis. Intuitively, for each of the different operations, and

every variable I ∈ $syn(U), we construct an interpretation � such that I is not inertial in ÈUÉ� and thus I ∈ $sem(U).

Similarly, for every variable I ∈ � syn(U), we construct an interpretation � as a witness of the fact that V − {I} does

not determine ÈUÉ on$sem(U) and thus that I ∈ � sem(U). In the proof, we often remove the superscript from � syn and

$syn and refer to them by � and $ , respectively.

5.1 Atomic Modules

Let U be of the form U1, where U1 is" (Ḡ ; ~̄). Recall the definition:

• $syn (U) = . , where . are the variables in ~̄.

• � syn(U) = - , where . are the variables in Ḡ .

We first proceed to verify $syn (U) ⊆ $sem(U). Let E ∈ . . Consider an interpretation � where

� (") = {(1, . . . , 1; 2, . . . , 2)}.
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Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on . and 1 everywhere else. Clearly,

(a1, a2) ∈ ÈUÉ� since a1 (Ḡ) · a2 (~̄) ∈ � (") and a1 agrees with a2 outside . . Hence, E ∈ $sem(U) since a1 (E) ≠ a2 (E).

Nowwe proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ - . Consider the same interpretation� and the same valuations

a1 and a2 as discussed above. We already established that (a1, a2) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 2]. We establish that

E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, this is true since E ∈ - . Consequently,

E ∈ � sem(U).

5.2 Identity

Let U be of the form id. We recall that � syn(U) and $syn(U) are both empty. Hence, $syn(U) ⊆ $sem(U) and � syn(U) ⊆

� sem(U) is trivial.

5.3 Union

Let U be of the form U1 ∪ U2, where U1 is "1 (Ḡ1; ~̄1) and U2 is "2 (Ḡ2; ~̄2). We distinguish different cases based on

whether "1 or"2 is nullary. If"1 and "2 are both nullary there is nothing to prove.

5.3.1 "1 is nullary,"2 is not. Clearly, ÈUÉ� = ÈU2É� for any interpretation � where � ("1) is empty. By induction

and Lemma 5.2, we establish that$syn(U2) ⊆ $sem(U) and � syn(U2) ⊆ � sem(U). Since � (U1) and $ (U1) are both empty,

then we observe that:

• $syn (U) = $ (U2).

• � syn(U) = � (U2) ∪$ (U2).

Thus, $ (U2) ⊆ $sem(U) and � (U2) ⊆ � sem(U) is trivial.

We proceed to verify $ (U2) − � (U2) ⊆ � sem(U). Let E ∈ $ (U2) − � (U2). Consider the interpretation � where � ("1)

is not empty and

� ("2) = {(1, . . . , 1; 2, . . . , 2)}

Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É� by Lemma 5.1. Take

a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there for every valuation a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� ,

we show that a ′2 and a1 disagrees on $sem (U). Thereto, suppose (a ′1, a
′
2) ∈ ÈUÉ� . In particular, (a ′1, a

′
2) ∈ ÈU1É� ,

whence a ′2 = a ′1 by Lemma 5.1. Indeed, E ∈ $ (U2), $ (U2) ⊆ $sem(U), and a ′2 (E) = 2 but a1 (E) = 1. Otherwise,

(a ′1, a
′
2) ∈ ÈU2É� . However, since E ∈ $ (U2), then a ′2 (E) = 2 as well. Therefore, there is no a ′2 that agrees with a1 on

$sem(U) and (a ′1, a
′
2) ∈ ÈUÉ� at the same time. We conclude that E ∈ � sem(U).

5.3.2 "2 is nullary,"1 is not. This case is symmetric to the previous one.

5.3.3 Neither"1 nor"2 is nullary. Recall the definitions:

• $syn (U) = $ (U1) ∪$ (U2).

• � syn(U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

We first proceed to verify that $syn(U) ⊆ $sem (U). By induction, $syn (U8 ) = $sem(U8 ) for 8 = 1 or 2. Consequently, if

E ∈ $ (U8 ), then there is an interpretation �8 , (a1, a2) ∈ ÈU8É� such that a1 (E) ≠ a2 (E). Indeed, E ∈ $sem(U), whence,

(ÈU1É� ∪ ÈU2É� ) ⊆ ÈUÉ� for any interpretation � .

We then proceed to verify that � syn(U) ⊆ $sem(U). The proof has four possibilities. Each case is discussed separately

below.
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When E ∈ � (U1). If E ∈ � (U1) and "1 ≠ "2, it is clear that ÈUÉ� = ÈU1É� for any interpretation � where � ("2) is

empty. By Lemma 5.2 and by induction, we easily establish that E ∈ � sem(U).

When E ∈ � (U2). This case is symmetric to the previous one.

When E ∈ $ (U1) − ($ (U2) ∪ � (U1) ∪ � (U2)). If E ∈ $ (U1) − ($ (U2) ∪ � (U1) ∪ � (U2)), then consider the interpretation

� such that � ("1) = {(1, . . . , 1; 1, . . . , 1)} and � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2 on E and

1 elsewhere. Clearly, (a1, a1) ∈ ÈUÉ� , whence (a1, a1) ∈ ÈU2É� . Now take a ′1 := a1 [E : 1]. If we can show that a ′2 does

not agree with a1 on$
sem(U) for any valuation a ′2 such that (a ′1, a

′
2) ∈ ÈUÉ� , we are done. Thereto, suppose that there

exists a valuation a ′2 such that (a ′1, a
′
2) ∈ ÈUÉ� .

• In particular, if (a ′1, a
′
2) ∈ ÈU1É� , then a

′
2 (E) = 1 since E ∈ $ (U1).

• Otherwise, if (a ′1, a
′
2) ∈ ÈU2É� , then a ′2 (E) = a ′1 (E) = 1 since E ∉ (� (U2) ∪$ (U2)).

In both cases, a ′2 have to be 1 on E which disagrees with a1 on E . Since E ∈ $ (U1) and $ (U1) ⊆ $sem(U), then a ′2 does

not agree with a1 on $
sem (U) as desired. We conclude that E ∈ � sem(U).

When E ∈ $ (U2) − ($ (U1) ∪ � (U1) ∪ � (U2)). This case is symmetric to the previous one.

5.4 Intersection

Let U be of the form U1 ∩ U2, where U1 is "1 (Ḡ1; ~̄1) and U2 is "2 (Ḡ2; ~̄2). We distinguish different cases based on

whether "1 or"2 is nullary. If"1 and "2 are both nullary there is nothing to prove.

5.4.1 "1 is nullary,"2 is not. In this case, � (U1) and $ (U1) are both empty, then we observe that:

• $syn (U) = ∅.

• � syn(U) = � (U2) ∪$ (U2).

It is trivial to verify $syn (U) ⊆ $sem(U) since $syn(U) is empty.

We proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U2) ∪ $ (U2). Consider an interpretation � where � ("1) is not

empty and � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since

(a1, a1) ∈ ÈU1É� and (a1, a1) ∈ ÈU2É� . Take a
′
1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no

valuation a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto, suppose (a

′
1, a

′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U2), it is clear that

(a ′1, a
′
2) ∉ ÈU1É� . In the other case when E ∈ $ (U2) − � (U2), there is no a

′
2 such that (a ′1, a

′
2) belongs to both ÈU1É�

and ÈU2É� . Indeed, the value for a
′
2 (E) will never be agreed upon by U1 and U2. Hence, (a

′
1, a

′
2) ∉ ÈUÉ� as desired. We

conclude that E ∈ � sem(U).

5.4.2 "2 is nullary,"1 is not. This case is symmetric to the previous one.

5.4.3 Neither"1 nor"2 is nullary. Recall the definitions:

• $syn (U) = $ (U1) ∩$ (U2).

• � syn(U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

We first proceed to verify $syn(U) ⊆ $sem(U). Let E ∈ $ (U1) ∩$ (U2). Consider an interpretation � such that

� ("1) = {(1, . . . , 1;>1, . . . , ><)}

, where >1, . . . , >< are all the combinations of {1, 2}. Similarly, � ("2) = {(1, . . . , 1;>1, . . . , >=)}, where >1, . . . , >= are all

the combinations of {1, 2}.
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Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on$ (U1) ∩$ (U2) and 1 elsewhere.

Clearly, (a1, a2) ∈ ÈUÉ� , whence (a1, a2) ∈ ÈU1É� and (a1, a2) ∈ ÈU2É� . Hence, E ∈ $sem(U). Indeed, a2(E) ≠ a1 (E)

for E ∈ $syn (U).

