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1 Introduction

Serial Analysis of Gene Expression (SAGE), a technique that has been developed at Johns
Hopkins University in the USA, allows the analysis of overall gene expression patterns. It
is an open platform because SAGE does not require a preexisting clone, unlike microarrays.
So SAGE can be used for the identification and quantification of known genes as well as new
genes.
A SAGE experiment, from a statistical points of view, consists of the following 7 steps:

1. Extract a sample of mRNA fragments from a biological sample.

2. Convert the mRNA fragment into cDNA clones.

3. Generate tags by cutting 10 or 17 base long segments from a certain site of cDNA.
These tags are what we call the true tags.

4. Apply the PCR (Polymerase Chain Reaction) procedure to boost the counts of the
tags.

5. Link the tags to form long sequences.

6. Take a sample of those sequences.

7. Read off tag counts by sequencing these chosen sequences. The resulting tags are called
sequenced tags and the resulting counts are the observed counts.

Note that no true tags are lost before, during or after sequencing, hence the number of se-
quenced tags is equal to the number of true tags. In the following sections we will assume
that the true tags uniquely identify mRNA fragments that are present in the biological sam-
ple. The result of a SAGE experiment, called a SAGE library, contains the observed counts.
Hence a SAGE experiment can only measure the expression levels of the tags. We can get
the gene expression levels from a SAGE library by mapping the tags onto the genes.

The aspects of SAGE experiments that bias the outcomes have been studied by simulat-
ing libraries by Stollberg et al. (2000). The following four sources of errors are considered:

(1) sampling errors in tag selection;

(2) sequencing errors;

(3) non uniqueness of tag sequences; and

(4) non randomness of DNA sequences.

The authors have provided a maximum likelihood approach to estimate the number of unique
transcripts and their frequency distribution.
In what follows, we will focus on sequencing errors. Sequencing errors have a large impact on
the outcome of a SAGE experiment: non-existing tags may be introduced at low abundance
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and the real abundance of the other tags may decrease.
Colinge and Feger (2001) introduced an approach to identify tags whose abundance is biased
by sequencing errors. Their approach is based on a concept of neighbourhood, i.e. abundant
tags can contaminate tags whose sequence is very close. They assume constant error proba-
bilities and use matrix inversion to correct for sequencing errors.
There are also more biological approaches to the problem of sequencing errors as in Blades et

al. (2004a,b). In Blades et al. (2004a), the fact that frequency distributions of tags display
a regularity across cell types and species is used to

• automatically discount low counts that are not reliable for the comparison of expression
levels across conditions for a specific gene;

• to transform the tag counts to a scale that provides a more reliable correlation and
clustering of genome-wide expression profiles.

They state that the transformation enhances the ability to distinguish between signal and
noise in SAGE data. Blades et al. (2004b) observed a linear relationship between the copy
number of a given tag and the number of observed tags which differ from the given tag by
a single base. By transforming the slope of this relationship, an estimate of the sequencing
error rate can be found.
Akmaev and Wang (2004) estimated error rates based on a mathematical model that in-
cludes the PCR and sequencing error contributions. About 3.5% of Long SAGE tags (10-17
base pair tags) will inherit errors from the PCR amplification and 17.3% of the Long SAGE
tags will have sequencing errors.
Beissbarth et al. (2004) introduced a statistical model for the propagation of sequencing
errors and proposed an Expectation-Maximization (EM) algorithm to correct for the se-
quencing errors given a library of observed sequences and base-calling error estimates. The
suggested correction method adjusts the tag counts to be closer to the true counts and the
bias introduced by the sequencing errors can be partly corrected. In the article, they make
use of the sequence neighbourhood of SAGE tags. This means that they assume that se-
quencing errors can only come from the first order neighbours tags.
First order neighbours tags are tags that differ from each other by only 1 nucleotide, e.g.
AAAA and AAAC are first order neighbour tags.
The authors simulate the true tag counts by sampling from a Poisson distribution with mean
pλ, with p the proportion of a tag in the library and λ a parameter for setting the size of
the library. An observed tag sequence is generated from a true tag sequence using the sim-
ulated quality values (given by a base-calling program and in function of the probability of
a base-calling error) of the true tag sequence as the multinomial probabilities, i.e. replacing
each base with either one of the three bases with the probability specified by the sequencing
quality value of that base. The counts of the observed tags are then summed to represent
the observed tags. The implementation of the algorithm is done in R.

