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Abstract
In this paper, a data-driven two-lane traffic flow model based on cellular 

automata is proposed. Long Short-Term Memory (LSTM) and Support Vector 
Machine (SVM) are used to learn the characteristics of car following behavior and 
lane changing behavior, respectively, from real operation data of vehicles. Under 
optimal network parameters, the mean absolute errors of the LSTM network for 
training and testing data are only 0.001 and 0.006, respectively; while the prediction 
accuracy of the SVM classifier for both data reaches higher than 0.99. Moreover, 
forward rules and lane changing rules which are more consistent with actual situation 
are designed. The simulation results of the proposed model show that: (1) the new 
model can reflect the first-order phase transition from free flow to synchronized flow; 
(2) the frequency of unsuccessful lane changing is near zero in low-density traffic 
areas, but increases sharply in high-density regions; and (3) the lane changing 
duration and unsuccessful lane changing frequency display similar trends as traffic 
densities increase.
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1. Introduction
In recent years, traffic problems (such as traffic jam, environmental pollution, 

etc.) have become increasingly serious. In order to solve these problems, scholars and 
researchers have developed various traffic flow models, ranging from continuous [1, 
2] and gas-kinetic-based [3-5] to car following [6, 7] and cellular automata [8] 
models. In addition, neural networks and machine learning, especially deep learning 
technology (such as Long Short-Term Memory (LSTM) [10-12] and Support Vector 
Machine (SVM) [9]) have been widely adopted to extract the characteristics of 
driving behavior and the inherent evolution mechanism of traffic flow [9-22].

Among the existing traffic flow models, cellular automata (CA) has been a major 
technique because of the flexibility and transparency of the modelling process [23], 
based on which certain characteristics of traffic flow can be well simulated [24-43]. 
CA includes the famous Nagel-Schreckenberg (NaSch) model as well as a number of 
improved models, such as the BJH, VDR, TT, safety driving model, brake light 
model, KKW, LAI, etc. In addition to transport networks, CA has also been utilized 
for the analysis of a variety of other systems [23, 44-60]

Car following and lane changing are the most important behavior in driving. 
Traditional CA models can simulate some macroscopic phenomena of car following 
behavior, but they cannot describe the details of lane changing processes well. The 
updating rules of the models [61] on acceleration, deceleration and random slowing 
down are not consistent with the reality. According to the models, the vehicle will 
change to the target lane immediately after satisfying lane changing rules. However, 



in practice, lane changing is a process involving several steps; it is impossible for the 
driver to complete these operations at the same time (i.e. in one time step). In order to 
describe lane changing processes more reasonably, we proposed the TCA-H model 
based on CA in the previous study [62]. In this model, a rough algorithm for 
calculating lane changing duration according to actual situation was introduced. 
Nevertheless, driving behavior is a complex phenomenon, affected not only by 
surrounding traffic conditions but also by personal driving habits. Therefore, a more 
appropriate method than the rough algorithm [62] to mine drivers’ driving behavior 
should be considered.

Deep learning technology has shown good capacity in data mining as well as in 
portability, and in recent years has been applied to study car following behavior and 
lane changing behavior (including lane changing decision and lane changing 
trajectories) [10, 12]. However, few studies have focused on unsuccessful lane 
changing behavior.

In order to better characterize driving behavior particularly unsuccessful lane 
changing behavior, we propose a new model in this paper. The main contributions of 
this study include: (1) building a data-driven two-lane traffic flow model based on 
cellular automata; (2) improving the problem of constant and excessive acceleration 
of traditional CA models; (3) designing more convincing rules of unsuccessful lane 
changing.

The rest of this paper is organized as follows. The proposed model is described in 
Section 2, and further evaluated in Section 3. Finally, major conclusions are drawn in 
Section 4.

2. Model
In the traditional rule-based two-lane cellular automata (R-TCA) model [63] (see 

Fig 1.), the cell size is normally very large, leading to unrealistic acceleration and 
simulation of the lane changing process. Although refining cell sizes can solve the 
abrupt acceleration behavior, it will increase simulation time. Moreover, the updating 
rules of the model (on accelerating, decelerating and randomly slowing down) in the 
same time step are not consistent with real behavior. In order to solve these problems, 
we introduce a new model that is more in line with the lane changing process under 
actual traffic situation.

