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ABSTRACT

We present a method for assigning probabilities to the solutions of initial value problems that have a Lipschitz singularity. To illustrate

the method, we focus on the following toy example: d2r(t)

dt2
= ra, r(t = 0) = 0, and dr(t)

dt
|r(t=0)= 0, with a ∈]0, 1[. This example has a physical

interpretation as a mass in a uniform gravitational field on a frictionless, rigid dome of a particular shape; the case with a = 1/2 is known
as Norton’s dome. Our approach is based on (1) finite difference equations, which are deterministic; (2) elementary techniques from alpha-
theory, a simplified framework for non-standard analysis that allows us to study infinitesimal perturbations; and (3) a uniform prior on the
canonical phase space. Our deterministic, hyperfinite grid model allows us to assign probabilities to the solutions of the initial value problem
in the original, indeterministic model.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063388

Some simple mechanical systems are characterized by indeter-
ministic initial value problems. One such example is “Norton’s
dome”: a mass at rest on a hill of a specific shape in a gravita-
tional field may stay at rest or start sliding off at an arbitrary
time. Around a decade ago, this example caught the attention
of philosophers of physics, but similar examples were already
discussed by mathematicians and physicists in the nineteenth cen-
tury. We present a numerical simulation study of a class of such
mechanical systems. Our approach is to discretize the time vari-
able and to apply results from a branch of mathematics called
“non-standard analysis,” which allows us to work with infinitesi-
mals in the strict sense (i.e., numbers larger than zero but smaller
than 1/n for every natural number n). This approach also allows
us to assign probabilities to the solutions of the indeterminis-
tic Cauchy problem, without introducing any non-infinitesimal
perturbations (which would defeat the purpose). The methodol-
ogy may be applicable to study more realistic problems, such as
turbulent flows, shock waves, and N-body collisions.

I. INTRODUCTION

The nineteenth century mathematician and physicist Poisson
was the first to search for a mechanical interpretation of
indeterministic Cauchy problems.1,2 Later that same century,
Boussinesq gave a gravitational interpretation of a broad class of
such indeterministic Cauchy problems by considering a mass placed
at rest at the apex of a frictionless surface from a particular family
of hill shapes.3 This work seems to have been largely forgotten, but
we want to alert physicists and applied mathematicians to a recent
revival of this issue in the philosophical literature: this question was
raised again by a contemporary philosopher of science, Norton,4,5

who focused on a particularly simple case, now often referred to as
Norton’s dome. Malament generalized Norton’s example to a fam-
ily of problems that we will call Malament’s mounds (presented in
Sec. II).6 These examples involve initial value problems with a dif-
ferential equation that exhibits a non-Lipschitz singularity. Such
non-Lipschitz Cauchy problems are prevalent in the context of phys-
ical applications, such as turbulent flows and associated dispersion,7
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shock waves,8 and collisions in Newtonian N-body problems.9 They
are also of interest for the foundations of physics, as a case study
in determinism and causality, and may be suitable for didactic pur-
poses, to illustrate the role of uniqueness conditions in Newtonian
mechanics. In the context of fluid turbulence, this form of indeter-
minism has been called “classical spontaneous stochasticity,” and it
has been proposed that the phenomenon has a quantum-mechanical
analog (see Ref. 10, where also the connection to Norton’s dome is
mentioned). The main goal of the present paper is to demonstrate a
method for assigning probabilities to trajectories that are solutions
to non-Lipschitz Cauchy problems. To demonstrate the method, we
focus on the toy problem of Malament’s mounds throughout.

Shortly before Norton’s work,4,5 probabilistic approaches have
been applied to non-Lipschitz Cauchy problems;11,12 see more
recently also Refs. 13–15. (We are grateful to an anonymous ref-
eree for pointing us to these papers.) Indeterministic theories can
be supplemented by hidden variables to arrive at deterministic the-
ories, which are empirically equivalent and which can be used to
assign probabilities to the former (see, e.g., Refs. 16 and 17). This is
the approach we take in this paper, where we let the hidden variables
take on infinitesimal values (in the sense of non-standard analysis).
Some physicists presuppose the existence of one unique solution
(obtainable, e.g., via physical regularization). However, there are
genuine cases of indeterminism, where multiple solutions obtain
with various probabilities; therefore, in general, it cannot be taken
for granted at the outset that a unique solution dominates. Our
method does not start from any a priori assumption of a unique solu-
tion, although it turns out that probability one should be assigned to
a single solution in our case study.

To be clear, our aim is to analyze a class of initial value prob-
lems, not any natural phenomena (at least not directly). We start
from toy problems, which have inherited the usual idealizations and
limits to applicability native to classical physics (e.g., point masses
and perfectly frictionless, rigid surfaces). Hence, we are not focusing
on when the description is a useful one, and the discussion cannot
be settled by direct comparison to experiments.

Our approach relies on an elementary application of non-
standard analysis, a branch of mathematics first developed by
Robinson18,19 as an alternative framework for differential and inte-
gral calculus The name contrasts with “standard” analysis in terms
of the standard real numbers and associated concepts, such as the
standard limit (introduced in terms of an epsilon–delta definition)
and the derivative and integral defined in terms of this limit. Alter-
natively, non-standard analysis extends the set of real numbers
with infinitely large numbers and infinitesimals, which are closed
under the same algebraic rules as the standard reals. Infinitely large
numbers are numbers larger than n for all natural numbers n; non-
zero infinitesimals are their multiplicatory inverse. The theory uses
notions from model theory (a branch of mathematical logic) and is
built upon so-called non-standard models of real-closed fields. To
keep our paper self-contained yet accessible to non-logicians, we use
the framework of alpha-theory, which we introduce in Sec. IV.

Non-standard analysis is often used to obtain results about the
real numbers, and it contains a theorem that guarantees that the
results will agree with those of standard analysis. However, non-
standard results can also be studied in their own right, without the
end-goal of obtaining a result in terms of standard reals. Moreover,

non-standard analysis captures some of the guiding intuitions from
the historical development of the calculus, in particular, the ideas of
Leibniz, some of which were lost during the development of stan-
dard analysis in the nineteenth century. (For a brief introduction to
the history, see, e.g., Ref. 20.) The idea of infinitesimals in the context
of calculus and analysis was long believed to be irreparably confused
or intrinsically paradoxical, but this assumption was proven wrong
by the work of Robinson in the 1960s19 and later developments.
Finally, non-standard analysis is close to physical praxis and didac-
tics, which in some regard stays close to the Leibnizian appeal to
infinitesimals. Indeed, non-standard techniques have been applied
to physics in a variety of applications, including Brownian motion,
perturbation theory for differential equations, etc.21 Many of these
applications involve a discrete model with infinitesimal steps of
quantities that are taken to be continuous in the standard model.
In particular, we will consider difference equations on discrete grids
with infinitesimal time steps.