We also propose a statistical model for the propagation of sequencing errors in the case
that we have multiple SAGE libraries and correct for the sequencing error through an EM
algorithm by using a similar strategy as Beissbarth et al. (2004). We use MATLAB for the
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implementation.
There are, however, some differences between our method and the one developed by Beiss-
brath et al. (2004). We assume that the true tag counts follow a multinomial distribution
with parameters π and N , where π is the vector of probabilities that represent the relative
expression levels of the DNA fragment and N is the number of true tags. The error esti-
mates which we propose are partly based on the estimate given in Akmaev and Wang (2004).
Another difference is that we assume that the sequencing errors are such that a tag can be
misread as one of all possible tags, instead of only restricting this to the first order neigh-
bours. Finally, in paper of Beissbarth et al. (2004), they work with Long SAGE sequences,
while we work with sequences of four base pairs because we do not use the restriction of the
first order neighbours.
In section 2, we explain the notation and the settings that we will use throughout this the-
sis. In section 3, we give a detailed mathematical description of the EM algorithm with
the expressions for the estimates of the expression probabilities π and the corresponding
Variance-Covariance matrix. In section 4, we simulate SAGE libraries to study the follow-
ing:

• the potential gain in terms of bias when we use estimates obtained by the EM algorithm
instead of the observed expression probabilities;

• the potential gain in terms of bias when we use multiple libraries instead of a single
library;

• the effect of the probabilities of sequencing errors;

• the comparison of the bias using our method and using the method of Beissbarth et

al. (2004).

The results of the simulations are given in section 5.
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2 Description of the settings and notation

A tag can be represented by a l-long vector Tj = (j1, . . . , jl) with j = 1, . . . , K and jm

(m = 1, . . . , l) can take the values 1,2,3 or 4 if the mth nucleotide in the tag is A, C, G or
T, respectively. Considering tags of length of l base pairs (bp), there are K = 4l such tags
theoretically possible.

We will perform experiments with single SAGE libraries. Such a library consists of ob-
served tag counts, denoted as the observed vector (n∗

1, . . . , n
∗

K), which represent the set
of N sequenced tags. The corresponding set of N true tags is represented by the vector
(n1, . . . , nK). Note that since no true tags are lost before, during or after sequencing, we
have that the number of sequenced tags is equal to the number of true tags.
In the experiments, the distribution of the true tags in the samples is the object of interest.
The distribution is represented by the vector of probabilities π = (π1, . . . , πK), with the
property that

∑K
j=1 πj = 1. The probability πj can be interpreted as a representation of the

relative expression level of the DNA fragment corresponding to the tag Tj . We will refer to
the vector π as the true expression probabilities.

As we will also work with multiple SAGE libraries, we need to extend the notation above.
We will consider g independent libraries (L1, . . . , Lg).
Let Ni be the number of true and sequenced tags in the ith library Li. The set of Ni true tags
will be represented by the vector of counts (ni1, . . . , niK), where the index i (i = 1, . . . , g)
corresponds to the ith library Li. The set of Ni sequenced tags will be represented by the
vector of counts (n∗

i1, . . . , n
∗

iK). These counts are observed.
So a sample of observed counts of g libraries is denoted as (n∗

1, . . . , n
∗

K), with n∗

j = (n1j , . . . , ngj),
which represents N sequenced tags with N = (N1, . . . , Ng).
In the experiments with multiple libraries, the distribution of the true tags is again the ob-
ject of interest. We will assume that the distribution parameter π = (π1, . . . , πK) is the same
across the g libraries, since we will consider them to be generated under similar conditions.

During the sequencing process, the DNA sequence of each of the sampled true tags can
be misread. The probability of a sequencing error will be assumed to be constant for each
nucleotide and independent of the position in the tag. Let ωjk be the probability of the
change of nucleotide j into nucleotide k during the sequence process, where j and k equal
to 1,2,3 or 4 for nucleotides A, C, G or T, respectively. We will consider the following 4× 4
matrix Ω that contains the probabilities of sequencing errors:

Ω =









ω11 ω12 ω13 ω14

ω21 ω22 ω23 ω24

ω31 ω32 ω33 ω34

ω41 ω42 ω43 ω44









,

with
∑4

k=1 ωjk = 1. We assume that the matrix Ω is the same across the g libraries. In the
following, we will denote the matrix Ω as the transition matrix.
One can consider the most general form of the matrix Ω where the probability of change of
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a true tag Tr into a sequenced tag Ts depends on the nucleotides in the sequences. Then the
probability is equal to

P (Tr → Ts|Ω) ≡ ϕrs =
l
∏

m=1

ωrmsm
.