Fig.1 Cell in the R-TCA model

2.1. Discretization
The new model, namely a data-driven two-lane traffic flow (D-TCA) model, 

accommodates two important improvements. On the one hand, in order to better 
characterize the lane changing process, the cell is refined to a smaller size; on the 
other hand, the updating rules of the model are based on the prediction results of 
neural networks. In the model, the acceleration is computed based on a process more 
consistent with actual situation, and the longitudinal length of the cell determines the 
minimum acceleration of vehicles.

As shown in Fig. 2(a), the width of each lane is 3.5m, and the total width of the 
two lanes is 7m. Without losing generality, we use rectangular cells and choose a 



certain cell size to explain the lane changing process. Set the lateral and longitudinal 
length of each cell to 0.25m and 0.1m, respectively (see Fig. 2(b)), leading to the 
width of each lane consisting of 14 cells. Assume that the length and width of the 
vehicle is 5m and 2m (occupying 50 and 8 cells), respectively, and that the vehicle is 
in the middle of the lane.

(a)

(b)

(c)
Fig.2 Cell discretization in the D-TCA model

The lane changing process of the vehicle is described as the movement along both 
longitudinal and lateral directions. In R-TCA, the vehicle changes lanes 
instantaneously; while in D-TCA, the vehicle needs several time steps to complete the 
lane changing maneuver. Assume of 5 different cell occupation states in the latter 
model, and the vehicle passes through one of these states at each time step when 
changing lanes. These states include:

State 0, the traffic condition of the vehicle satisfies the lane changing rules;
State 1, the vehicle leaves the center of the lane, but it does not occupy the 

boundary (the dividing line between the two lanes);
State 2, the vehicle occupies the boundary;
State 3, the vehicle leaves the original lane, and it does not occupy the boundary;
State 4, the vehicle reaches the center of the target lane.
To determine the state of the vehicle during lane changing, the lateral position of 

the vehicle is considerd. Define  as the angle between the center line of the vehicle 



and the lateral direction of the road (see Fig.2(c)). Given that in D-TCA (like in any 
other CA models), the analyzed system is regarded as a highly discrete process over 
both time and space, the lateral movement distance increases discretely as the time 
step grows. Assume that the vehicle starts the lane changing maneuver at time step ks, 
the lateral distance d(k) of the vehicle (relative to the original lane) at time step k () 
can be calculated by Eq.(1) [62]

   (1)
Where  denotes the speed of the vehicle along the longitudinal direction of the 

road at time step i, and  is the length of each time step. In total 192 lane changing 
trajectories were extracted from the experimental dataset (described in Section 2.3), 
and the average lane changing angle =86.78°. Thus, we take  as the lane changing 
angle of each vehicle.

Based on d(k), the state of the vehicle is decided as follows:
, the vehicle is in State 0;
, the vehicle is in State 1;
, the vehicle is in State 2;
, the vehicle is in State 3;
, the vehicle is in State 4.

2.2. Notations
, the subject vehicle ;
, the closest vehicle in front of  on the original lane (the lane where  originally 

drives);
, the cloest vehicle behind  on the original lane;
, the closest vehicle in front of  on the target lane (the lane to which  is intended 

to change);
, the closest vehicle behind  on the target lane;
, the acceleration of;
, the position of ;
, the velocity of ;
, the acceleration of ;
, the velocity of;

, the velocity of ; 
, the velocity of ;
, the velocity of ;
, the space headway between  and;
, the space headway between  and;
, the space headway between  and;
, the space headway between  and;
, the predicted acceleration of  based on the current input;
 and , the maximum speed and acceleration capacity of vehicles.

Moreover, based on the previous notations, the following variables are defined.
;
;
;
.

The illustrations of some notations above can be found in Fig. 3.



Fig. 3 The illustrations of some notations.
Note: the black rectangle, left and right red rectangles on lane 2, and the left and right 
red rectangles on lane 1 represent ,,,, and , respectively.