Since our method relies on non-standard analysis, it can yield
genuinely new results only as long as the results are presented in
terms of hyperreal numbers. Once the results are interpreted in
the context of standard real numbers, it cannot yield anything that
cannot be obtained via methods of standard analysis. However,
even in that case, it may still be relevant since the non-standard
approach may be shorter, easier to obtain or more instructive than
the standard one. Here, we argue that the non-standard approach
suggests a way of assigning probabilities to the standard solutions
of indeterministic initial value problems. Perhaps this will inspire
future work that achieves similar results without having to introduce
non-standard methods.

Our paper is structured as follows. Section II reviews the
shape, initial value problem, and standard solutions for Malament’s
mounds. In Sec. III, we refine our research questions and specify
our working hypothesis. In Sec. IV, we introduce concepts from
alpha-theory, a simplified approach to non-standard analysis. In
Sec. V, we apply this to build an alternative model for Malament’s
mounds, in which we can consider infinitesimal perturbations. This
approach allows us to assign probabilities to the standard solu-
tions in Sec. VI. We offer some discussion and review our main
conclusions in Sec. VII.

II. MALAMENT’S MOUNDS

Norton’s problem represents a mass placed with zero velocity
at the apex of a particular dome in a uniform gravitational field.
The shape of the dome is chosen such that Newton’s second law
applied to the mass takes on a particularly simple form, as we will
see below. Malament generalized Norton’s dome to the following
family of shapes,6 which yields a family of indeterministic Cauchy
problems:

y(x) = −

(

1 − (1 − (1 + a) |x|)
1

1+a

)1+a

1 + a
,

where a is any real number in ]0, 1[, x is the horizontal axis (orthog-
onal to the gravitational field), y is the vertical height (anti-parallel to
the gravitational field), and the apex is at the point (0, 0). See Fig. 1
for five examples of hill shapes. Observe that the above expression
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FIG. 1. Cross section of five of Malament’s mounds: a = 1/10, a = 1/3,
a = 1/2 (Norton’s dome), a = 2/3, and a = 9/10. The limiting cases with
a → 1 (a mound of height 1/2) and a → 0 (triangle of height 1) are shown as
dashed curves. Observe that the base points of Malament’s mounds follow this
limiting triangle.

becomes undefined for x-values larger than 1/(1 + a); therefore, the
mounds have a maximal height and unilateral width of 1/(1 + a).

Define r ≥ 0 as the arc distance measured along the dome from
the apex. Then, we find

r(x) = 1 − (1 − (1 + a)|x|)
1

(1+a) .

Expressing y as a function of the arc length r measured from
the apex yields

y(r) = −
r1+a

(1 + a)
.

We assume that the gravitational field is constant with g = 1
and that a unit mass moves on a frictionless hill of the specified
family. Then, Newton’s second law yields a second-order non-linear
ordinary differential equation (ODE) involving a non-Lipschitz con-
tinuous function. For each choice of a ∈]0, 1[, the Cauchy problem
for the corresponding Malament mound is given by











d2r(t)

dt2
= ra,

r(t = 0) = 0,
dr(t)
dt

|r(t=0)= 0.

(1)

This problem is the second-order analog of a textbook example
commonly used to illustrate a failure of Lipschitz continuity. As is
well known, the solution of such problems is non-unique. Besides
the trivial, singular solution, r(t) = 0, there is a one-parameter fam-
ily of regular solutions (see, e.g., Theorem 2 in Ref. 22, due to
Kneser23), which can be represented geometrically as a Peano broom
(see Fig. 2),

r(t) =







0 if t ≤ T,
(

(1−a)2

2(1+a)

)
1

1−a
(t − T)

2
1−a if t ≥ T,

(2)

where T is a positive real number, which can be interpreted as the
time at which the mass starts sliding off the hill. The solution can be
verified by substitution into (1).

FIG. 2. Three regular solutions to Norton’s dome (a = 1
2
) with T equal to 0

(black), 5 (red), and 10 (green).

In the three-dimensional case, there is an additional continuum
of possibilities regarding the direction of descent. Throughout this
paper, we limit ourselves to the two-dimensional case (as depicted
in Fig. 1) such that this indeterminacy is reduced to two possible
directions.

III. RESEARCH QUESTIONS AND WORKING

HYPOTHESIS

Faced with indeterminism due to a lack of Lipschitz continu-
ity, some authors search for arguments that single out a unique
solution, e.g., by regularization (smoothing the system close to the
singularity) or adding physical principles or heuristics not encoded
by the Cauchy problem itself. The assumption that there is one cor-
rect solution (motivated by additional physical constraints besides
the mathematical equation) is widely—though perhaps not univo-
cally—held in the field of fluid dynamics. For instance, the authors
of Ref. 24 aim to regulate the solutions of Cauchy problems with
non-Lipschitz indeterminism to select a unique global solution.

Our current approach is slightly different: lacking a unique
solution, we look for a probabilistic description for the trajectory
of the mass. This approach may be alien to Newtonian physics (the
context in which the problems of Sec. II arose), but it is accepted in
classical physics more generally (i.e., in statistical physics). Hence,
we start with the following research question:

• Given that there are multiple solutions to Cauchy problem (1), is
there a well-supported way to assign probabilities to them?

This research question leads us to two more specific questions:
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• Can we assign relative probabilities to the singular solution vs the
family of regular solutions?

• Can we assign relative probabilities to the various regular solu-
tions (regarding T and the direction of movement)?

Since our questions are aimed at finding probabilities, the
usual approach of physical regularization is of no avail here (but
see Sec. VII A). Alternatively, we aim to represent the trajecto-
ries on Malament’s mounds using a discrete, deterministic model
from non-standard analysis that can help us to measure the sought
probabilities.

IV. ALPHA-THEORY, α-LIMITS, AND HYPERFINITE GRID

DIFFERENTIAL EQUATIONS

In this section, we first introduce a simplified framework for
non-standard analysis: Alpha-theory, which was developed by Benci
and Di Nasso.25 We then show how their notion of hyperfinite grid
differential equations is used to find all solutions to indeterministic
Cauchy problems and how to assign probabilities to them.

Alpha-theory defines a new, ideal number, α, which can be
thought of as an infinite number (larger than every natural number)
that captures the rate of divergence of the linear sequence 1, 2, 3, . . ..
The theory also defines a new type of limit, the α-limit, which can be
thought of as the value a sequence would take if it was extended to
position α. This limit is not to be confused with the standard limit
operation: except for the special case of constant sequences of real
numbers, they do not agree. (See the end of Sec. IV A for some
examples.) Moreover, the α-limit is broader in scope: it does not
only apply to sequences of real numbers, but to sequences of any
type of objects, including sets and hyperreal numbers. We choose
alpha-theory because it suffices to introduce the notion of hyper-
finite grid functions and associated differential equations.25,26 These
hyperfinite grid differential equations behave much like finite differ-
ence equations except that the number of steps is infinite and each
step is infinitesimal.

A. α-limits

Alpha-theory assumes most of standard mathematics (more
specifically, it is based on Zermelo–Fraenkel set theory with the
axiom of choice, but without the axiom of regularity) to which it
adds six new axioms (see pp. 77–78 in Ref. 25), which we reproduce
here for self-containedness:

1. Every sequence A(n) has a unique α-limit, denoted by
limn↑α A(n). If A(n) is a sequence of atoms (i.e., primitive
elements that are not sets), then limn↑α A(n) is an atom, too.