The probabilities ϕrs for all pairs of true and sequenced tags r and s (r, s = 1, . . . , K) are
stored in the K × K matrix Φ. The matrix Φ is constructed using the Kronecker tensor
product

⊗

and the transition matrix Ω :

Φ =
l
⊗

i=1

Ω. (1)

In Beissbarth et al. (2004), the matrix Φ has non-zero probabilities on the diagonal and
for the first order neighbours. We will call this matrix ΦB. Hence they assume that the
sequencing errors can only come from the first order neighbours. We will assume that a tag
can be misread as one of all possible tags and so the matrix Φ will only contain non-zero
probabilities.
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3 Expectation-Maximization Algorithm for multiple li-

braries

The EM algorithm is an iterative procedure for the computation of maximum likelihood es-
timates in situations where, beside the fact that some additional data is missing, maximum
likelihood estimation would be straightforward. In our context, the observed tag counts are
the incomplete data and the true tag counts are the complete data. The incomplete data is
an observable ‘function’ of the complete data. The problem of solving the likelihood equa-
tion of the incomplete data is tackled by proceeding iteratively in terms of the log-likelihood
function of the complete data. All that is needed is the specification of the complete data
and its conditional expectation given the observed incomplete data, which will be used in
the E-step. The details of the mathematical formulation of the EM algorithm is given in
this section.

The probability of getting a sample (n1, . . . , nK) of N true tags is a multinomial with pa-
rameters N and π:

P (n1, . . . , nK |π, N) =

g
∏

i=1

P (ni1, . . . , niK |π, Ni)

=

g
∏

i=1

(

Ni!
∏K

j=1(nij!)

K
∏

j=1

π
nij

j

)

=

∏g

i=1 Ni!
∏g

i=1

∏K

j=1(nij !)

g
∏

i=1

K
∏

j=1

π
nij

j

=

∏g
i=1 Ni!

∏g

i=1

∏K

j=1(nij !)

K
∏

j=1

π
Pg

i=1
nij

j , (2)

where N = (N1, . . . , Ng) with Ni the number of true tags in the ith library Li.

The sequencing procedure for nij true tags Tij has as outcome a vector of counts (n′

ij1, . . . , n
′

ijK)

for all possible sequenced tags with 0 ≤ n′

ijk and
∑K

k=1 n′

ijk = nij (i = 1, . . . , g and
j = 1, . . . , K).
The observed sequenced tag counts (n∗

1, . . . , n
∗

K) are functions of the counts n
′

jk because
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n∗

ik =
∑K

j=1 n′

ijk. Moreover, we have that:

P (n′

11, . . . , n
′

KK |π, Ω, N) =

g
∏

i=1

P (n′

i11, . . . , n
′

iKK|π, Ω, Ni)

=

g
∏

i=1

P (ni1, . . . , niK)P (n′

i11, . . . , n
′

iKK|ni1, . . . , niK)

=

g
∏

i=1

[{

Ni!
∏K

j=1(nij!)

K
∏

j=1

π
nij

j

}

K
∏

j=1

{

(nij !)
∏K

k=1(n
′

ijk!)

K
∏

k=1

ϕ
n′

ijk

jk

}]

=

g
∏

i=1

{

Ni!
∏K

j=1

∏K

k=1(n
′

ijk!)

K
∏

j=1

K
∏

k=1

(πjϕjk)
n′

ijk

}

=

∏g
i=1(Ni!)

∏g

i=1

∏K

j=1

∏K

k=1(n
′

ijk!)

K
∏

j=1

K
∏

k=1

(πjϕjk)
Pg

i=1
n′

ijk . (3)

Expression (3) specifies a multinomial distribution since

g
∑

i=1

K
∑

j=1

K
∑

k=1

n′

ijk =

g
∑

i=1

K
∑

j=1

nij =

g
∑

i=1

Ni =: N ′

and
K
∑

j=1

K
∑

k=1

πjϕjk = 1.

Hence, it follows that
E[n′

jk] = N ′πjϕjk (4)

and

E[n′

jk|n
∗

k] =

g
∑

i=1

πjϕjk
∑K

l=1 πlϕlk

n∗

ik. (5)

The probabilities of the observed counts (n∗

1, . . . , n
∗

K) for the sets of N sequenced tags
(
∑g

i=1

∑K
j=1 n∗

ij =
∑g

i=1 Ni) can be written as follows by using (2) and (3):

P (n∗

1, . . . , n
∗

K |π, Ω, N) =
∑

S∗

{P (n1, . . . , nK)P (n∗

1, . . . , n
∗

K |n1, . . . , nK)} (6)

=
∑

S∗

[

∏g
i=1 Ni!