2.3. Model details

Fig.4 Framework of the D-TCA model

Fig.4 shows the framework of the D-TCA model, which is divided into three 
parts, namely forward rules (FR), lane change (LC) decision, and unsuccessful LC. 
The updating rules of these parts are determined by LSTM (LSTM-FR), SVM (SVM-
LD), and SVM (SVM-UL) networks, respectively. The data used for training these 
networks is the Next Generation Simulation (NGSIM) project dataset (i.e. the US 
Highway 101 Dataset), which records the real-time information (including speeds, 
acceleration, headway, etc) of vehicles passing through a certain section on the 
highway for a total of 45 minutes. This dataset has been widely adopted in recent 
years for traffic flow research ().

2.3.1. LSTM-FR network
LSTM is a time cyclic neural network, first proposed by Sepp Hochreiter and 

Jurgen Schmidhuber [64]. The network structure of LSTM-FR is designed into three 
layers, including an input layer, an output layer, and a hidden layer (see Fig.5). The 
input layer receives traffic state information of the subject vehicle () and of its 
surrounding vehicles, while the output layer exports the predicted acceleration of . 
Moreover, the hidden layer connects the previous two layers through a directed cycle, 



forming an internal structure of the network [12]

Fig.5 Network structure of LSTM

Drivers’ behavior is affected by many factors, and the behavior of the previous 
moments may affect the driving decision on the current situation. LSTM-FR is used to 
mine the driving behavior characteristics (i.e. acceleration) based on historical data. 
The variables of the network are shown in Table 1.

Table 1 Input and output of the LSTM-FR network

Variables
Input

Output

Data preparation
From the original NGSIM dataset, the following data was deleted:
(1) the data of cars on lane 1, 5, 6, 7 and 8;
(2) the data of cars without preceding cars;
(3) the data of any vehicles other than cars (i.e. the non-car data, with the vehicle 

type being identified as type 1 and type 3);
(4) the data of lane changing cars if these cars have preceding cars that also 

perform lane changing operations;
Step (1) and (4) aim to minimize the impact of lane changing on car following 

behavior, Step (2) ensures normal car following behavior, and Step (3) extracts data 
only from cars. After the removal of the above data, 936 car following samples were 
retained. In order to reduce the influence of magnitude difference on the model, we 
use the MinMaxScaler method to standardize each variable into the range  according 
to Eq.(2).

   (2)
where  is the standardized value, while  and  are the minimum and maximum values 
of the corresponding variable.



Training and testing
In deriving the network model, two thirds of the previously-obtained samples 

(624) were used for training, while the remaining ones (312) for testing. The number 
of neurons on each layer of LSTM-FR was specified as follows: 6 neurons on the first 
layer corresponding to the 6 input variables (in Table 1), 50 neurons on the hidden 
layer, and 1 neuron on the output layer representing the predicted acceleration. 
Meanwhile, the length of each time step was set as 10s, and the loss function “MAE” 
in Eq.(3) was adopted.     

  (3)
Where  is the number of samples, while  and  are the output by the network and the 
actual acceleration value, respectively. The objective of the network training is to 
make MAE as small as possible. For the final (derived) model, the minimum value of 
MAE for the training and testing data reached 0.001 and 0.006, respectively.
2.3.2. SVM-LD network

SVM is a kind of generalized linear classifier that separates data in a binary way 
based on supervised learning, and was originally developed by Corinna Cortes and 
Vladimir Vapnik [65]. The network structure of SVM-LD is composed of three parts: 
an input, a hidden, and an output layers (See Fig.6). The input variables (on the input 
layer) first undergo nonlinear transformation, and are then classified according to 
support vectors in the feature space (on the hidden layer), and finally converted into 
the results (i.e. 1 or 0) (on the output layer).

Fig.6 Network structure of SVM

Like car following, there exist many elements (such as headway, velocity, etc) 
that drivers consider when deciding whether or not to change lanes. SVM-LD is used 
to predict lane changing behavior of vehicles under certain driving conditions. The 
variables of the network are shown in Table 2. The output has two values: if output 
=1, the vehicle will change lanes; otherwise, if output = 0, the vehicle will remain in 
the current lane.