We then proceed to verify � syn(U) ⊆ $sem(U). Let E ∈ � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)). Consider an interpretation

� where

� ("1) = {(1, . . . , 1; 1, . . . , 1)}

Similarly, � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� , whence

(a1, a1) ∈ ÈU1É� and (a1, a1) ∈ ÈU2É� . Take a
′
1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there

is no valuation a ′2 such that (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, this is clear when E ∈ � (U1) or E ∈ � (U2). On the other hand,

when E ∈ ($ (U1) △ $ (U2)) − (� (U1) ∪ � (U2)), we have a
′
2 for which (a ′1, a

′
2) ∈ ÈUÉ� whence (a ′1, a

′
2) ∈ ÈU1É� and

(a ′1, a
′
2) ∈ ÈU2É� . This is not possible since E belongs to either$ (U1) or$ (U2), but not both. Hence, the value for a

′
2 (E)

will never be agreed upon by U1 and U2. We conclude that E ∈ � sem(U).

5.5 Difference

Let U be of the form U1 − U2, where U1 is "1 (Ḡ1; ~̄1) and U2 is "2 (Ḡ2; ~̄2). We distinguish different cases based on

whether "1 or"2 is nullary. If"1 and "2 are both nullary there is nothing to prove.

5.5.1 "1 is nullary,"2 is not. In this case, � (U1) and $ (U1) are empty. In particular,$syn (U) is empty, so $syn (U) ⊆

$sem(U) is trivial.

We proceed to verify � syn(U) ⊆ � sem(U). Observe that

� syn(U) = � (U2) ∪$ (U2).

Let E ∈ � syn(U). Consider the interpretation � where � ("1) is not empty and � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1

be the valuation that is 2 on E and 1 elsewhere. Clearly, (a1, a1) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 1]. We establish that

E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto, suppose (a

′
1, a

′
2) ∈ ÈUÉ� . In particular,

(a ′1, a
′
2) ∈ ÈU1É� , whence a

′
2 = a ′1 by Lemma 5.1. However, (a ′1, a

′
1) ∈ ÈU2É� , so (a ′1, a

′
2) ∉ ÈUÉ� as desired.

5.5.2 "2 is nullary,"1 is not. Clearly, ÈUÉ� = ÈU1É� for any interpretation � where � ("2) is empty. By induction

and Lemma 5.2, we establish that$syn(U1) ⊆ $sem(U) and � syn(U1) ⊆ � sem(U). Since � (U2) and $ (U2) are both empty,

then we observe that:

• $syn (U) = $ (U1).

• � syn(U) = � (U1) ∪$ (U1).

Thus, $ (U1) ⊆ $sem(U) and � (U1) ⊆ � sem(U) is trivial.

We proceed to verify $ (U1) − � (U1) ⊆ � sem(U). Let E ∈ $ (U1) − � (U1). Consider the interpretation � where � ("2)

is not empty and

� ("1) = {(1, . . . , 1; 1, . . . , 1)}

Let a1 be the valuation that is 2 on E and 1 elsewhere and let a2 be the valuation that is 1 everywhere. Clearly, (a1, a2) ∈

ÈUÉ� . Take a
′
1 := a1 [E : 1]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a

′
2) ∈ ÈUÉ� .

Thereto, suppose (a ′1, a
′
2) ∈ ÈUÉ� . In particular, (a ′1, a

′
2) ∈ ÈU1É� , whence a

′
2 = a ′1 from the structure of � . However,

(a ′1, a
′
1) ∈ ÈU2É� by Lemma 5.1, so (a ′1, a

′
2) ∉ ÈUÉ� as desired.
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5.5.3 Neither"1 nor"2 is nullary. Recall the definitions:

• $syn (U) = $ (U1).

• � syn(U) = � (U1) ∪ � (U2) ∪ ($ (U1) △$ (U2)).

The proof of$syn(U) ⊆ $sem(U) is done together with the proof that E ∈ � sem(U) for every E ∈ � (U1). Discussions for

the other cases for E ∈ � syn(U) follow afterwards. Since"1 ≠ "2, it is clear that ÈUÉ� = ÈU1É� for any interpretation

� where � ("2) is empty. By induction and Lemma 5.2, we establish that$syn(U1) ⊆ $sem(U) and � syn(U1) ⊆ � sem(U).

Thus, $ (U1) ⊆ $sem(U) and � (U1) ⊆ � sem(U) is trivial.

When E ∈ � (U2) − � (U1). Let E ∈ � (U2) − � (U1). Consider an interpretation � where

� ("1) = {(1, . . . , 1; 1, . . . , 1)}

and similarly � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that 2 on E and 1 elsewhere. Also, let a2 be the

valuation that is 1 on $ (U1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ÈU1É� . Further, (a1, a2) ∉ ÈU2É� .

Indeed, since E ∈ � (U2) then a1 should have the value of 1 on E for (a1, a2) to be in ÈU2É� . Take a
′
1 := a1 [E : 1]. We

establish that E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto, suppose that (a

′
1, a

′
2) ∈

ÈUÉ� . Hence, (a
′
1, a

′
2) ∈ ÈU1É� and (a ′1, a

′
2) ∈ ÈU2É� . Indeed, (a

′
1, a

′
2) ∈ ÈU1É� whence a ′1 = a ′2. Clearly, (a

′
1, a

′
1) ∈

ÈU2É� showing that (a ′1, a
′
1) ∉ ÈUÉ� as desired. Therefore, E ∈ � sem(U).

When E ∈ ($ (U1) △$ (U2)) − (� (U1) ∪ � (U2)). Let E ∈ ($ (U1) △$ (U2)) − (� (U1) ∪ � (U2)). Consider an interpretation

� where � ("1) = {(1, . . . , 1; 1, . . . , 1)} and � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 2 on E and 1

elsewhere. Also let a2 be the valuation that is 1 on$ (U1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ÈU1É� .

Furthermore, (a1, a2) ∉ ÈU2É� . In particular, when E ∈ $ (U1) − (� (U1) ∪ � (U2) ∪$ (U2)), we know that a1 (E) = 2 and

a2 (E) = 1. Since E ∉ $ (U2), then (a1, a2) ∉ ÈU2É� . In the other case, when E ∈ $ (U2) − (� (U1) ∪ � (U2) ∪ $ (U1)), we

know that a1 (E) = a2 (E) = 2 since (a1, a2) ∈ ÈU1É� . Consequently, (a1, a2) ∉ ÈU2É� since E ∈ $ (U2) but a2 (E) = 2.

We verify that (a1, a2) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 1]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for

which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto, suppose that (a

′
1, a

′
2) ∈ ÈUÉ� . Hence, (a

′
1, a

′
2) ∈ ÈU1É� and (a ′1, a

′
2) ∈ ÈU2É� . Indeed,

(a ′1, a
′
2) ∈ ÈU1É� whence a ′1 = a ′2. Clearly, (a

′
1, a

′
1) ∈ ÈU2É� showing that (a ′1, a

′
1) ∉ ÈUÉ� as desired. Therefore,

E ∈ � sem(U).

5.6 Composition

Let U be of the form U1 ;U2, where U1 is"1 (Ḡ1; ~̄1) and U2 is"2 (Ḡ2; ~̄2). We distinguish different cases based on whether

"1 or"2 is nullary. If"1 and "2 are both nullary there is nothing to prove.

5.6.1 "1 is nullary, "2 is not. Clearly, ÈUÉ� = ÈU2É� for any interpretation � where � ("1) is not empty. In this

case, � (U1) and $ (U1) are both empty, then we observe that:

• $syn (U) = $ (U2).

• � syn(U) = � (U2).

First, we verify $syn(U) ⊆ $sem(U). Let E ∈ $ (U2). We know that $syn(U2) ⊆ $sem(U2) by induction, then E ∈

$sem(U2). By definition, we know that there is an interpretation � ′ and (a1, a2) ∈ ÈU2É�′ such that a1 (E) ≠ a2 (E).

Take � ′′ to be the interpretation where � ′′ (") = � ′ (") for any " ≠ "1 while � ′′ ("1) is not empty. Clearly,
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(a1, a2) ∈ ÈUÉ�′′ , whence, "1 ≠ "2, (a1, a1) ∈ ÈU1É�′′ by Lemma 5.1, and ÈUÉ�′′ = ÈU2É�′ . It follows then that

E ∈ $sem(U).

Similarly, we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U2). We know that � syn(U2) ⊆ � sem(U2) by induction,

then E ∈ � sem(U2). By definition, we know that there is an interpretation � ′, (a1, a2) ∈ ÈU2É�′ , and a ′1 (E) ≠ a1 (E) such

that (a ′1, a
′
2) ∉ ÈU2É�′ for every valuation a ′2 that agrees with a2 on $

sem (U2).

Take � ′′ to be the interpretation where � ′′ (") = � ′ (") for any " ≠ "1 while � ′′ ("1) is not empty. Clearly,

ÈUÉ�′′ = ÈU2É�′ , whence, "1 ≠ "2. Therefore, $
sem(U2) ⊆ $sem(U). Hence, E ∈ � sem(U). Indeed, (a1, a2) ∈ ÈUÉ�′′

and for any valuation a ′2 if a
′
2 agrees with a2 on $

sem(U), then a ′2 agrees with a2 on $
sem(U2).