2. If Rr(n) = r is a constant sequence with the real number r as its
value, then limn↑α Rr(n) = r.

3. The α-limit of the identity sequence I(n) = n is a new number
α such that limn↑α I(n) = α /∈ N.

4. The set of all α-limits of real sequences is called the set of
hyperreals; denoted by

∗R =

{

lim
n↑α

R(n)

∣

∣

∣

∣

R : N → R

}

.

〈∗R; +; ×; 0; 1〉 forms a field, called the hyperreal field, where
limn↑α R1(n)+ limn↑α R2(n)= limn↑α(R1(n)+R2(n)) and limn↑α

R1(n) × limn↑α R2(n) = limn↑α(R1(n) × R2(n)).
5. The α-limit of the constant sequence with the value equal to

the empty set, S∅(n) = ∅, equals the empty set; i.e., limn↑α S∅(n)

= ∅. The α-limit of a sequence of non-empty sets S(n) is
limn↑α S(n) =

{

limn↑α R(n)
∣

∣∀nR(n) ∈ S(n)
}

.
6. If A(n) and B(n) are two sequences such that limn↑α A(n)

= limn↑α B(n) and f is a function such that the compositions
f ◦ A and f ◦ B make sense, then limn↑α f(A(n)) = limn↑α f(B(n)).

Observe that axiom 4 ensures that the usual algebraic opera-
tions on the reals are well-defined for the hyperreals, too.

Some additional definitions are helpful.25

1. A hyperreal number ρ is called infinite if there exists no standard
real r such that r > |ρ|; otherwise, the hyperreal is called finite.
A hyperreal number ε is called infinitesimal if there exists an
infinite hyperreal ρ such that ε = 1/ρ.

2. For any object A, its hyper-image (or ∗-transform) is defined as

∗A =

{

lim
n↑α

S(n)

∣

∣

∣

∣

S : N → A

}

.

This extends the meaning of the “hyper-” (or ∗-) prefix already
introduced in axiom 4 for the set of hyperreals to all sets and
other objects.

3. A set T ⊂ ∗S is hyperfinite if there exists a sequence of
finite sets Sn ⊂ S and a sequence U(n) : N → Sn such that
T =

{

limn↑α U(n)
}

.
4. The hyperfinite sum of a hyperfinite set of hyperreal numbers,

T = limn↑α U(n), is defined as
∑

ρ∈T

ρ = lim
n↑α

∑

r∈U(n)

r.

Finally, we include three theorems that will be useful for our
problem. (For proofs, see p. 9, pp. 288–289, and p. 92 of Ref. 25,
respectively.)

1. Every finite hyperreal number ρ is infinitesimally close to a
unique real number r, called its standard part: r = st(ρ). In par-
ticular, if ε is infinitesimal, then its standard part equals zero:
st(ε) = 0. Therefore, taking the standard part can be thought of
as “rounding off” the infinitesimal part.

2. α can consistently be assumed to be a multiple of each natural
number and each natural power.

3. For any function f : D → C, its hyper-image is a function
∗f = ∗D → ∗C such that for every sequence R : N → D, it holds
that ∗f

(

limn↑α R(n)
)

= limn↑α
∗(f ◦ R)(n).

It is instructive to compare the α-limit of a few sequences.
The constant sequence R0(n) = 0, the linearly decreasing sequence
Rl(n) = 1

n
, and the quadratically decreasing sequence Rq(n) = 1

n2 all
have the same standard limit, 0. However, they have different α-
limits: limn↑α R0(n) = 0, limn↑α Rl(n) = 1

α
, and limn↑α Rq(n) = 1

α2 .

The latter two are infinitesimals, with 1
α

> 1
α2 . Still, the standard part

of both these hyperreals is zero. Therefore, one way to interpret the
hyperreals is that—compared to real numbers—they retain infor-
mation about the asymptotic behavior of the sequences by which
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they were constructed. Likewise, infinite hyperreals contain infor-
mation about the rate of divergence of the sequence by which they
are obtained. For example, the α-limit of the sequence n2 is α2,
the square of that of I(n) = n which is α. This is similar to Lan-
dau’s symbols (small-o and big-O notation), but the hyperreal field
provides a richer algebraic structure.

B. Functions, derivatives, and differential equations

on hyperfinite grids

To construct a hyperfinite grid, which we will use to model
time, we need to consider the α-limit of a sequence of sets. A first
example of the α-limit applied to a sequence of sets (proven on p. 81
of Ref. 25) is limn↑α{1, . . . , n} = {1, . . . , α}. This set is hyperfinite,
but not finite.25

A sequence of sets of interest to our problem at hand is

M(n) =

{

0,
1

n
, . . . , n −

1

n
, n

}

.

We may think of each M(n) as set of discrete moments (a finite grid).
As n increases, the sets contain more moments per unit of time and
span a longer time. The α-limit of this sequence is a hyperfinite set,
which we call a hyperfinite grid,

M = lim
n↑α

M(n) =

{

0,
1

α
, . . . , α −

1

α
, α

}

.

M contains infinitely many moments per unit of time and infinitely
many such units. The infinitesimal time step between two consec-
utive elements of M has length 1/α. Intuitively, then, the discrete
set M can be used to represent the positive direction of time, just
like the continuous set R+ often plays this role. If we assume α to
be a multiple of each natural number and each natural power, then
M ∩ R = Q+.

We will call a function R : M → ∗R, which is the α-limit of a
sequence of functions Rn : M(n) → R, a grid function.

For our problem, we also need to define the first and second-
order grid derivative of a grid function, R (see pp. 160–161 in Ref. 25;
the definitions are analogous to Euler’s method). First, consider a
family of functions Rn : M(n) → R, with the grid function R as their
α-limit. The right-hand grid derivative D+R is then defined as the
α-limit of the sequence of first-order finite differences on the Rn,
which, at position m ∈ Mn, equal n (Rn(m + 1) − Rn(m)). The fac-
tor n comes from division by the discrete time step, 1/n. Hence, in
the α-limit,

D+R(m) = α (R(m + 1) − R(m))

for all m ∈ M \ {α}. Likewise, the second-order grid derivative,
1R, is defined as the α-limit of the sequence second-order
finite differences on the Rn, which, at position m ∈ Mn, equal
n2 (Rn(m + 1) − 2Rn(m) + Rn(m − 1)). Hence,

1R(m) = α2 (R(m + 1) − 2R(m) + R(m − 1)) ,

where m ∈ M \ {0, α}.
With each standard function f : R+ → R, we may associate a

grid function Rf by restricting its hyper-image ∗f to M (cf. p. 160

in Ref. 25). It can be proven that where df(t)

dt
and d2 f(t)

dt2
are defined,

∀t ∈ Q+,

st(D+Rf(m)) =
df(t)

dt
,

st(1Rf(m)) =
d2f(t)

dt2
,

with m such that t = st(m/α). (Proof is given on p. 161 of Ref. 25.)
With a given standard Cauchy problem, we can now associate

a hyperfinite grid differential equation with two initial conditions
on the grid function. This “association” is one-to-many because
the standard initial conditions can be precisified in infinitely many
ways. In particular, there are infinitely many hyperreals m0, R(0),
and R(1) such that t0 = st(m0/α), r(t0) = st(R(0)), and dr(t)

dt
|r(t=0)