Table 2 Input and output of the SVM-LD network

Variables
Input



Output 0 or 1

Data preparation
The data used for training SVM-LD consists of two parts, namely, data of lane 

changing cars and data of car following cars. For lane changing cars, the values of the 
input variables (in Table 2) were extracted at the start time of the lane changing; while 
for car following cars, the values were obtained at all the time steps of the car 
following process. 
From the NGSIM dataset, the following data was deleted:

(1) the same data as that depicted in Step (1), (2), and (3) in the data preparation 
for LSTM-FR;

(2) the data of cars that do not change lanes, cars whose both preceding and 
succeeding cars simultaneously change lanes, and cars that change lanes multiple 
times.
The retained data further underwent data standardization by means of the 

MinMaxScaler method. Finally, 863 samples were obtained, composed of 259 for lane 
changing and the remaining 604 for car following.

Training and testing
In calibrating the model, 70% (604) of the data was used for training, and the rest 

30% (259) for testing. The classifier SVC in the sklearn.svm package was utilized, 
with the ‘linear’ kernel function being selected. The training accuracy of the SVM 
classifier was close to 1; but the testing accuracy varied, mainly depending on the 
parameter of "random number seed". We examined the testing accuracy under various 
values of this parameter, and obtained the highest accuracy at the value of 50. The 
prediction accuracy of the final classifier for both training and testing data was higher 
than 0.99.
2.3.3. SVM-UL network

In reality, the lane changing vehicle may return to the original lane when the 
driving condition of the original lane is better than that of the target lane. To model 
the unsuccessful lane changing behavior, SVM-UL is used to predict lane changing 
abandon decision. The variables of the network are presented in Table 3. The output 
has two outcomes: if output=1, the vehicle will return to the original lane (abandon 
decision being taken); otherwise, if output=0, the vehicle will maintain the lane 
changing maneuver (not abandoning).

Table 3 Input and output of the SVM-UL network

Variables
Input

,



Output 0 or 1

Data preparation
The dataset used for training SVM-UL originated from the previously obtained 

lane changing data for SVM-LD (described in Section 2.3.3), which was composed of 
163 samples for successful lane changing and 30 for unsuccessful changing. 

Training and testing
From the above dataset, 70% was randomly selected for training, and the 

remaining 30% for testing. The same SVM classifier and ‘linear’ kernel function used 
for deriving SVM-LD were applied, and the "random number seed" was set as 20 
(after a number of trying). The prediction accuracy of the resultant SVM-UL classifier 
for both training and testing data was 0.879.
It was noted that the number of unsuccessful lane changing samples for inferring 
SVM-UL is smaller than would be required. Nevertheless, the obtained prediction 
accuracy demonstrates the potential and effectiveness of the proposed model. With a 
larger dataset, the data would become more capable of representing both successful 
and unsuccessful lane changing behavior. It is thus believed that the SVM-UL 
network would bring a greater improvement to the current experimental results.

2.3.4 Update rules
2.3.4.1. Forward rules
In the D-TCA model, contrasting with traditional CA updating rules, the cell 

moves forward according to the following steps, 
Step1: acceleration: ;
Step2: position updating: +.

Where  is the acceleration predicted by LSTM-FR based on the current input; 
longitudinal length denotes the longitudinal length of the cell; , , and  refer to as the 
acceleration, position, and velocity of  while  as the maximum acceleration capacity 
of vehicles (see Section 2.2). Moreover,  represents the space gap between  and its 
preceding vehicle (i.e. ) when  is in State 0, 1, 3, or 4. In case that  is in State 2, it is 
assumed that the vehicle occupies two lanes (including the original and target lanes), 
such that the vehicle does not only prohibit the overtaking behavior of its succeeding 
vehicles in the two lanes, but it is also blocked by its preceding vehicles in these 
lanes. To reflect the impact of this process on traffic flow, for State 2 is computed as 
follows.