5.6.2 "2 is nullary, "1 is not. Clearly, ÈUÉ� = ÈU1É� for any interpretation � where � ("2) is not empty. In this

case, � (U2) and $ (U2) are both empty, then we observe that:

• $syn (U) = $ (U1).

• � syn(U) = � (U1).

First, we verify $syn(U) ⊆ $sem(U). Let E ∈ $ (U1). We know that $syn(U1) ⊆ $sem(U1) by induction, then E ∈

$sem(U1). By definition, we know that there is an interpretation � ′ and (a1, a2) ∈ ÈU1É�′ such that a1 (E) ≠ a2 (E).

Take � ′′ to be the interpretation where � ′′ (") = � ′ (") for any " ≠ "2 while � ′′ ("2) is not empty. Clearly,

(a1, a2) ∈ ÈUÉ�′′ , whence, "1 ≠ "2, (a2, a2) ∈ ÈU2É�′′ by Lemma 5.1, and ÈUÉ�′′ = ÈU1É�′ . It follows then that

E ∈ $sem(U).

Similarly, we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1). We know that � syn(U1) ⊆ � sem(U1) by induction,

then E ∈ � sem(U1). By definition, we know that there is an interpretation � ′, (a1, a2) ∈ ÈU1É�′ , and a ′1 (E) ≠ a1 (E) such

that (a ′1, a
′
2) ∉ ÈU1É�′ for every valuation a ′2 that agrees with a2 on $

sem (U1).

Take � ′′ to be the interpretation where � ′′ (") = � ′ (") for any " ≠ "2 while � ′′ ("2) is not empty. Clearly,

ÈUÉ�′′ = ÈU1É�′ , whence, "1 ≠ "2. Therefore, $
sem(U1) ⊆ $sem(U). Hence, E ∈ � sem(U). Indeed, (a1, a2) ∈ ÈUÉ�′′

and for any valuation a ′2 if a
′
2 agrees with a2 on $

sem(U), then a ′2 agrees with a2 on $
sem(U1).

5.6.3 Neither"1 nor"2 is nullary. Recall the definitions:

• $syn (U) = $ (U1) ∪$ (U2).

• � syn(U) = � (U1) ∪ (� (U2) −$ (U1)).

We first proceed to verify $syn (U) ⊆ $sem(U). Let E ∈ $ (U1) ∪$ (U2). Consider an interpretation � such that

� ("1) = {(1, . . . , 1; 2, . . . , 2), (81, . . . , 8< ; 3, . . . , 3)}

, where 81, . . . , 8< are all the combinations of {1, 2}. Similarly,

� ("2) = {(1, . . . , 1; 2, . . . , 2), (81, . . . , 8= ; 3, . . . , 3)}

, where 81, . . . , 8= are all the combinations of {1, 2}.

Let a1 be the valuation that is 1 everywhere. Also, let a be the valuation that is 2 on$ (U1) and 1 elsewhere. Clearly,

(a1, a) ∈ ÈU1É� . Let a2 be the valuation that is 3 on$ (U2), 2 on$ (U1)−$ (U2), and 1 elsewhere. Clearly, (a1, a2) ∈ ÈUÉ� ,

whence (a, a2) ∈ ÈU2É� . Hence, E ∈ $sem (U). Indeed, a2 (E) ≠ a1(E) for E ∈ $syn (U).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ (� (U2) −$ (U1)). Consider an interpretation � where

� ("1) = {(1, . . . , 1; 1, . . . , 1)} and similarly � ("2) = {(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere.

Clearly, (a1, a1) ∈ ÈUÉ� , whence (a1, a1) ∈ ÈU1É� and (a1, a1) ∈ ÈU2É� .
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Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no valuation a ′2 for which (a ′1, a
′
2) ∈

ÈUÉ� . In particular, when E ∈ � (U1). Clearly, there is no a ′2 such that (a ′1, a
′
2) ∈ ÈU1É� . On the other hand, when

E ∈ � (U2) −$ (U1). Clearly, (a
′
1, a) ∈ ÈU1É� , whence a = a ′1. However, there is no a

′
2 such that (a ′1, a

′
2) ∈ ÈU2É� . Thus,

there is no a ′2 such that (a ′1, a
′
2) ∉ ÈUÉ� as desired. We conclude that E ∈ � sem(U).

5.7 Converse

Let U be of the form U`1 , where U1 := " (Ḡ ; ~̄). Recall the definitions:

• $syn (U) = $ (U1).

• � syn(U) = � (U1) ∪$ (U1).

We first proceed to verify $syn (U) ⊆ $sem(U). Let E ∈ $ (U1). Consider an interpretation � where

� (") = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 2 on $ (U1) and 1 elsewhere. Also let a2 be the valuation that is 1 everywhere. Clearly,

(a1, a2) ∈ ÈUÉ� since (a2, a1) ∈ ÈU1É� . Therefore, E ∈ $sem (U) since a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ $ (U1). Consider the same interpretation � and the

same valuations a1 and a2. We established that (a1, a2) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 3]. We establish that E ∈ � sem(U) by

arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, when E ∈ $ (U1), then a1 have to be 2 on E . In the other

case, when E ∈ � (U1) − $ (U1), then a1 have to be 1 on E . Thus, there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� as desired.

Consequently, E ∈ � sem(U).

5.8 Le� Cylindrification

Let U be of the form cyl;G (U1), where U1 := " (Ḡ ; ~̄). Recall the definitions:

• $syn (U) = $ (U1) ∪ {G}.

• � syn(U) = � (U1) − {G}.

We first proceed to verify $syn(U) ⊆ $sem (U). Let E ∈ $ (U1) ∪ {G}. Consider an interpretation � where � (") =

{(1, . . . , 1; 2, . . . , 2)}. Let a1 be the valuation that is 3 on G and 1 elsewhere. Also let a2 be the valuation that is 2 on

$ (U1) and 1 everywhere else. Clearly, (a1, a2) ∈ ÈUÉ� since (a1[G : 1], a2) ∈ ÈU1É� . Therefore, E ∈ $sem (U) since

a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) − {G}. Consider the same interpretation � and the

same valuations a1 and a2. We established that (a1, a2) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 2]. We establish that E ∈ � sem(U)

by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, this is true since E ∈ � (U1) − {G}. Consequently,

E ∈ � sem(U).

5.9 Right Cylindrification

Let U be of the form cylAG (U1), where U1 := " (Ḡ ; ~̄). Recall the definitions:

• $syn (U) = $ (U1) ∪ {G}.

• � syn(U) = � (U1).

We first proceed to verify $syn(U) ⊆ $sem (U). Let E ∈ $ (U1) ∪ {G}. Consider an interpretation � where � (") =

{(1, . . . , 1; 2, . . . , 2)}. Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on$ (U1) and on
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G and 1 everywhere else. Clearly, (a1, a2) ∈ ÈUÉ� since either (a1, a2[G : 1]) ∈ ÈU1É� or (a1, a2) ∈ ÈU1É� . Therefore,

E ∈ $sem(U) since a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1). Consider the same interpretation � and the same

valuations a1 and a2. We established that (a1, a2) ∈ ÈUÉ� . Take a
′
1 := a1 [E : 2]. We establish that E ∈ � sem(U) by

arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, this is true since E ∈ � (U1). Consequently, E ∈ � sem(U).

5.10 Le� Selection

Let U be of the form f lG=~ (U1), where U1 := " (D̄; F̄ ), D̄ = D1, . . . , D=, and F̄ = F1, . . . ,F< . We distinguish different

cases based on whether G =syn ~.

When G and ~ are the same variable (G =syn ~). Recall the definitions in this case:

• $syn (U) = $ (U1).

• � syn(U) = � (U1).

We proceed to verify that$syn (U) ⊆ $sem(U) and � syn(U) ⊆ � sem(U). Indeed, this is true since ÈUÉ� = ÈU1É� for any

interpretation � because of G =syn ~.

When G and ~ are different variables (G ≠syn ~). Recall the definitions in this case:

• $syn (U) := $ (U1).

• � syn(U) := � (U1) ∪ {G,~}.

We first proceed to verify $syn (U) ⊆ $sem(U). Let E ∈ $ (U1). Consider an interpretation � where

� (") = {(1, . . . , 1; 2, . . . , 2)}.

Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on $ (U1) and 1 everywhere else.