= st(α(R(1) − R(0))). Each choice of m0, R(0), and R(1) leads to a
different solution in terms of a grid function. When the standard
Cauchy problem has a unique solution, then all these grid functions
are infinitesimally close; hence, they have the same standard part.
It can be shown that the standard part of the grid solution equals
the solution to the standard Cauchy problem. However, when the
standard Cauchy problem fails uniqueness, the associated grid func-
tions contain pairs that differ by more than an infinitesimal from
each other; hence, they have different standard parts. The approach
we sketched here is based on the idea of the non-standard proof for
the standard Peano theorem (see, e.g., pp. 165–167 in Ref. 25, p. 32
in Ref. 21, and Ref. 27), which—unlike the standard proof—shows
us how to construct all these solutions. We apply this to our case in
Sec. V.

Moreover, we can use this approach to associate a probability
measure to the different standard solutions. Recall that the different
infinitesimal precisifications can be obtained as α-limits of differ-
ent converging sequences, which also correspond to all the different
ways one could take the standard limit (and which may lead to dif-
ferent standard outcomes). Rather than arguing for one limit process
as the correct one, we take a measure over all possible ways of con-
verging. This idea is not entirely novel, although its application to
non-Lipschitz continuity is: a similar approach was proposed in the
context of stochastic differential equations.26 We will explain this in
Sec. VI.

V. HYPERFINITE GRID DIFFERENTIAL EQUATION WITH

INITIAL CONDITIONS FOR MALAMENT’S MOUNDS

Let us now apply the approach outlined in Sec. IV to our stan-
dard Cauchy problem. We will construct all solutions to this prob-
lem, i.e., functions r(t) : R+ → R+, such that the set of equations (1)
hold, using a hyperfinite grid equation.

Each hyperfinite grid Cauchy problem associated with our
standard problem looks as follows:







1R(m) = Ra,
D+R(m0) = V0,
R(m0) = R0,

(3)

where m0, R0, and V0 are infinitesimals. A solution to this problem
is a grid function R : M → ∗R such that (3) holds.
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In order to find these solutions, we construct a sequence of
finite difference equations on the set of moments Mn with associated
initial conditions. The finite difference equation on Mn associated
with our ODE is, for all m ∈ {1, . . . , n − 1},

n2 (Rn(m + 1) − 2Rn(m) + Rn(m − 1)) = Rn(m)a.

To make explicit that the solution can be obtained by iteration,
we rewrite this as a recurrence relation and replace m by m − 1 in
all terms (so now m ∈ {2, . . . , n}). Adding the initial conditions, we
obtain the following sequence of discrete initial value problems:







Rn(m) = 1
n2 Rn(m − 1)a + 2Rn(m − 1) − Rn(m − 2),

Rn(1) = Rn,1,
Rn(0) = Rn,0,

(4)

where Rn,0 and Rn,1 are real-valued sequences that converge to 0 as
n goes to infinity; therefore, their α-limits are infinitesimal. Notice
that we can continue R for arbitrarily large values, i.e., beyond the
maximal height of the mounds. However, we are interested only in
the region around the apex.

In general, one should also consider the sequences mn,0 ∈ MN

n

that converge to 0 as the initial moment (instead of fixing this at
m = 0 for all n), but for autonomous equations such as ours, this
does not lead to more than an infinitesimal difference in the α-limit;
therefore, it does not impact the standard solution.

For each choice of the initial conditions, Rn,0 and Rn,1, the solu-
tion is a unique sequence Rn(m) : Mn → R+ that can be obtained
recursively. When Rn,0 = Rn,1 = 0, we obtain the constant sequence
Rn(m) = 0 for all n, which corresponds to R(m) = 0 in the α-limit
and leads to the singular standard solution r(t) = 0 after taking the
standard part.

What if Rn,0 or Rn,1 or both are non-zero? Unfortunately, there
is no analytic solution known for the non-linear difference equation
of second order in (4); therefore, we will have to examine its behav-
ior numerically. However, notice that we can read off the scaling
behavior of the non-zero solutions from the difference equation
directly, by noticing that terms of the form 1

n2 Ra
n are added to terms

of the form Rn. Hence, by the principle of dimensional homogeneity,

expressing Rn as multiples of n
− 2

(1−a) is helpful because this factors
out in all terms. This scale factor will also play a crucial role in taking
the α-limit.

A. Numerical study of the family of finite difference

equations

Numerically, we find that for any value of a, Rn,0, and Rn,1, we
can fit the numerical solutions of (4) to

Fa
n(m) =

(

(1 − a)2

2(1 + a)

)

1
1−a

(

m − M

n

)
2

1−a

for some real value of M, and this fit improves as m increases. There-
fore, from now on, we will only consider the final value of m, which
equals n2. Hence, we can estimate T as M/n, where

M = n2 − n

(

(

2(1 + a)

(1 − a)2

)
1

1−a

Rn(n
2)

)

−2
1−a

. (5)

1. Results for Vn,0 =0

First, we study the special case where Rn,0 = Rn,1; hence, the
initial grid velocity is zero.

For example, if we consider a = 1/2 and Rn,0 = Rn,1 = n
− 2

(1−a)

(the scale factor), the fitted M is about −1.947. Therefore, for
instance, when n = 100, T = −0.019 47. This value is negative,
meaning that, at large n, the fitted curve looks as though the mass
left the top before t = 0. This is exactly as you would expect for
starting positions that are relatively far from the apex. In terms of
direction, the mass will slide off exactly in the direction of the initial
displacement.

For values of Rn,0 = Rn,1 that are smaller, we find other fit-
ted solutions with a less negative or even positive T-value. Positive
T-values correspond to fitted curves that, at large n, look as though
the mass left the top later than t = 0. Therefore, the smaller the
perturbation, the more apparent delay, as expected. Moreover, the
relation between the size of the perturbation and the T-value of
the corresponding solution is highly non-linear. This is illustrated,
for the case Rn,0 = Rn,1, in Fig. 3.

In Figs. 4–6, we compare initial conditions Rn,0 = Rn,1

= n
− 2

(1−a) = 10−8 (blue curves) with initial condition Rn,0 = Rn,1

= 10−8 × n
− 2

(1−a) = 10−16 (orange curves) (both with n = 100 and
a = 1/2). Figure 4 shows pairs of (Rn(m − 1), Rn(m)). These dis-
crete curves can be thought of as parameterized by time: subsequent
data points are a temporal distance of 1/n apart. Figure 5 shows the
same two sequences Rn(m) as a function of m(= nt) for large m: at
this scale, the sequences on the one hand and the continuous curves
on the other hand nearly coincide, allowing an excellent fit between
them. We see that the orange curve reaches the distance of, e.g., 50
at larger m (i.e., later in time) than the blue curve. Therefore, the
orange curve is delayed compared to the blue one, which is consis-
tent with the curves’ M-values. Figure 6 shows the two sequences
Rn as a function of m, now for small m: at this scale, the sequences
and the continuous curves are qualitatively different, although the
fit between them is excellent for large m, as we saw in Fig. 5. The
fitted values of M = nT do not correspond to the minimum of the
sequences, which occurs at m = 0 for both.