∏g

i=1

∏K

j=1(nij !)

K
∏

j=1

π
Pg

i=1
nij

j

∑

S

{

g
∏

i=1

K
∏

j=1

(nij!)
∏K

k=1(n
′

ijk!)

K
∏

k=1

ϕ
n′

ijk

jk

}]

.

The first summation in (6) is over the set S =
{

(n1, . . . , nK) : 0 ≤ nij ,
∑K

j=1 nij = Ni

}

of all

possible combinations of counts of N true tags. The second summation is over the set

S = {(n
′

11, . . . , n
′

1K , . . . , n
′

K1, . . . , n
′

KK) : 0 ≤ n∗

ij ,

K
∑

j=1

n
′

ijk = n∗

ik,

K
∑

k=1

n
′

ijk = nij}
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of all possible series of counts (n
′

11, . . . , n
′

KK) of sequenced tags arising from the sets counts
(n∗

1, . . . , n
∗

K) of N true tags.
Now looking at the likelihood function for the g libraries, we have the following expression

L(n∗

1, . . . , n
∗

g|π, Ω, N) =

g
∏

i=1

P (n∗

i |π, Ω, Ni) =

g
∏

i=1

P (n∗

i1, . . . , n
∗

iK |π, Ω, Ni) (7)

The relevant part of the logarithm of (7) using (3) is

l(π1, . . . , πK) =

g
∑

i=1

K
∑

j=1

K
∑

k=1

n′

ijk log(πj) =

g
∑

i=1

K
∑

j=1

nij log(πj). (8)

The loglikelihood expression in (8) depends on the probabilities π1, . . . , πK , which we will
estimate using the EM-algorithm.

The E-step:

In the Expectation step, the conditional expected value of (8) is computed, conditional
on the observed counts (n∗

i1, . . . , n
∗

iK) and the current values of the parameters (π1, . . . , πK):

Q(π1, . . . , πK) =

g
∑

i=1

K
∑

j=1

E[nij |n
∗

i1, . . . , n
∗

iK , π
(0)
1 , . . . , π

(0)
K ] log(πj). (9)

Using (5) we have that

E[nij |n
∗

i1, . . . , n
∗

iK , π
(0)
1 , . . . , π

(0)
K ] = E[

K
∑

k=1

n′

ijk|n
∗

i1, . . . , n
∗

iK , π
(0)
1 , . . . , π

(0)
K ]

=

K
∑

k=1

E[n′

ijk|n
∗

i1, . . . , n
∗

iK , π
(0)
1 , . . . , π

(0)
K ]

=
K
∑

k=1

g
∑

i=1

π
(0)
j ϕjk

∑K
l=1 π

(0)
l ϕlk

n∗

ik. (10)

So we have that

Q(π1, . . . , πK) =

g
∑

i=1

K
∑

j=1

{

log(πj)

K
∑

k=1

π
(0)
j ϕjk

∑K

l=1 π
(0)
l ϕlk

n∗

ik

}

(11)

The M-step:

In the Maximization step, (11) is maximized over (π1, . . . , πK), while taking into account
that

∑K
j=1 πj = 1. If we take πK = 1− (π1 + . . .+πK−1), then we need to solve the following
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set of equations simultaneously for j = 1, . . . , K − 1:

{

K
∑

k=1

π
(0)
j ϕjk

∑K

l=1 π
(0)
l ϕlk

g
∑

i=1

n∗

ik

}

log πj =

{

K
∑

k=1

π
(0)
K ϕKk

∑K

l=1 π
(0)
l ϕlk

g
∑

i=1

n∗

ik

}

log(1 − (π1 + . . . + πK−1)).