Clearly, (a1, a2) ∈ ÈUÉ� since (a1, a2) ∈ ÈU1É� and a1 (G) = a1 (~). Therefore, E ∈ $sem(U) since a1(E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ {G,~}. Consider an interpretation � where � ("1) =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É�

and a1 (G) = a1 (~). Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which

(a ′1, a
′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U1), it is clear that there is no a ′2 such that (a ′1, a

′
2) ∈ ÈU1É� . In the

other case, when E is either G or ~, there is no a ′2 such that (a ′1, a
′
2) ∈ ÈUÉ� . Indeed, this is true since G ≠syn~ and

a ′1 (G) ≠ a ′1 (~). Consequently, E ∈ � sem(U).

5.11 Right Selection

Let U be of the form frG=~ (U1), where U1 := " (D̄; F̄ ), D̄ = D1, . . . , D=, and F̄ = F1, . . . ,F< . We distinguish different

cases based on whether G =syn ~.

When G and ~ are the same variable (G =syn ~). Recall the definitions in this case:

• $syn (U) = $ (U1).

• � syn(U) = � (U1).

We proceed to verify that$syn (U) ⊆ $sem(U) and � syn(U) ⊆ � sem(U). Indeed, this is true since ÈUÉ� = ÈU1É� for any

interpretation � because of G =syn ~.
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When G and ~ are different variables (G ≠syn ~). Recall the definitions in this case:

• $syn (U) := $ (U1).

• � syn(U) := � (U1) ∪ ({G,~} −$ (U1)).

We first proceed to verify $syn (U) ⊆ $sem(U). Let E ∈ $ (U1). Consider an interpretation � where

� (") = {(81, . . . , 8=; 2, . . . , 2)}

such that 8 9 = 2 ifD 9 is either G or~ andD 9 ∉ $ (U1), otherwise,D 9 = 1. Let a1 be the valuation that is 2 on G if G ∉ $ (U1),

2 on ~ if ~ ∉ $ (U1), and 1 everywhere. Also let a2 be the valuation that is 2 on $ (U1) and agrees with a1 everywhere

else. Clearly, (a1, a2) ∈ ÈUÉ� since (a1, a2) ∈ ÈU1É� and a2(G) = a2 (~). Therefore, E ∈ $sem(U) since a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ {G,~}. Consider an interpretation � where � ("1) =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É�

and a1 (G) = a1 (~). Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which

(a ′1, a
′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U1), it is clear that there is no a

′
2 such that (a ′1, a

′
2) ∈ ÈU1É� . Now we need

to verify the same when E is G or ~ and E ∉ � (U1). Thereto, suppose (a
′
1, a

′
2) ∈ ÈUÉ� . In the case of E is G and G ∉ � (U1),

this is only possible when G ∉ $ (U1). Therefore, a
′
2 (G) = a ′1 (G) = 2 but a ′2 (~) = 1 whether ~ ∈ $ (U1) or not. Hence,

(a ′1, a
′
2) ∉ ÈUÉ� since G ≠syn ~ and a ′2 (G) ≠ a ′2 (~). The case when E is ~ and ~ ∉ � (U1) is symmetric. Consequently,

E ∈ � sem(U).

5.12 Le�-to-Right Selection

Let U be of the form f lrG=~ (U1), where U1 := " (D̄; F̄ ), D̄ = D1, . . . , D=, and F̄ = F1, . . . ,F< . We distinguish different

cases based on whether G =syn ~ and ~ ∈ $ (U1).

When G =syn ~ and ~ ∈ $ (U1). Recall the definitions in this case:

• $syn (U) = $ (U1) − {G}.

• � syn(U) = � (U1) ∪ {G}.

In what follows, since G =syn ~ we will refer to both of them with G . We first proceed to verify $syn (U) ⊆ $sem(U).

Let E ∈ $ (U1) − {G}. Consider an interpretation � such that � (") = {(1, . . . , 1;>1, . . . , ><)} where > 9 = 1 if F 9 = ~,

otherwise > 9 = 2 . Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on $ (U1) − {G}

and 1 everywhere else. Clearly, (a1, a2) ∈ ÈUÉ� since (a1, a2) ∈ ÈU1É� and a1 (G) = a2 (G). Therefore, E ∈ $sem(U)

since a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ {G}. Consider an interpretation � where � (") =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É� .

Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto,

suppose that (a ′1, a
′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U1) it is clear that (a

′
1, a

′
2) ∉ ÈU1É� . On the other hand, when

E = G and G ∈ $ (U1) − � (U1), clearly a
′
1 (G) = 2 ≠ 1 = a ′2 (G). Consequently, E ∈ � sem(U).

When G =syn ~ and ~ ∉ $ (U1). Recall the definitions in this case:

• $syn (U) = $ (U1).

• � syn(U) = � (U1).

In what follows, since G =syn ~ we will refer to both of them with G . We proceed to verify $syn(U) ⊆ $sem(U) and

� syn(U) ⊆ � sem(U). Indeed, this is true since ÈUÉ� = ÈU1É� for any interpretation� because of G =syn ~ and G ∉ $ (U1).
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When G ≠syn ~ and ~ ∈ $ (U1). Recall the definitions in this case:

• $syn (U) = $ (U1).

• � syn(U) = � (U1) ∪ {G}.

We first proceed to verify $syn(U) ⊆ $sem(U). Let E ∈ $ (U1). Consider an interpretation � such that � (") =

{(81, . . . , 8= ;>1, . . . , ><)} where 8 9 = 2 if D 9 = G , otherwise 8 9 = 1. Also, > 9 = 3 if F 9 = G , otherwise > 9 = 2 . Let

a1 be the valuation that is 2 on G and 1 everywhere else. Also let a2 be the valuation that is 2 on $ (U1) − {G}, 3 on G

if G ∈ $ (U1) and agrees with a1 everywhere else. Clearly, (a1, a2) ∈ ÈUÉ� since (a1, a2) ∈ ÈU1É� and a1 (G) = a2 (~).

Therefore, E ∈ $sem (U). Indeed, in both cases whether G ∈ $ (U1) or not, a1(E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ {G}. Consider an interpretation � where � (") =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É� .

Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto,

suppose that (a ′1, a
′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U1) it is clear that (a

′
1, a

′
2) ∉ ÈU1É� . On the other hand, when

E = G and ~ ∈ $ (U1), clearly a
′
1 (G) = 2 ≠ 1 = a ′2 (~). Consequently, E ∈ � sem(U).

When G ≠syn ~ and ~ ∉ $ (U1). Recall the definitions in this case:

• $syn (U) = $ (U1).

• � syn(U) = � (U1) ∪ {G,~}.

We first proceed to verify $syn(U) ⊆ $sem(U). Let E ∈ $ (U1). Consider an interpretation � such that � (") =

{(1, . . . , 1; 2, . . . , 2)}. Let a1 be the valuation that is 1 everywhere. Also let a2 be the valuation that is 2 on $ (U1)

and 1 everywhere else. Clearly, (a1, a2) ∈ ÈUÉ� since (a1, a2) ∈ ÈU1É� and a1(G) = a2 (~). Indeed, this is true since

~ ∉ $ (U1), then a1 (~) = a2 (~). Therefore, E ∈ $sem(U) since a1 (E) ≠ a2 (E).

Now we proceed to verify � syn(U) ⊆ � sem(U). Let E ∈ � (U1) ∪ {G,~}. Consider an interpretation � where � (") =

{(1, . . . , 1; 1, . . . , 1)}. Let a1 be the valuation that is 1 everywhere. Clearly, (a1, a1) ∈ ÈUÉ� since (a1, a1) ∈ ÈU1É� .

Take a ′1 := a1 [E : 2]. We establish that E ∈ � sem(U) by arguing that there is no a ′2 for which (a ′1, a
′
2) ∈ ÈUÉ� . Thereto,

suppose that (a ′1, a
′
2) ∈ ÈUÉ� . In particular, when E ∈ � (U1) it is clear that (a

′
1, a

′
2) ∉ ÈU1É� . On the other hand, when

E = G or E = ~, clearly a ′1 (G) ≠ (a ′1 (~) = a ′2 (~)) since ~ ∉ $ (U1) and G ≠syn ~. Consequently, E ∈ � sem(U).

6 OPTIMALITY THEOREM PROOF

In this section, we prove Theorem 3.28. Thus, we would like to show that

� syn(U) ⊆ � (U) and $syn(U) ⊆ $ (U).

for any LIF expression U , assuming that (� ,$) is a sound and compositional input–output definition. The proof is by

induction on the structure of U .

Atomic Modules. For atomic module expressions U , this follows directly from Theorem 3.27.

Identity. For U = id, this is immediate since � syn(id) = $syn(id) = ∅.