        (4)
The definition of  and  are described in Section 2.2.
According to Step1,  is equal to the minimum value among the corresponding 

three variables. This does not only take into account the actual mechanical 
performance limitation of the vehicle, but also makes certain that the vehicle will not 
hit its preceding vehicle. In addition,  ensures that the acceleration of the vehicle is an 
integer.

2.3.4.2. Lane changing rules
LC decision



Lane changing decision is predicted by SVM-LD, with the results indicating that  
will change lanes (if output =1) or remain in the current lane (if output = 0), 
respectively (see Section 2.3.2).

LC abandon
In practice, vehicles may return to the original lane in the process of lane 

changing, due to certain factors, such as the state of the lane changing vehicle and of 
its surrounding vehicles (which are taken as the input variables of SVM-UL (see 
Section 2.3.3). Lane changing abandon decision is forecasted by SVM-UL with two 
outcomes;  will return to the original lane (abandon decision being taken) (if output 
=1) or maintain the lane changing maneuver (not abandoning) (if output = 0) 

LC complete
When  reaches the center of the target lane, the lane changing process is finished, 

and the vehicle is in State 4.
It should be noted that the forward rules are applied to each vehicle, while the LC 

decision rules are to vehicles that are in the process of moving forward, and the LC 
abandon and complete rules are to vehicles that are in the process of changing lanes. 
3. Simulations and discussions

Numerical simulations for both the R-TCA and D-TCA models as well as for the 
TCA-H model proposed in the study [62] were carried out under periodic boundary 
conditions between different traffic density regions. In the simulation process of D-
TCA, it is necessary to randomly give an initial state of the vehicle, such as the 
position and speed. And in the first quarter of the time step, we use R-TCA rules to 
update vehicles. The longitudinal and lateral length of each cell was set as 0.1m and 
0.25m, respectively, and the length of each car was as 5m, spaning a total of 50 cells. 
The other parameters were specified as follows: the road length  cells (5km),  cell/s 
(129.6km/h),  cell/s-2, and  cells according to the study [34]. 
3.1. Simulation performance

In order to examine the performance of D-TCA, we compared the simulation 
results by the model with the observed data from the NGSIM dataset. Fig.7 describes 
the observed and predicted acceleration of each vehicle among a fleet of 4 vehicles, 
with (vehicle) ID=2037, 2008, 2001, and 1998, respectively. Good matches between 
the two acceleration values at each time step for each of the vehicles can be seen, 
indicating of high accuracy of the model in predicting acceleration. In addition, we 
also inspected the simulated lane changing results of the vehicle (ID=64) against the 
real lane changing process under the same traffic conditions, as presented in Fig.8. 
Consistency between the observed and simulated lane numbers is demonstrated, 
signaling good performance of the model in re-generating the lane changing process 
of vehicles in actual traffic conditions.

 
(a)                                 (b)



 
(c)                                 (d)

Fig.7 Real acceleration and predicted acceleration of each vehicle for a fleet of 4 
vehicles. ID = 2037 (a), 2008 (b), 2001 (c), and 1998 (d)

Fig.8 Schematic diagram of lane changing event

3.2. Fundamental diagram
The fundamental diagrams of R-TCA and D-TCA are visualized in Fig.9. It was 

noted that the flow of the former model is larger than that of the latter model, and a 
large gap exists between the two models in the middle- and high-density regions. 
Moreover, D-TCA can simulate the first-order phase transition from free flow to 
synchronized flow, which cannot be realized by R-TCA. The reason for this 
difference may lie in the random fluctuation of D-TCA during the updating process, 
which causes a sharp drop in traffic flow. The spatiotemporal diagram of D-TCA at 
density=0.2 is further described in Fig.10, showing that traffic congestion occurs 
under this density and spreads to the upstream.



Fig.9 Fundamental diagrams of the R-TCA and D-TCA models.

(a) 

(b)
Fig.10 Spatiotemporal diagram of the D-TCA model at density=0.2. (a) Left lane; (b) 

Right lane

3.3. Lane changing frequency
In this subsection as well as in Section 3.4 and 3.5, the results simulated by TCA-

H and D-TCA were compared. Fig.11 shows the lane changing frequency obtained by 
the two models at different densities. The lane changing frequency of TCA-H is 
significantly greater than that of D-TCA, and the gap between the models is 
particularly large in the middle-density region.