(12)
To give the solution of (12), we will first simplify some of the expressions given above. First,
one can rewrite (11) as

Q(π1, . . . , πK) =

g
∑

i=1

[(

K−1
∑

j=1

Cij log(πj)

)

+ CiK log(1 − (π1 + . . . + πK−1))

]

, (13)

where

Cij =
K
∑

k=1

π
(0)
j ϕjk

∑K
l=1 π

(0)
l ϕlk

n∗

ik, with i = 1, . . . , g and j = 1, . . . , K. (14)

To maximize (13) over (π1, . . . , πK), we first set the derivative of Q over πj for all j 6= K
equal to zero:

∂Q

∂πj

=

g
∑

i=1

[

Cij

πj

−
CiK

1 − (π1 + . . . + πK−1)

]

= 0, ∀ j 6= K,

and solve the obtained set of equations to derive the estimates of (π1, . . . , πK).
Hence we have that











∑g
i=1 [Ci1 − (Ci1 + CiK)π1 − . . . − Ci1πK−1] = 0

...
∑g

i=1 [CiK−1 − CiK−1π1 − . . . − (CiK−1 + CiK)πK−1] = 0

⇔











∑g

i=1 [(Ci1 + CiK)π1 + . . . + Ci1πK−1] =
∑g

i=1 Ci1
...
∑g

i=1 [CiK−1π1 + . . . + (CiK−1 + CiK)πK−1] =
∑g

i=1 CiK−1

⇔







∑g
i=1(Ci1 + CiK) . . .

∑g
i=1 Ci1

...
. . .

...
∑g

i=1 CiK−1 . . .
∑g

i=1(CiK−1 + CiK)













π1
...

πK−1






=







∑g
i=1 Ci1

...
∑g

i=1 CiK−1






,

from which we obtain the estimate for each πj

πj =

∑g

i=1 Cij
∑g

i=1 Ci1 + . . . +
∑g

i=1 CiK

, ∀ j = 1, . . . , K. (15)
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Next, we will estimate the Variance-Covariance matrix corresponding to the estimates
given in equation (15) for j = 1, . . . , K. The estimation of the Variance-Covariance matrix
is based on the information matrix.
To estimate the information matrix I(π, n∗), we will use the following formula:

I(π, n∗) = Ic(π, n∗) − Im(π, n∗) (16)

= Eπ [Ic(π, n)|n∗] − Im(π, n∗), (17)

where Ic(π, n) = −∂2 log Lc(π)/∂π∂πT with Lc(π) the complete-data likelihood function.
Im(π, n∗) can be viewed as the “missing information” and hence equation (17) can be inter-
preted as: the observed informations equals the conditional expected complete information
minus the missing information.
The missing information matrix Im(π, n∗) can be expressed in the form (Louis (1982))

Im(π, n∗) = Covπ [Sc(n, π)|n∗] (18)

= Eπ

[

Sc(n, π)Sc(n, π)T |n∗
]

− S(n∗, π)S(n∗, π)T (19)

⇒ I(π̂, n∗) = Ic(π̂, n∗) − Im(π̂, n∗) (20)

= Eπ [Ic(π̂, n)|n∗] − Covπ [Sc(n, π)|n∗]π=π̂ . (21)

To obtain the Variance-Covariance matrix of π̂, we need to invert the information matrix,
i.e.

Cov(π̂) = (I(π̂, n∗))−1 = (Ic(π̂, n∗) − Im(π̂, n∗))−1 .

Calculation of Ic(π, n∗):

l(π1, . . . , πK) =

g
∑

i=1

K
∑

j=1

nij log(πj) (22)

=

g
∑

i=1

[

K−1
∑

j=1

nij log(πj) + niK log(1 − π1 − . . . − πK−1)

]

, (23)

taking into account that
∑K

j=1 πj and thus πK = 1 − π1 − . . . − πK−1.

The elements of the score matrix Sc(n, π) = ∂l(π1,...,πK)
∂π

are of the form

Sj,c(n, π) =

g
∑

i=1

{

nij

πj

−
niK

1 − π1 − . . . − πK−1

}

∀j 6= K.

We calculate the matrix Ic(π, n) by using the score matrix, i.e.

Ic(π, n) = −
∂Sc(n, π)

∂π
.
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So Ic(π, n) will be a (K − 1) × (K − 1)-matrix.

diagonal elements of Ic(π, n):

−
∂Sj,c(n, π)

∂πj

=

g
∑

i=1

{

nij

π2
j

+
niK

(1 − π1 − . . . − πK−1)2

}

(24)

off-diagonal elements of Ic(π, n):

−
∂Sj,c(n, π)

∂πk

=

g
∑

i=1

niK

(1 − π1 − . . . − πK−1)2
(25)

Now we can calculate the information matrix Ic(π, n∗) = Eπ [Ic(π, n)|n∗]

diagonal elements of Ic(π, n∗):

Ijj,c(π, n∗) =

∑g
i=1 Eπ [nij |n

∗

i ]