Binary Operators. For U = U1 ⊡ U2, where ⊡ is a binary operator, we define two atomic module expressions U ′1 =

"1 (Ḡ ; ~̄) and U
′
2 = "2 (D̄, Ē) where Ḡ = � (U1), ~̄ = $ (U1), D̄ = � (U2), and Ē = $ (U2) with "8 distinct module names of

the right arity.
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Since (� ,$) is sound, we know that the following holds for 8 ∈ {1, 2}:

� (U8) = � (U ′8 ) = � syn(U ′8 ) and $ (U8) = $ (U ′8 ) = $syn (U ′8 ). (1)

Moreover by soundness and Proposition 3.20, we know that:

� sem(U ′1 ⊡ U
′
2) ⊆ � (U ′1 ⊡ U

′
2) and $

sem(U ′1 ⊡ U
′
2) ⊆ $ (U ′1 ⊡ U

′
2). (2)

From the Precision Theorem, we know that:

� syn(U ′1 ⊡ U
′
2) = � sem(U ′1 ⊡ U

′
2) and $

syn(U ′1 ⊡ U
′
2) = $sem(U ′1 ⊡ U

′
2). (3)

From the compositionality of (� ,$), we know that

� (U ′1 ⊡ U
′
2) = � (U1 ⊡ U2) and $ (U ′1 ⊡ U

′
2) = $ (U1 ⊡ U2). (4)

By combining Equations (2–4), we find that:

� syn(U ′1 ⊡ U
′
2) ⊆ � (U1 ⊡ U2) and $

syn(U ′1 ⊡ U
′
2) ⊆ $ (U1 ⊡ U2). (5)

We now claim the following

� syn(U1 ⊡ U2) ⊆ � syn(U ′1 ⊡ U
′
2) and $

syn(U1 ⊡ U2) ⊆ $syn (U ′1 ⊡ U
′
2). (6)

If we prove our claim, then combining Equations (5–6) establishes our theorem for binary operators.

First, we prove our claim for the inductive cases for outputs of the different binary operators. From the inductive

hypothesis and Equation (1), we know that for 8 ∈ {1, 2}:

$syn(U8 ) ⊆ $ (U8) = $syn (U ′8 )

Hence, it is clear that:

• $syn (U1) ∪$syn(U2) is a subset of$
syn (U ′1) ∪$syn(U ′2), which settles the cases when ⊡ ∈ {∪, ;} since$syn (V ⊡

W) = $syn (V) ∪$syn (W) for any LIF expressions V and W .

• $syn (U1) ∩$syn(U2) is a subset of$
syn(U ′1) ∩$syn (U ′2), which settles the case when ⊡ is ∩ since $syn(V ⊡W) =

$syn (V) ∩$syn(W) for any LIF expressions V and W .

• $syn (U1) is a subset of $
syn(U ′1), which settles the case when ⊡ is − since $syn (V ⊡ W) = $syn (V) for any LIF

expressions V and W .

Now, we consider the inductive cases for the inputs of the different binary operators. Similar to the outputs, we

know that for 8 ∈ {1, 2}:

� syn(U8 ) ⊆ � (U8) = � syn(U ′8 )

Consequently,

• when G ∈ � syn(U1) ∪ (� syn(U2) −$syn(U1)), we consider the following cases:

– if G ∈ � syn(U1), then it is clear that G ∈ � syn(U ′1);

– if G ∈ (� syn(U2) − $syn(U1)), then we know that G ∈ � syn(U ′2). Moreover, since G ∉ $syn (U1), we know by

soundness of (� syn,$syn) that G ∉ $sem (U1). Now, we differentiate between two cases

∗ when G ∉ $syn(U ′1), it is clear that G ∈ (� syn(U ′2) −$syn(U ′1)).

∗ when G ∈ $syn(U ′1), we know from Equation (1) that G ∈ $ (U1). From Lemma 3.22 and Equation (1), it

follows that G ∈ � (U1) and G ∈ � syn(U ′1).
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In all cases, we verify that G ∈ � syn(U ′1)∪(�
syn(U ′2)−$

syn (U ′1)). This settles the case when⊡ is ; since �
syn(V⊡W) =

� syn(V) ∪ (� syn(W) −$syn(V)) for any LIF expressions V and W .

• when G ∈ � syn(U1) ∪ � syn(U2) ∪ ($syn (U1) △$syn (U2)), we consider the following cases:

– if G ∈ � syn(U8 ) for some 8 , then it is clear that G ∈ � syn(U ′8 ).

– if G ∈ $syn(U8 ) −$syn (U 9 ) for 8 ≠ 9 , we know that G ∈ $syn (U ′8 ). Since G ∉ $syn(U 9 ), we know by soundness

that G ∉ $sem(U 9 ). Now, we differentiate between two cases

∗ when G ∉ $syn(U ′9 ), it is clear that G ∈ ($syn(U ′8 ) △$syn(U ′9 )).

∗ when G ∈ $syn(U ′9 ), we know from Equation (1) that G ∈ $ (U 9 ). From Lemma 3.22 and Equation (1), it

follows that G ∈ � (U 9 ) and G ∈ � syn(U ′9 ).

In all cases, we verify that G ∈ � syn(U ′1) ∪ � syn(U ′2) ∪ ($syn(U ′1) △ $syn(U ′2)). This settles the cases when ⊡ ∈

{∪,∩,−} since � syn(V ⊡ W) = � syn(V) ∪ � syn(W) ∪ ($syn(V) △$syn (W)) for any LIF expressions V and W .

Unary Operators. We follow a similar approach for unary operators. For U = �U1, where � is a unary operator, we

define one atomic module expression U ′1 = "1 (Ḡ ; ~̄) where Ḡ = � (U1), and ~̄ = $ (U1).

Since (� ,$) is sound, we know that the following holds:

� (U1) = � (U ′1) = � syn(U ′1) and $ (U1) = $ (U ′1) = $syn (U ′1). (7)

Moreover, we know that:

� sem(�U ′1) ⊆ � (�U ′1) and $
sem(�U ′1) ⊆ $ (�U ′1). (8)

From the precision theorem, we know that:

� syn(�U ′1) = � sem(�U ′1) and $
syn(�U ′1) = $sem(�U ′1). (9)

From the compositionality of (� ,$), we know that

� (�U ′1) = � (�U1) and $ (�U ′1) = $ (�U1). (10)

By combining Equations (8–10), we find that:

� syn(�U ′1) ⊆ � (�U1) and $
syn(�U ′1) ⊆ $ (�U1). (11)

We now claim the following

� syn(�U1) ⊆ � syn(�U ′1) and $
syn(�U1) ⊆ $syn (�U ′1). (12)

If we prove our claim, then combining Equations (11–12) establishes our theorem for unary operators.

Proving our claim for the inductive cases for outputs of the different unary operators follows directly from the

inductive hypothesis and Equation (7), which states that:

$syn(U1) ⊆ $ (U1) = $syn(U ′1).

Indeed, $syn(�U1) and $
syn(�U ′1), respectively, simply equal$syn (U1) and $

syn(U ′1), except for the possible addition

or removal of some fixed variable that depends only on �.

Now, we consider the inductive cases for inputs. Similar to the outputs, we know that:

� syn(U1) ⊆ � (U1) = � syn(U ′1).
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Here, we only discuss the cases for f lrG=~ and frG=~ as all the other cases again follow directly from the above inclusion

and the definition of � syn.

We begin by the cases for f lrG=~ . The cases are:

• when ~ ∈ $syn(U1), we have

� syn(f lrG=~ (U1)) = � syn(U1) ∪ {G} ⊆ � syn(U ′1) ∪ {G} = � syn(f lrG=~ (U
′
1)).

• when ~ ∉ $syn(U1) and G =syn ~, we have

� syn(f lrG=~ (U1)) = � syn(U1) ⊆ � syn(U ′1) ⊆ � syn(f lrG=~ (U
′
1)).

• when ~ ∉ $syn(U1) and G ≠syn ~, by definition

� syn(f lrG=~ (U1)) = � syn(U1) ∪ {G,~}.

In case ~ ∉ $syn(U ′1), we are done since � syn(U1) ∪ {G,~} ⊆ � syn(U ′1) ∪ {G,~} = � syn(f lrG=~ (U
′
1)). Otherwise,

~ ∈ $syn(U ′1) in which case � syn(f lrG=~ (U
′
1)) = � syn(U ′1) ∪ {G}. What remains to show is that ~ ∈ � syn(U ′1). By

Equation 7, we have ~ ∈ $ (U1). Moreover, ~ ∉ $sem (U1) since ~ ∉ $syn(U1). By Lemma 3.22 and Equation 7,

we obtain ~ ∈ � (U1) = � syn(U ′1) as desired.

Finally, we consider the case for frG=~ when G ≠syn~. The case when G =syn ~ follows directly. By definition,

� syn(frG=~ (U1)) = � syn(U1) ∪ ({G,~} −$syn(U1)).

We can focus on I ∈ {G,~}. If I ∈ $syn(U1) or I ∉ $syn (U ′1), we are done. Now, consider the case when I ∉ $syn (U1),

but I ∈ $syn (U ′1). Similar to our reasoning for the last case in f lrG=~ , we can show that I ∈ � syn(U ′1), whence, I ∈

� syn(f lrG=~ (U
′
1)) by definition.