FIG. 3. Illustration of T for the special case where Rn,0 = Rn,1. These T-values
were computed as M/n via (5) with a = 1/2 and n = 100. The inset gives the
positive T-values on a logarithmic Rn,0-axis.
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FIG. 4. Trajectories are pairs of (Rn(m − 1),Rn(m)), where Rn(m) = 1

n2

Rn(m − 1)a + 2Rn(m − 1) − Rn(m − 2) with a = 1/2 and n = 100. The blue
trajectory passes through the pointRn(m − 1) = Rn(m) = 10−8: its minimal dis-
tance to the apex as visible here. The orange trajectory passes through the point
Rn(m − 1) = Rn(m) = 10−16, much closer to the origin.

2. Results for a general case

We need to vary both initial conditions Rn,0 and Rn,1 indepen-
dently to study the dependence of the discrete perturbation on T. In
this section, we study this dependence systematically; therefore, we
no longer require the initial grid velocity to be zero.

We wrote a program in visual Pascal (Delphi), which allows us
to study the effect of initial conditions in the recurrence equation (4)
on the fitted T-value understood as M/n via (5).28 We use our
program to determine the T-values and to represent them using a
color scale: see Fig. 7 for an example of the output. The legend in
the figures indicates the range of the T-values. In practice, the Rn,0

and Rn,1 intervals start at a number slightly higher than zero (and
much smaller than the upper bound): otherwise, the singular solu-
tion (at Rn,0 = 0, Rn,1 = 0) is in the field of view, dominating the
T-scale.

It is instructive to see the results of our program combined with
particular sequences or trajectories. This is shown in Fig. 7. The part
of the trajectory below the main diagonal corresponds with a mass
moving toward the apex and coincides with positive T-values.

In general, we see that solutions with a positive T-value, vis-
ible as a narrow red band in the figures, mainly occur for Rn,1

smaller than Rn,0 (below the main diagonal Rn,0 = Rn,1). This is to
be expected: if the (sufficiently small) initial grid velocity is nega-
tive (i.e., directed toward the top), the mass first moves toward the
apex, before sliding off, thus increasing the (apparent) T. However,

FIG. 5. Values for Rn(m) as a function of m (= nt) for large m, where Rn(m)

= 1

n2
Rn(m − 1)a + 2Rn(m − 1) − Rn(m − 2)with a = 1/2 and n = 100. The

blue trajectory passes through the point Rn,0 = Rn,1 = 10−8; the orange trajec-
tory passes through the point Rn,0 = Rn,1 = 10−16. The inset clearly shows that
the orange curve is delayed as compared to the blue one.

FIG. 6. Variables and colors as in Fig. 5, now shown for small m. The dashed

curves represent the continuous curves 1/144
(

m−M

n

)4
that are fitted to the

sequences.
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FIG. 7. Values for T , the parameter
from the continuous solution that corre-
sponds to the onset of the movement,
represented by the color scale in the
interval indicated besides each panel.
Values for T are obtained numerically
from a fit to Rn(m) = 1

n2
Rn(m − 1)a

+ 2Rn(m − 1) − Rn(m − 2) with a

= 1/2 in the interval Rn,0 ∈ [0, 1
nm
]

(horizontal) and Rn,1 ∈
[

0, 1
nm

]

(vertical)
with n = 100 and m = 1 [panel (a)],
m = 2 [panel (b)], m = 3 [panel (c)], and
m = 4 [panel (d)]. The overlay shows
in gray one trajectory passing thro-
ugh (Rn(m − 1),Rn(m − 2)) = (10−12,
10−12).

for fixed Rn,0, Rn,1 cannot be chosen arbitrarily small; otherwise,
we select a trajectory that goes over the top and slides off on the
other side, resulting in a smaller positive or negative T. For positive
grid velocities, the mass slides off the mound monotonically with a

FIG. 8. Dependence of T on Rn,1 at constant Rn,0 = n
− 2

(1−a) , which is 10−8 for
a = 1/2 and n = 100.

smaller or more negative apparent T at large m as compared to the
same Rn,0 with Vn,0 = 0.

We also studied the dependence of T on Rn,1 (keeping Rn,0

fixed). As an example, we considered a = 1/2, n = 100, and

Rn,0 = n
− 2

(1−a) = 10−8; this corresponds to the right-hand edge in
Fig. 7(d). When Rn,1 is varied from 0 to Rn,0, T monotonically
increases to an asymptote (located near Rn,1 = 0.262 162 16 × 10−8)
and then monotonically decreases. This is shown in Fig. 8. (Since
we do not have an analytic solution to the recurrence equation,
we cannot determine the position of the asymptote analytically
either.)

Continuing with the example, the initial condition Rn,1 = Rn,0

corresponds to a mass that is released from an arc distance of 10−8

with grid velocity zero. As we already discussed in Sec. V A 1, it
immediately starts sliding off from the initial side. This leads to a
negative T-value. Initial conditions with Rn,1 between the asymp-
tote and Rn,0 correspond to a mass that is released from the same
distance but now with a positive velocity toward the top. As Rn,1 is
decreased in this interval, the mass moves closer to the apex before
sliding down, leading to a monotonic increase in the T-value toward
the asymptote.

The initial condition Rn,1 = 0 corresponds to a mass that is
released from a distance of the apex with a velocity directed toward
the apex such that the mass already reaches the top at m = 1
(

ort = 1
n

)

: this leads to a mass that rapidly slides off the dome
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at the other side, also corresponding with a negative T-value. As
Rn,1 is increased up to the aforementioned asymptote, the velocity
decreases, leading to a slower descent from the other side, hence the
monotonically increasing T-values.

The slope of the T-curve in the Rn,1-interval between 0 and
the asymptote is characterized by an infinite sequence of points
of inflection. The first one occurs at Rn,1 = 0, the second one
at Rn(2) = 0, the third one at Rn(3) = 0, etc. In general, Rn(2)
= 1

n2 Ra
n,1 + 2Rn,1 − Rn,0. Solving for Rn,1 in the case where

Rn,0 = 10−8 and Rn(2) = 0 yields Rn,1 = 0.25 × 10−8 exactly. In
principle, the position of the other points of inflection can
be computed from the general expression for Rn(m), but
this becomes impractical quickly. [For instance, the relevant
equation for the inflection point corresponding with Rn(3) = 0
is Rn(3) = 1

n2

(

1
n2 Ra

n,1 + 2Rn,1 − Rn,0

)a
+ 2 1

n2 Ra
n,1 + 3Rn,1 − 2Rn,0.]

Instead of the analytic approach, we have determined numeri-
cally that the third and fourth inflection points occur around
Rn,1 = 0.262 071 × 10−8 and Rn,1 = 0.262 162 153 8 × 10−8, respec-
tively. The position of the asymptote can be regarded as the limit of
this sequence of inflection point positions, but this does not yield a
more practical way of computing it.