Fig.11 Lane changing frequency diagrams of the TCA-H and D-TCA models.

3.4. Lane changing duration
Fig. 12 depicts the average lane changing time obtained by the models at various 

densities. In the free flow area, the average lane changing time of the models is almost 
the same. However, as the density increases, deviation starts to appear and gradually 
becomes large, and reaches the peak at the highest density (density=0.6).

Fig.12 Average lane changing durations of the TCA-H and D-TCA models.

Moreover, we extracted the lane changing trajectory of the vehicle (ID=1778) 
from the NGSIM dataset and that of the corresponding vehicle simulated by D-TCA 
at density=0.2 (see Fig.13). It was observed that the lane changing trajectories of the 
two vehicles are similar, and that the speeds of these vehicles after lane changing are 
higher than those before the operation. Those results verify the effectiveness of the D-
TCA model.

(a)



(b)
Fig.13 The lane changing trajectories of (a) the vehicle (ID=1778) from the NGSIM 

dataset and (b) a certain vehicle of the D-TCA model (density=0.2)

3.5. Unsuccessful lane changing frequency
Fig.14 visualizes the unsuccessful lane changing frequency of the models for the 

previously-illustrated two vehicles (i.e. the vehicle of ID=1778 and the corresponding 
simulated vehicle ). There are almost no unsuccessful lane changing in the low-
density area for both models. This can be attributed to the fact that vehicles can drive 
at higher speeds under free flow conditions, leading to smaller lane changing 
frequency and consequently smaller unsuccessful lane changing frequency. However, 
difference starts to emerge in the middle-and high-density regions. Regarding TCA-H, 
the unsuccessful lane changing frequency of the model increases sharply at the 
boundary between the low- and middle-density region as well as between the middle- 
and high-density area. In terms of D-TCA, the unsuccessful lane changing frequency 
is smaller than that of TCA-H in the middle-density region. However, when the 
density is higher than 0.3, this frequency increases considerably, much larger than that 
of TCA-H. This is consistent with the reality. Moreover, the comparison between 
Fig.12 and Fig.14 shows that the unsuccessful lane changing frequency and lane 
changing duration exhibit similar trends as the density goes up.

Fig.14 Unsuccessful lane changing frequency of the TCA-H and D-TCA models.

4. Conclusions
In this paper, we proposed a data-driven two-lane traffic flow model based on 

cellular automata. LSTM and SVM networks were applied to mine drivers’ car 
following behavior, lane changing behavior, and unsuccessful lane changing behavior 
from real operation data of vehicles. According to actual driving characteristics, we 
improved the rules of moving forward and lane changing adopted in traditional CA 
models, and further designed new rules for unsuccessful lane changing.

Based on the proposed model, the following major results were obtained: (1) both 
the training and testing errors of the LSTM and SVM networks are relatively small, 
demonstrating good capacity of these models in mining real driving characteristics 



from observed vehicle operation data; (2) the model can simulate the first-order phase 
transition from free flow to synchronized flow; (3) in the low-density region, the 
unsuccessful lane changing behavior barely occurs. However, when the density is 
higher than 0.3, the frequency of unsuccessful lane changing increases remarkably; 
(4) the higher the density, the higher the probability of unsuccessful lane changing and 
the longer the duration of successful lane changing.

Certain limitations exist regarding the proposed model. Firstly, in order to 
simplify the modelling process, the lane changing angle () was assumed to be a fixed 
value. Nevertheless, in actual lane changing processes,  is not constant, making the 
above assumption not realistic. Secondly, due to the limited number of unsuccessful 
lane changing samples, the accuracy of the SVM-UL classifier is not high. 
Nevertheless, as stated in Section 2.3.3, SVM-UL introduces more practical updating 
rules for unsuccessful lane changing, and we believe that the network parameters 
would be better calibrated if the amount of data is larger and that the model would 
bring a greater improvement over the current results.
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