7 PRIMITIVITY OF COMPOSITION

We now turn our attention to the study of composition in LIF. Indeed, LIF has a rich set of logical operators already,

plus an explicit operator (;) for sequential composition. This begs the question whether ; is not already definable in

terms of the other operators.

We begin by showing that for “well-behaved” expressions (all subexpressions have disjoint inputs and outputs)

composition is redundant in LIF: every well-behaved LIF expression is equivalent to a LIF expression that does not

use composition. As a corollary, we will obtain that composition is generally redundant if there is an infinite supply

of variables. In contrast, in the bounded variable case, we will show that composition is primitive in LIF. Here, we use

LIFnc to denote the fragment of LIF without composition.

7.1 When Inputs and Outputs are Disjoint, Composition is Non-Primitive

Our first non-primitivity result is based on inputs and outputs.We say that a LIF expression V is io-disjoint if$sem(V)∩

� sem(V) = ∅. The following theorem implies that if U , V , and all their subexpressions are io-disjoint, we can rewrite U ;V

into a LIFnc expression. Of course, this property also holds in case $syn(V) ∩ � syn(V) = ∅ since the syntactic inputs

and outputs overapproximate the semantic ones.

Theorem 7.1. Let U and V be LIF expressions such that V is io-disjoint. Then, U ; V is equivalent to

W := cylA
$sem (V) (U) ∩ cyl;

$sem (U ) (V).
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Intuitively, the reason why this expression works is as follows: we cylindrify U on the right. In general, this might

result in a loss of information, but since we are only cylindrifying outputs of V , this means we only forget the informa-

tion that would be overwritten by V anyway. Since the inputs and outputs of V are disjoint, V does not need to know

what U did to those variables in order to determine its own outputs. We also cylindrify V on the left on the outputs of U ,

since these values will be set by U . One then still needs to be careful in showing that the intersection indeed removes

all artificial pairs, by exploiting the fact that expressions are inertial outside their output.

Proof. Let � be an interpretation. First, we show that ÈU ; VÉ� ⊆ ÈWÉ� . If (a1, a2) ∈ ÈU ; VÉ� , then there is a a3

such that (a1, a3) ∈ ÈUÉ� and (a3, a2) ∈ ÈVÉ� . By definition of the outputs of V , a3 and a2 agree outside $sem(V).

Hence, (a1, a2) ∈ ÈcylA
$sem (V)

(U)É� . Similarly, we can show that (a1, a2) ∈ Ècyl;
$sem (U )

(V)É� .

For the other inclusion, assume that (a1, a2) ∈ ÈWÉ� . Using the definition of the semantics of cylindrification, we

find a ′2 such that (a1, a
′
2) ∈ ÈUÉ� and a2 agrees with a ′2 outside $sem (V) and we find a a ′1 such that a ′1 agrees with

a1 outside $sem(U) and (a ′1, a2) ∈ ÈVÉ� . Using the definition of output of V , we know that also a ′1 agrees with a2

outside the outputs of V , thus a ′1 and a
′
2 agree outside the outputs of V , and hence definitely on the inputs of V . We can

apply Proposition 3.6 thanks to the (� syn,$syn) soundness, � syn(U) is finite and determines $syn(U), which contains

$sem(U). So we guarantee that V is determined by its inputs, whence, there exists a a ′′2 such that (a ′2, a
′′
2 ) ∈ ÈVÉ�

where a ′′2 = a2 on the outputs of V and, since V is inertial outside its outputs, a ′′2 = a ′2 outside the outputs of V . But we

previously established that a ′2 agrees with a2 outside the outputs of V , whence a
′′
2 = a2. Summarized we now found

that (a1, a
′
2) ∈ ÈUÉ� and (a ′2, a2) ∈ ÈVÉ� , whence, (a1, a2) ∈ ÈU ; VÉ� as desired. �

Given the undecidability results of Section 3, Theorem 7.1 is not effective. We can however give the following

syntactic variant.

Theorem 7.2. Let U and V be LIF expressions such that $syn (V) ∩ � syn(V) = ∅. Then, U ; V is equivalent to

cylA
$syn (V) (U) ∩ cyl;

$syn (U ) (V).

Proof. Since � syn(V) ∩ $syn (V) = ∅, we obtain by Lemma 3.22 that $sem (V) = $syn (V). Thus, we alternatively

show that U ; V is equivalent to the expression

cylA
$sem (V) (U) ∩ cyl;

$syn (U ) (V).

We can also see that V is io-disjoint, since � syn(V) ∩$syn(V) = ∅ and (� syn, $syn) is sound. Thus, if we show that

ÈcylA
$sem (V) (U) ∩ cyl;

$syn (U ) (V)É� = ÈcylA
$sem (V) (U) ∩ cyl;

$sem (U ) (V)É�

for any interpretation � , we can apply Theorem 7.1 and we are done.

Thereto, let � be an interpretation. By soundness, it is clear that

Ècyl;
$sem (U ) (V)É� ⊆ Ècyl;

$syn (U ) (V)É� , so ÈcylA
$sem (V) (U) ∩ cyl;

$sem (U ) (V)É� ⊆ ÈcylA
$sem (V) (U) ∩ cyl;

$syn (U ) (V)É� .

What remains to show is that the other inclusion also holds. Thereto, let (a1, a2) ∈ ÈcylA
$sem (V) (U)∩cyl

;
$syn (U ) (V)É� .

Clearly, (a1, a2) ∈ ÈcylA
$sem (V)

(U)É� and (a1, a2) ∈ Ècyl;
$syn (U )

(V)É� . From (a1, a2) ∈ ÈcylA
$sem (V)

(U)É� , we can see

that a1 = a2 outside $sem(U) ∪ $sem (V). From (a1, a2) ∈ Ècyl;
$syn (U )

(V)É� , we can see that there is a valuation a ′1
such that (a ′1, a2) ∈ ÈVÉ� and a ′1 = a1 outside $

syn (U). Define a ′′1 to be the valuation a ′1 [a1 |$sem (V) ]. By construction

and io-disjointness of V , we see that a ′′1 = a ′1 on � sem(V) and outside $sem(V). By Proposition 3.9, we obtain that

(a ′′1 , a2) ∈ ÈVÉ� . Define a to be the valuation a
′′
1 [a1 |$sem (U ) ]. By the semantics of cylindrification, we see that (a, a2) ∈
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Ècyl;
$sem (U )

(V)É� . Consequently, a = a2 outside $sem (U) ∪ $sem(V). Before, we established that a1 and a2 agree

outside the same set of variables. So we obtain that a = a2 = a1 outside $sem (U) ∪ $sem(V). Moreover, we know

by construction that a = a ′′1 = a1 on $sem(V) ∪ $sem(U). Then, a is the same valuation as a1. So we obtain that

(a1, a2) ∈ ÈcylA
$sem (V)

(U) ∩ cyl;
$sem (U )

(V)É� as desired. �

Example 7.3 (Example 3.15 continued). Consider the expression

U = %1 (G ;G) ; %1 (G ;~).

with the interpretation � in Example 3.15. In that case, U first increments G by one and subsequently sets the value of

~ to one higher than G . Stated differently,

ÈUÉ� =
{
(a1, a2) | a2 (G) = a1 (G) + 1 ∧ a2 (~) = a2 (G) + 1 and a1 (I) = a2 (I) for I ∉ {G,~}

}

Theorem 7.1 tells us that U is equivalent to

cylA~ (%1 (G ; G)) ∩ cyl;G (%1 (G ;~)).

We see that

ÈcylA~ (%1 (G ;G))É� =
{
(a1, a2) | a2 (G) = a1 (G) + 1and a1 (I) = a2 (I) for I ∉ {G,~}

}
,

Ècyl;G (%1 (G ;~))É� =
{
(a1, a2) | a2 (~) = a2 (G) + 1and a1 (I) = a2 (I) for I ∉ {G,~}

}
.

The intersection of these indeed equals ÈUÉ� .

Theorem 7.1 no longer holds in general if V can have overlapping inputs and outputs, as the following example

illustrates.

Example 7.4. Consider the expression

U := %1 (G ; G) ; %1 (G ; G).

with the interpretation� as in the example above. In this case,U increments the value of G by two. However, ÈcylAG (%1 (G ;G))É�

and Ècyl;G (%1 (G ; G))É� are both equal to

{(a1, a2) | a1 (I) = a2 (I) for all I ≠ G}.

Hence, indeed, in this case U is not equivalent to

cylAG (%1 (G ;G)) ∩ cyl;G (%1 (G ; G)).

7.2 If V is Infinite, Composition is Non-Primitive

We know from Theorem 7.1 that if V is io-disjoint, U and V can be composed without using the composition operator.