So far, all numerical results we have shown were for Norton’s
dome (a = 1/2). Figure 9 presents results obtained by varying a. As
a increases, the region with positive T-values becomes narrower and

its slope approaches the main diagonal. In other words, increasing
a looks like zooming out and decreasing a looks like zooming in as
compared to the intermediate case where a = 1/2. Quantitatively,

this scaling behavior is consistent with the scale factor, n
− 2

(1−a) .

B. Results in the α-limit

For our purposes, it is crucial that we do not introduce any
finite perturbations (as in Sec. V A), but that we keep the stan-
dard part of the initial values R0 and V0 in (3) exactly zero. In
order to achieve this, we take the α-limit of sequences of finite grid
Cauchy problems, for which the perturbations become infinitesimal

in this limit. We focus on the subset
[

0, α− 2
(1−a)

]

∗R

of both R0 and

R1 because we know the scaling behavior of the finite discrete func-

tions on the corresponding sequence of finite intervals
[

0, n− 2
(1−a)

]

R

.

Computationally, the results for M do not change, even when we
change n (and a), as long as we scale the plots like this. Since the
result on this scale is exactly the same for every finite n above a
certain threshold, alpha-theory guarantees that this scaling behav-
ior holds in the α-limit as well. This way, we can plot panel (a) of
Fig. 10 using standard numerical simulations.

For finite m, the solution to (3), R(m), is a finite sum of
infinitesimals; therefore, its standard part is zero. For infinite m,

FIG. 9. Values for T , the param-
eter from the continuous solution
that corresponds to the onset of the
movement, represented by the color
scale in the interval indicated besides
each panel. Values of T are obtained
numerically from a fit to Rn(m) = 1

n2
Rn

(m − 1)a + 2Rn(m − 1) − Rn(m − 2)
with n = 100 in the interval Rn,0

∈
[

0, 104 × n
− 2

(1−a)

]

(horizontal) and

Rn,1 ∈
[

0, 104 × n
− 2

(1−a)

]

. Panel (a):

a = 1/10. Panel (b): a = 1/3. Panel (c):
a = 2/3. Panel (d): a = 9/10.
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FIG. 10. Two representations of the
same numerical results for M,
where M is the parameter in Fa(m)

=
(

(1−a)2

2(1+a)

)
1

1−a ( m−M

α

)
2

1−a [which differs

from R(m) by an infinitesimal for infinite
m], represented by the color scale.
Panel (a): (R0,R1)-plane. Panel (b):
(R0, V0)-plane. The diagonal in panel
(a) corresponds to R0 = R1: that is the
horizontal axis in panel (b); i.e., V0 = 0.
Values of M are represented by the color
scale in the interval indicated besides
each panel.

R(m) is a hyperfinite sum that in general need not be infinitesi-
mal, even when all the terms are. For example, for the sequence
of finite difference equations with initial conditions Rn,0 = Rn,1

= n
− 2

(1−a) , the difference between the sequence R(m) and Fa
n(m)

=
(

(1−a)2

2(1+a)

)
1

1−a (m−M
n

)
2

1−a decreases faster than 1/m, where we find

numerically that M is about equal to −1.947 417. Therefore, when
we take the α-limit of this sequence of finite grid Cauchy prob-

lems, with R0 = R1 = α
− 2

(1−a) , we find the hyperfinite grid solution:

R(m) =
(

(1−a)2

2(1+a)

)
1

1−a (m−(−1.947 417)
α

)
2

1−a . For values of m such that m
α

is finite, we take t = st( m
α
). Then, st(R(m)) corresponds with the

general solution (2) with T = st(−−1.947 417
α

) = 0. Therefore, for all
m, st(R(m)) = r(t), where the latter is one of the solutions to the
continuous Cauchy problem. In particular, we find the undelayed

solution: r(t) =
(

(1−a)2

2(1+a)

)
1

1−a
(t)

2
1−a . As we see in Fig. 11, to obtain

a standard solution with a non-zero T, we have to pick a V0-value

FIG. 11. Dependence of M on V0 at constant R0 = α
− 2

(1−a) .

that is finely tuned to R0. This observation is directly relevant for the
assignment of probabilities in Sec. VI.

As explained in Sec. IV, the indeterminism in the standard
model (continuous, without infinitesimals) can be interpreted as
being due to rounding off the infinitesimals from the hyperfinite
model. We have now seen an example of this in terms of our toy
model. Finally, this attribution or correspondence allows us to assign
probabilities to the standard solutions.

VI. USING THE HYPERFINITE GRID DIFFERENTIAL

EQUATION TO ASSIGN PROBABILITIES TO THE

STANDARD SOLUTIONS

Faced with the family of regular solutions (2) to (1), it might
be tempting to impose a probability density on T directly: a uni-
form probability measure on T perhaps? This approach faces two
problems. The first one is an immediate consequence of the fact that
T may be arbitrarily large: there is no standard countably additive
probability measure that is uniform over an infinite support. This
problem may be overcome by adopting a merely finitely additive
probability function. The second problem is that the measure is not
robust under reparameterizations; therefore, one needs an argument
to favor a uniform measure over T, rather than over 1/T, log(T), or
some other transformation.

Instead of imposing a probability measure on T directly, for
which we know no principled way of choosing one, we approach the
issue differently. Starting from the hyperfinite model, we first con-
sider hyperreal initial conditions (R0, V0) that are randomly chosen
from a suitable interval that guarantees that they are both infinites-
imal and then compute the resulting probabilities for obtaining the
singular solution and for the values of T = st(M/α) associated with
the family of regular solutions. The first step amounts to assuming
a uniform prior on the phase space. Now, we only face the sec-
ond problem: arbitrary coordinate transformations lead to infinitely
many representations of the same phase space. Our next question,
then, is how to make a principled choice here.

A. Phase space for uniform, random sampling

In (1) and (3), we have used the Newtonian formalism with two
generalized coordinates: the arc length and the arc (grid) velocity.
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It is well known that measures on the phase space change due to
coordinate transformations. To report the results of our numerical
experiments, we have used the arc length at two different times as
the phase space (R0 and R1), rather than the initial arc length and
the grid velocity (R0 and V0), which can be viewed as an example of
such a transformation.

To make a principled choice, we take our cue from statistical
mechanics. In Ref. 29, Goldstein reviewed arguments (going back to
Boltzmann) to the effect that a non-arbitrary choice for the prob-
ability measure is a uniform measure that is invariant under the
dynamics. Statistical physicists had to resolve this issue because they
often appeal to the notion of typicality in the sense of “almost all”
trajectories. Clearly, such statements only make sense relative to a
specific measure, which turns out be the Lebesgue measure on the
phase space. This choice is motivated by Liouville’s theorem, which
implies that the Lebesgue measure on the phase space conserves
probability. Outside of statistical mechanics, the approach to asso-
ciate a unique probability measure to a random selection of initial
conditions via invariance requirements is also well-known from the
work of Jaynes,30 which led to many applications of such maximum
information entropy (MaxEnt) methods.

In other words, we need coordinates such that the density of
states is conserved on the phase space. For this, we have to consider
the Lebesgue measure on the canonical coordinates from Hamil-
tonian mechanics (such that Liouville’s theorem applies). For our
problem, the canonical coordinates are the arc length and the con-
jugate momentum, which equals mass times the arc velocity. Since
we assumed a unit mass, the phase space spanned by (R0, V0) is
the proper starting point for a probabilistic analysis that allows us
to start from a uniform probability distribution (MaxEnt). Hence,
we use (R0, V0) to represent the initial conditions [where V0 = α

(R1 − R0)], as shown in panel (b) of Fig. 10.
Therefore, our prior probability is motivated by the dynamics,

which privileges the uniform measure on the (R0, V0)-plane. This is
what we take selecting “random” initial conditions to mean and how
to reason about “typical” results. However, this is a defeasible choice:
if there is any background information on how the initial position
and velocity are realized (due to preparation or post-selection of the
system), we should adapt the prior in light of it. For instance, one
might consider a process that aims to place the mass as close to the
top as possible with a velocity as close to zero as possible and then
selects systems of which the real-valued initial position and veloc-
ity are indeed zero. In such a case, it is clear that the prior does not
come from the dynamics of the system under study, but from an
independent placement mechanism. In the case of such an external
influence, the Cauchy problem does not contain all the informa-
tion about the system; therefore, it does not suffice to determine the
probabilities. For this example, we may want to consider a Gaus-
sian distribution around the origin in the (R0, V0)-plane instead of
a uniform distribution. Fortunately, as we will see in Sec. VI B, our
main results (in terms of probabilities for the T-values) turn out to
be quite robust: they are valid for a uniform measure over (R0, V0)

as well as any Gaussian or other finite transformations of it.
The vector field on this phase plane is shown in Fig. 12, where

the symmetry between the upper and lower half of the plane shows
that the dynamics is time reversible. If we reinterpret R as a position
rather than an arc length and include the opposite side of the slope

FIG. 12. Numerical results for the vector field on the phase space (R0, V0).

as negative R-values (not shown), the vector field shows the signa-
ture of a saddle point at the singularity (0, 0) (indicating an unstable
equilibrium).

B. From measuring initial conditions to probabilities

We now propose to measure the probability of sets of standard
solutions as the standard part of the normalized area of the set of
corresponding initial values, (R0, V0), in the hyperfinite grid model.
Since there is no such thing as the “largest infinitesimal,” we have to
normalize on R0 and V0 being in a particular interval of infinites-
imals. For this purpose, we select R0 ∈

[

0, 1
α

]

and V0 ∈
[

− 1
α
, 1

α

]

;
therefore, the normalization factor is 2

α2 . We can now represent

any event as a subset of
[

0, 1
α

]

×
[

− 1
α
, 1

α

]

and consider its proba-
bility as the standard part of the area of the set divided by 2

α2 . (This
approach is similar to that of Ref. 26, where it is connected to a Loeb
measure.31)

All the events we have discussed in Sec. V B were contained

in (R0, V0) ∈
[

0, α− 2
(1−a)

]

×
[

−α
−

(1+a)
(1−a) , α−

(1+a)
(1−a)

]

, which is a strict

subset of the proposed reference class (for every a) and has an

infinitesimal normalized area of α
−

(1+3a)
(1−a) .

We already observed that exactly one combination of
hyperreal-valued initial conditions leads to the equilibrium solution:
R0 = 0 and V0 = 0. This means that the singular solution has zero
area. Although it is not logically impossible for it to happen, it does
not happen almost surely. This assignment is very robust: it holds
not only for the uniform prior on (R0, V0), but for any prior that
does not assign more than an infinitesimal portion to the singleton
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(0, 0). All other initial conditions, in
[

0, 1
α

]

×
[

− 1
α
, 1

α

]∖

{(0, 0)}, are
associated with a regular solution. They carry unit probability; there-
fore, a regular solution happens almost surely. This settles our first
research question.

Our second research question asked how to assign relative
probabilities to the T-values in the family of regular solutions. The
key to answer this lies in our observation that the relation between
the infinitesimal initial conditions and the T-parameter in the
corresponding continuous solution is strongly non-linear [where
T = st(M/α)]. Figure 11 shows that, for the specific choice where

R0 = α
− 2

(1−a) , the interval where M is positive covers a non-

infinitesimal fraction of V0 ∈
[

−α
−

(1+a)
(1−a) , 0

]

(about 10%), but this

interval itself is only an infinitesimal fraction of the entire V0-range,
[− 1

α
, 1

α
]. Therefore, the normalized area corresponding to positive

M-values is infinitesimal. Moreover, almost all positive M-values
are such that M/α is infinitesimal: since M increases so fast in the
region where it is positive, the interval of V0-values that correspond
to a non-infinitesimal value is infinitesimal compared to the interval
where M is positive (Fig. 11). (Due to this highly non-linear depen-
dence of T on V0, for fixed R0, it was also difficult in the numerical
experiments with the corresponding finite difference equations to
find explicit examples of large, positive T-values.) The normal-
ized area corresponding to negative M-values is unity minus an
infinitesimal. The negative M/α-values are all infinitesimal. There-

fore, for R0 = α
− 2

(1−a) , we find the undelayed standard solution [i.e.,
T = st(M/α) = 0] almost surely.

These observations hold in general, across all R0: almost all
infinitesimal initial conditions correspond to the undelayed stan-
dard solution and only an infinitesimal proportion of all infinites-
imal initial conditions correspond to standard solutions with
T = st(M/α) > 0. Hence, if we assume a uniform distribution of the
infinitesimal initial conditions, we arrive at the following probabili-
ties for the standard solutions:

• The probability of the mass staying at the apex of any of Mala-
ment’s mounds indefinitely (singular solution) is zero.

• The normalized area of initial conditions in the hyperfinite grid
model corresponding to the mass staying at the apex of any of
Malament’s mounds for some observable time is infinitesimal;
therefore, the probability is zero.

• The normalized area of initial conditions in the hyperfinite grid
model corresponding to the mass immediately starting to slide off
the apex of Norton’s dome or any of Malament’s mounds is one
minus an infinitesimal; therefore, the probability is unity.

In conclusion, a point mass with velocity zero at the apex of
any frictionless Malament’s mound in a uniform gravitational field
will immediately start sliding off the dome almost surely. If the ini-
tial conditions are external to the Cauchy problem, other priors
can be considered and our methodology may yield another result.
For instance, for an asymmetrical measure on the (R0, V0)-plane,
the conclusion will be different. However, the above conclusion
continues to hold if the uniform measure on the (R0, V0)-plane is
replaced by a symmetric Gaussian (cut-off for non-infinitesimal val-
ues since they contradict the conditions set by the standard initial
value problem).