If V is sufficiently large, we can force any expression V to be io-disjoint by having V write its outputs onto unused

variables instead of its actual outputs. The composition can then be eliminated following Theorem 7.1, after which we

move the variables back so that the “correct” outputs are used. What we need to show is that “moving the variables

around”, as described above, is expressible without composition. As before, we define the operators on BRVs but their

definition is lifted to LIF expressions in a straightforward way.
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Definition 7.5. Let � be a BRV and let Ḡ and ~̄ be disjoint tuples of distinct variables of the same length. The right

move is defined as follows:

mvrḠ→~̄ (�) := {(a1, a
′
2) | a

′
2 (Ḡ) = a1 (Ḡ) and ∃a2 : (a1, a2) ∈ � and a ′2 (~̄) = a2 (Ḡ) and a2 = a ′2 outside Ḡ ∪ ~̄}.

This operation can be expressed without composition, which we show in the following lemma:

Lemma 7.6. Let Ḡ and ~̄ be disjoint tuples of distinct variables of the same length. Then, for any BRV �, we have

mvrḠ→~̄ (�) = f lrḠ=Ḡ cyl
A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (�).

Proof. We give a “proof by picture”. Consider an arbitrary (a1, a2) ∈ �:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ 3̄ 4̄ 5̄

We will verify that when we apply the LHS and the RHS on this pair of valuations, we obtain identical results.

For the LHS, we see that mvrḠ→~̄ (�) yields the following pair of valuations when applied on (a1, a2):

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ 0̄ 3̄ 5̄

Now, we check the RHS. We see that the following set of pairs of valuations is the result of cylA~̄ (�) when applied

on (a1, a2):

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ 3̄ ∗ 5̄

Here the asterisk denotes a “wildcard”, i.e., any valuation on ~̄ is allowed.

Then, we see that frḠ=~̄cyl
A
~̄ (�) yields:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ 3̄ 3̄ 5̄

Next, we see that cylAḠf
r
Ḡ=~̄cyl

A
~̄ (�) yields:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ ∗ 3̄ 5̄

Finally, we see that f lrḠ=Ḡ cyl
A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (�) yields the following pair of valuations which is the same as the result of

the LHS.

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ 1̄ 2̄ 0̄ 3̄ 5̄

�
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Lemma 7.7. Let � and � be BRVs and let Ḡ and ~̄ be disjoint tuples of distinct variables of the same length such that all

variables in ~̄ are inertially cylindrified in � and �. In that case:

� ; � = mvr~̄→Ḡ (� ; mvrḠ→~̄ (�))

What this lemma shows is that we can temporarily move certain variables (the Ḡ) to unused variables (the ~̄) and

then move them back. The proof of this lemma is:

Proof of Lemma 7.7. Again we give a proof by picture. Let the left be a generic pair of valuations that belongs to

�, while the one on the right be a generic one that belongs to �. The “−” here represents inertial cylindrification.

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ − 1̄ 2̄ − 3̄

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

4̄ − 5̄ 6̄ − ℎ̄

For the LHS, we see that composition can only be applied if 2̄ = 4̄ and 3̄ = 5̄ . Under this assumption, we get that

� ; � yields the following:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ − 1̄ 6̄ − ℎ̄

Now, we check the RHS. We see that mvrḠ→~̄ (�) yields the following when applied on the generic pair belonging

to �:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

4̄ ∗ 5̄ 4̄ 6̄ ℎ̄

To apply the composition in the RHS, we must have 2̄ = 4̄ and 3̄ = 5̄ , which are the same restrictions we had in

applying the composition in the LHS, so the expression � ; mvrḠ→~̄ (�) yields:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ ∗ 1̄ 4̄ 6̄ ℎ̄

Finally, applying the last move operation, mvr~̄→Ḡ (� ; mvrḠ→~̄ (�)) yields:

Ḡ ~̄ A4BC Ḡ ~̄ A4BC

0̄ − 1̄ 6̄ − ℎ̄

which is clearly identical to what we had from the LHS. �

This finally brings us to the main result of the current subsection.

Theorem 7.8. If V is infinite, then every LIF expression is equivalent to a LIFnc expression.

Proof. We prove this theorem by induction on the number of compositions operators in a LIF expression W . The

base case (no composition operators), is trivial. For the inductive case, consider an expression [ containing at least one

composition operator. We show how to rewrite [ equivalently with one composition operator less. Thereto, take any

subexpression U ; V such that U and V are LIFnc expressions. We eliminate this composition as follows. Choose a tuple
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of variables ~̄ of the same length as$syn (V), such that ~̄ does not occur in W . In that case, ~̄ is inertially cylindrified in

U and in V , and hence, Lemma 7.7 yields that U ; V is equivalent to

mvr
~̄→$syn (V) (U ; mvr

$syn (V)→~̄
(V)).

We will next show that mvr
$syn (V)→~̄

(V) is io-disjoint. Indeed, from the equivalence in Lemma 7.6 and the soundness

of our definitions, we can see that

$sem (mvr
$syn (V)→~̄

(V)) = $sem(f lrḠ=Ḡ cyl
A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (V)) ⊆ $syn(f lrḠ=Ḡ cyl

A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (V)) = $syn(V) ∪ ~̄.

Moreover, we generally have $sem (mvrḠ→~̄ (W)) ∩ Ḡ = ∅ for any Ḡ and any LIF expression W in which ~̄ is inertially

cylindrified. As a consequence, $sem (mvr
$syn (V)→~̄

(V)) ⊆ ~̄.

Also, we can see that

� sem(mvr
$syn (V)→~̄

(V)) = � sem(f lrḠ=Ḡ cyl
A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (V)) ⊆ � syn(f lrḠ=Ḡ cyl

A
Ḡf

r
Ḡ=~̄cyl

A
~̄ (V)) = � syn(V) ∪$syn(V).

Since ~̄ does not occur in V , we indeed obtain that is mvr
$syn (V)→~̄

(V) io-disjoint.

$sem(mvr
$syn (V)→~̄

(V)) ⊆ ~̄ ∩ (� syn(V) ∪$syn (V)) = ∅.

We can now apply Theorem 7.2 to eliminate the composition yielding the LIFnc expression

mvr
~̄→$syn (V) (cyl

A
$syn (mvr

$syn (V )→~̄
(V)) (U) ∩ cyl;

$syn (U ) (mvr
$syn (V)→~̄

(V))).

�

7.3 If V is Finite, Composition is Primitive

The case that remains is when V is finite. We will show that in this case, composition is indeed primitive by relating

bounded-variable LIF to bounded-variable first-order logic.

Assume V = {G1, . . . , G=}. Since BRVs involve pairs ofV-valuations, we introduce a copy V~ = {~1, . . . , ~=} disjoint

from V. For clarity, we also write VG for V. As usual, by FO[:] we denote the fragment of first-order logic that uses

only : distinct variables. We observe:

Proposition 7.9. For every LIF expression U , there exists an FO[3=] formula iU with free variables in VG ∪ V~ such

that

(a1, a2) ∈ ÈUÉ� iff �, (a1 ∪ a ′2) |= iU ,

where a ′2 is the V~ -valuation such that a ′2 (~8) = a2 (G8 ) for each 8 . Furthermore, if U is a LIFnc expression, iU can be taken

to be a FO[2=] formula.

Proof. The proof is by induction on the structure of U (using Lemma 2.1, we omit redundant operators).

We introduce a third copy VI = {I1, . . . , I=} of V. For every D, E ∈ {G,~, I} we define dDE as follows:

dDE : VD → VE : D8 ↦→ E8

Using these functions, we can translate a valuation a on V = VG to a corresponding valuation on VD with D ∈ {~,I}.

Clearly, a ◦ dDG does this job.
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In the proof, we actually show a stronger statement by induction, namely that for each U and for every D ≠ E ∈

{G,~, I} there is a formula iDEU with free variables in VD ∪ VE in FO[VG ∪V~ ∪VI ] such that for every �:

(a1, a2) ∈ ÈUÉ� iff �, (a1 ◦ dDG ∪ a2 ◦ dEG ) |= iDEU .

Since the notations G , ~, I, D and E are taken, we use notations 0, 1 and 2 for variables.

• U = id. Take iDEU to be
∧=

8=1D8 = E8 .

• U = " (0;1). Take iDEU to be" (dGD (0), dGE (1)) ∧
∧

2∉1
dGD (2) = dGE (2)

• U = U1 ∪ U2. Take i
DE
U to be iDEU1

∨ iDEU2
.

• U = U1 − U2. Take i
DE
U to be iDEU1

∧ ¬iDEU2
.

• U = U1 ; U2. LetF ∈ {G,~, I} − {D, E}. Take iDEU to be ∃F1 . . . ∃F= (iDFU1
∧ iFE

U2
).

• U = U`1 . By induction, iED
U1

exists. This formula can serve as iDEU .

• U = f lr
0=1

(U1). Take i
DE
U to be iDEU1

∧ dGD (0) = dGE (1).

• U = cyl;0 (U1). Take i
DE
U to be ∃dGD (0) i

DE
U1
. �

Now that we have established that LIFnc can be translated into FO[2=], all that is left to do is find a Boolean query

that can be expressed in LIF with = variables, but not in FO[2=]. We find such a query in the existence of a 3=-clique.

We will first show that we can construct a LIFnc expression U2= such that, given an interpretation � interpreting a

binary relation ', ÈU2=É� consists of all 2=-cliques of '. Next, we show how U2= can be used (with composition) to

construct an expression U∃3= such that ÈU∃3=É� is non-empty if and only if ' has a 3=-clique. Since this property

cannot be expressed in FO[2=], we can conclude that composition must be primitive.

To avoid confusion, we recall that a set ! of : data elements is a :-clique in a binary relation ', if any two distinct

0 and 1 in !, we have (0,1) ∈ ' (and also (1, 0) ∈ ').

Proposition 7.10. Suppose that |V| = = with = ≥ 2 and let S = {'} with ar (') = iar (') = 2. There exists a LIF

expression U2= such that

ÈU2=É� = {(a1, a2) | a1 (V) ∪ a2 (V) is a 2=-clique in � (')}.

Proof. Throughout this proof, we identify a pair (a1, a2) of two valuations with the 2= tuple of data elements

a1 (G1, . . . , G=) · a2 (G1, . . . , G=).

Before coming to the actual expression for U2= , we introduce some auxiliary concepts. First, we define

all := cyl;
V
cylA
V
(id).

It is clear that

ÈallÉ� = {(a1, a2) ∈ V × V}.

A first condition for being a 2=-clique is that all data elements are different. It is clear that the expression

U= :=
⋃

G≠~∈V

(
f lG=~ (all) ∪ frG=~ (all)

)
∪

⋃

G,~∈V

f lrG=~ (all)

has the property that ÈU=É� consists of all 2=-tuples where at least one data element is repeated. Hence, ÈU≠É�

consists of all 2=-tuples of distinct data elements, where

U≠ := all − U=
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The second condition for being a 2=-clique is that each two distinct elements are connected by '. In order to check

this, we define the following expressions for each two variables G and ~:

';G,~ := cyl;
V−{G,~ }cyl

A
V
('(G,~; ) ∩ '(~, G ; ))

'AG,~ := cyl;
V
cylA
V−{G,~ } ('(G,~; ) ∩ '(~, G ; ))

';AG,~ := cyl;
V−{G }cyl

A
V−{~ } ('(G,~; ) ∩ '(~, G ; ))

With these definitions, for instance È';AG8 ,G 9
É� consists of all 2=-tuples such that the 8th and the = + 9 th element are

connected (in two directions) in ', and similar properties hold for '; and 'A . From this, it follows that the expression

U2= = U≠ ∩
⋂

G≠~∈V

(
';G,~ ∩ 'AG,~

)
∩

⋂

G,~∈V

';AG,~

satisfies the proposition; it intersects U≠ with all the expressions stating that each two data elements must be (bidirec-

tionally) connected by '. �

Notice that U2= can be used to compute all the 2=-cliques of the input interpretation. We now use U2= to check for

existence of 3=-cliques.

Proposition 7.11. Suppose that |V| = = with = ≥ 2 and let S = {'} with ar (') = iar (') = 2. Define

U∃3= := (U2= ; U2=) ∩ U2= .

Then, for every interpretation � , ÈU∃3=É� is non-empty if and only if � (') has a 3=-clique.

It is well known that existence of a 3=-clique is not expressible in FO[2=] [7]. The above proposition thus immedi-

ately implies primitivity of composition.

Theorem 7.12. Suppose that |V| = = ≥ 2. Then, composition is primitive in LIF. Specifically, no LIFnc expression is

equivalent to the LIF expression U∃3= .

8 RELATED WORK

LIF grew out of theAlgebra ofModular Systems [24], which was developed to provide foundations for programming

from available components. That paper mentions information flows, in connection with input–output behavior in

classical logic, for the first time. The paper also surveys earlier work from the author’s group, as well as other closely

related work.

In a companion paper [1], we report on an application of LIF to querying under limited access patterns, as for

instance offered by web services [21]. That work also involves inputs and outputs, but only of a syntactic nature, and

for a restricted variant of LIF (called “forward” LIF) only. The property of io-disjointness turned also to be important

in that work, albeit for a quite different purpose.

Our results also relate to the evaluationproblem for LIF, which takes as input a LIF expression U , an interpretation

� , and a valuation a1, and where the task is to find all a2 such that (a1, a2) ∈ ÈUÉ� . From our results, it follows that

only the value of a1 on the input variables is important, and similarly we are only interested in the values of each a2

on the output variables. A subtle point, however, is that � may be infinite, and moreover, even if � itself is not infinite,

the output of the evaluation problem may still be. In many cases, it is still possible to obtain a finite representation, for

instance by using quantifier elimination techniques as done in Constraint Databases [17].
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We have defined the semantics of LIF algebraically, in the style of cylindric set algebra [15, 16]. An important

difference is the dynamic nature of BRVs which are sets of pairs of valuations, as opposed to sets of valuations which

are the basic objects in cylindric set algebra.

Our optimality theorem was inspired by work on controlled FO [9], which had as aim to infer boundedness prop-

erties of the outputs of first-order queries, given boundedness properties of the input relations. Since this inference

task is undecidable, the authors defined syntactic inferences similar in spirit to our syntactic definition of inputs and

outputs. They show (their Proposition 4.3) that their definitions are, in a sense, sharp. Note that our optimality theorem

is stronger in that it shows that no other compositional and sound definition can be better than ours. Of course, the

comparison between the two results is only superficial as the inference tasks at hand are very different.

The Logic of Information Flows is similar to dynamic predicate logic (DPL) [12], in the sense that formulas are also

evaluated with respect to pairs of valuations. There is, however a key difference in philosophy between the two logics.

LIF starts from the idea that well-known operators from first-order logic can be used to describe combinations and

manipulations of dynamic systems, and as such provides a means for procedural knowledge in a declarative language.

The dynamics in LIF are dynamics of the described system. Dynamic predicate logic, on the other hand starts from

the observation that, in natural language, operators such as conjunction and existential quantification are dynamic,

where the dynamics are in the process of parsing a sentence, often related to coreference analysis. To the best of our

knowledge, inputs and outputs of expressions have not been studied in DPL.

Since we developed a large part of our work in the general setting of BRVs, and thus of transition systems, we

expect several of our results to be applicable in the context of other formalisms where specifying inputs and outputs is

important, such as API-based programming [5] and synthesis [3, 6], privacy and security, business process modeling

[4], and model combinators in Constraint Programming [11].

9 CONCLUSION AND FUTUREWORK

Declarative modeling is of central importance in the area of Knowledge Representation and Reasoning. The Logic of

Information Flows provides a framework to investigate how, and to what degree, dynamic or imperative features can

be modeled declaratively. In this paper we have focused on inputs, outputs, and sequential composition, as these three

concepts are fundamental to modeling dynamic systems. There are many directions for further research.

Inputs and outputs are not just relevant from a theoretic perspective, but can also have ramifications on computation.

Indeed, they form a first handle to parallelize computation of complex LIF expressions, or to decompose problems.

In this paper, we have worked with a basic set of operations motivated by the classical logic connectives. In order

to provide a fine control of computational complexity, or to increase expressiveness, it makes sense to consider other

operations.

The semantic notions developed in this paper (inputs, outputs, soundness) apply to global BRVs in general, and

hence are robust under varying the set of operations. Moreover, our work delineates and demonstrates a methodology

for adapting syntactic input–output definitions to other operations.

A specific operation that is natural to consider is converse. The converse of a BRV � is defined to be {(a2, a1) |

(a1, a2) ∈ �}. In the context of LIF [26] it can model constraint solving by searching for an input to a module that

produces a desired outcome. When we add converse to LIF with only a single variable (|V| = 1), and the vocabulary

has only binary relations of input arity one, then we obtain the classical calculus of relations [23]. There, converse is

known to be primitive [10]. When the number of variables is strictly more than half of the maximum arity of relations

in the vocabulary, converse is redundant in LIF, as can be shown using similar techniques as used in this paper to show
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redundancy of composition. Investigating the exact number of variables needed for non-primitivity is an interesting

question for further research.

Another direction for further research is to examine fragments of LIF for which the semantic input or output problem

may be decidable, or even for which the syntactic definitions coincide with the semantic definitions.

Finally, an operation that often occurs in dynamic systems is the fixed point construct used by [26]. It remains to

be seen how our work, and the further research directions mentioned above, can be extended to include the fixpoint

operation.
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