In addition, for a mass sliding toward the apex (from a finite
distance and with finite velocity), reaching it with a standard veloc-
ity of exactly zero, it will either slide off from the opposite side
immediately or slide back immediately (depending on the precise
infinitesimal position and velocity values), almost surely. In this
case, the initial values are sampled from a different part of the phase
plane, but it remains the case that those corresponding to any mea-
surable delay are of infinitesimal measure as compared to those
yielding no measurable delay.

So far, we have only presented equations and results that rely
on distances to the apex. By adding sign information, we can keep
track of which side of the two-dimensional cross section of the dome
the mass is on. We find that the probability of sliding off on either
side of the dome is 1/2. This can be seen directly from the symmetry
of the extended phase plane (not shown) in combination with the
uniform prior. Moreover, observing the initial infinitesimal posi-
tion and velocity allows us to predict the final descent direction.
Therefore, unlike the original model, the hyperfinite model does not
exhibit spontaneous symmetry breaking: either the symmetry is bro-
ken at m = 0 or the solution remains symmetric (when R0 = 0 and
V0 = 0). Hence, the symmetry breaking in the standard model may
be thought of as being due to rounding off the infinitesimals in the
hyperfinite model.

VII. DISCUSSION AND CONCLUSION

First, we comment on possible applications of this work. Then,
we draw general conclusions.

A. Relation to contemporary hydrodynamics

literature

In our paper, we focused on a toy example. However, differen-
tial equations with a non-Lipschitz singularity are prevalent in the
context of physical applications, such as shock formation and turbu-
lent flows; a case that is widely studied is that of the Burgers equation
(a first-order, non-linear partial differential equation) in the invis-
cid limit (i.e., the limit of viscosity to zero, which is equivalent to the
infinite limit of the Reynolds number). In Sec. I, we already men-
tioned some publications that used probabilistic approaches to such
problems. Here, we briefly review results from this literature. Where
possible, we connect their results to ours. Fully comparing, “translat-
ing,” and contrasting the cited works to our methodology, however,
would warrant a separate study, much more extensive than the cur-
rent paper. In any case, our study shows that it will be crucial to
pay due attention to the order of the (standard) limits: when the
limit of finite perturbations to zero is taken as the first step, there
is no way to recover the probabilities associated with various rates of
convergence afterward. Alpha-limits have the advantage of retaining
this asymptotic behavior automatically by encoding it into distinct
infinitesimals.

In the context of passive scalar transport in a turbulent veloc-
ity field, E and Vanden-Eijnden11 introduced “generalized flows,”
which are families of probability distributions on the space of solu-
tions to a non-Lipschitz ODE. They started from a first-order ODE
for a non-Lipschitz velocity field and considered probability distri-
butions on the set of solutions: either as a probability measure on the
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path-space or as transition probabilities (which degenerates to unit
probability mass at the unique path in the case of Lipschitz continu-
ity). They considered the analogy to stochastic ODEs with a random
(white noise) velocity field and also two natural regularizations of
the problem, which do not always give identical results.

Building on this, E and Vanden-Eijnden13 presented some
examples, including a first-order analogous case to the second-order
ODE that we discussed. Applied to our case, their approach relies on
a stochastic process to determine the time and the initial direction of
the descent from the top. Like in our approach, the singular solution
has measure zero, and both directions of descent are equiprobable.
They considered transition probability distributions to characterize
the random field, which they used to define a generalized flow for
the non-Lipschitz ODE.

Falkovich et al.12 compared chaotic (deterministic) behavior
with exponential separation and truly turbulent (stochastic) behav-
ior with explosive separation (with power law scaling): only in the
second case do infinitesimally close trajectories separate in finite
time. In the inviscid limit, the ODE becomes non-Lipschitz, allow-
ing for multiple Lagrangian trajectories. They considered a statistical
description of the trajectories, in terms of a stochastic Lagrangian
flow, which allows, for instance, the study of averages.

E and Vanden-Eijnden11,13 showed that different regulariza-
tion processes give rise to different generalized flows, without one
of them being uniquely well-motivated by the underlying physical
context. In more recent work, however, Mailybaev et al. did pro-
pose a way to assign a unique (i.e., independent of the regularization
method) statistical probability distribution to the Burgers equation
in the inviscid limit,14 as well as a class of ODEs that also become
non-Lipschitz in this limit.15

After a trajectory encounters such a singularity in finite time
(known as “blowup”), the evolution is no longer deterministic:
there are continuum many solutions. One way to understand this
is that the initial state represents a Dirac-delta distribution of ini-
tial conditions: whereas this remains a Dirac-delta distribution for
fully deterministic evolutions, non-Lipschitz singularities make the
delta-distribution spread out to a “spontaneous” probability distri-
bution—a phenomenon known as “spontaneous stochasticity.” This
phenomenon may also have a quantum-mechanical analog.10

Using methods related to those in our paper, we can re-
interpret the Dirac-delta distribution as a function from non-
standard analysis (an infinitely small Gaussian), non-singular points
as finite dispersion (such that infinitesimal differences remain
infinitesimal), and the singular point as a place where there is
infinite dispersion (such that infinitesimal differences become non-
infinitesimal). Viewed as such, the non-Lipschitz indeterminism of
the continuous model can be connected to a case of deterministic
chaos in a corresponding hyperfinite model.

B. Conclusion

In this paper, we presented a method for assigning probabil-
ities to the solutions of initial value problems that lack Lipschitz
continuity. First, we linked the differential equation to sequences of
finite grid differential equations, which are deterministic and allow
for systematic numerical studies. Second, to avoid introducing any
non-infinitesimal perturbations, we considered the α-limit of the

sequences and their solutions as hyperfinite grid functions. Third,
starting from a uniform prior on the phase space spanned by the
canonical coordinates, we assigned probabilities to the standard part
of these hyperfinite grid functions, which equal the solutions of the
corresponding, continuous Cauchy problem. Although we set out
to find a probability distribution over the solutions, we found unit
probability for one single solution (the non-delayed, regular solu-
tion). Hence, while we did not assume uniqueness at the outset, we
do find ourselves in agreement with authors who set out to find a
unique continuation beyond the non-Lipschitz discontinuity.

Our methodology and results are analogous to the study of fully
deterministic chaotic systems without any singularities: in classi-
cal chaos, when two systems have initial conditions that differ by
a non-infinitesimal amount below the measurement precision, they
cannot be distinguished empirically at the start. Yet, the resulting
trajectories measurably diverge at some point, and these later states
can be used to determine their initial positions beyond measure-
ment precision at the time. (However, see Ref. 17, which suggested
to reinterpret this as indeterminism after all.) Likewise, in the case
of indeterministic Cauchy problems, the changes at later times can
be attributed to infinitesimal differences present at the start in the
corresponding hyperfinite model. (These infinitesimal differences
are not measurable on any real-valued measurement precision.) The
hyperfinite model produces asymmetric results only when the ini-
tial conditions are asymmetric; therefore, we find that the symmetry
breaking in the standard model can be thought of as the result of
rounding off the infinitesimals.

The current paper focused on toy examples (Malament’s
mounds), but our methodology is applicable to study other initial
value problems that lack Lipschitz continuity. Hence, we hope our
approach will be fruitful for application to the study of singularities
in hydrodynamics and other blowup phenomena.
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