π2
j

+

∑g
i=1 Eπ [niK |n∗

i ]

(1 − π1 − . . . − πK−1)2

=

∑g

i=1

∑K

k=1
πjϕjk

PK
l=1

πlϕlk

n∗

ik

π2
j

+

∑g

i=1

∑K

k=1
πKϕKk

PK
l=1

πlϕlk

n∗

ik

(1 − π1 − . . . − πK−1)2

=

∑g
i=1 Cij

π2
j

+

∑g
i=1 CiK

(1 − π1 − . . . − πK−1)2
(26)

off-diagonal elements of Ic(π, n∗):

Ijj′,c(π, n∗) =

∑g

i=1 Eπ [niK |n∗

i ]

(1 − π1 − . . . − πK−1)2

=

∑g

i=1 CiK

(1 − π1 − . . . − πK−1)2
(27)

Calculation of Im(π, n∗):

Im(π, n∗) = Covπ [Sc(n, π)|n∗]

diagonal elements:

Ijj,m(π, n∗) = V arπ [Sj,c(n, π)|n∗]

= V arπ

[∑g
i=1 nij

πj

−

∑g
i=1 niK

1 − π1 − . . . − πK−1
|n∗

]

(28)

=

∑g

i=1 V ar [nij |n
∗

i ]

π2
j

+

∑g

i=1 V ar [niK |n∗

i ]

(1 − π1 − . . . − πK−1)2

= F1 + F2 (29)
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Next we calculate the expressions F1 and F2.

V ar[nij|n
∗

i ] = V ar

[

K
∑

k=1

n′

ijk|n
∗

i

]

=

K
∑

k=1

V ar
[

n′

ijk|n
∗

i

]

=
K
∑

k=1

{

n∗

ik

(

πjϕjk
∑K

l=1 πlϕlk

)(

1 −
πjϕjk

∑K
l=1 πlϕlk

)}

(30)

So, we have that

F1 =

g
∑

i=1

K
∑

k=1

{

n∗

ik

(

πjϕjk
∑K

l=1 πlϕlk

)(

1 −
πjϕjk

∑K

l=1 πlϕlk

)}

/π2
j (31)

and

F2 =

∑g
i=1

∑K
k=1

{

n∗

ik

(

πKϕKk
PK

l=1
πlϕlk

)(

1 − πKϕKk
PK

l=1
πlϕlk

)}

(1 − π1 − . . . − πk−1)2
. (32)

Hence the diagonal elements of the matrix Im(π, n∗) are of the following form:

Ijj,m(π, n∗) =

∑g

i=1

∑K

k=1

{

n∗

ik

(

πjϕjk
PK

l=1
πlϕlk

)(

1 −
πjϕjk

PK
l=1

πlϕlk

)}

π2
j

+

∑g

i=1

∑K

k=1

{

n∗

ik

(

πKϕKk
PK

l=1
πlϕlk

)(

1 − πKϕKk
PK

l=1
πlϕlk

)}

(1 − π1 − . . . − πk−1)2
. (33)

off-diagonal elements:

Ij,j+1,m(π, n∗) = Covπ [Sj,c(n, π), Sj+1,c(n, π)|n∗]

= Covπ

[∑g
i=1 nij

πj

−

∑g
i=1 niK

1 − π1 − . . . − πK−1

,

∑g
i=1 ni,j+1

πj+1

−

∑g
i=1 niK

1 − π1 − . . . − πK−1

|n∗

]

= Covπ

[∑g

i=1 nij

πj

,

∑g

i=1 ni,j+1

πj+1
−

∑g

i=1 niK

1 − π1 − . . . − πK−1
|n∗

]

−Covπ

[ ∑g
i=1 niK

1 − π1 − . . . − πK−1
,

∑g
i=1 ni,j+1

πj+1
−

∑g
i=1 niK

1 − π1 − . . . − πK−1
|n∗

]

= Covπ

[∑g

i=1 nij

πj

,

∑g

i=1 ni,j+1

πj+1

|n∗

]

− Covπ

[ ∑g

i=1 niK

1 − π1 − . . . − πK−1

,

∑g

i=1 ni,j+1

πj+1

|n∗

]

−Covπ

[∑g

i=1 nij

πj

,

∑g

i=1 niK

1 − π1 − . . . − πK−1
|n∗

]

+ V arπ

[ ∑g

i=1 niK

1 − π1 − . . . − πK−1
|n∗

]

= F3 − F4 − F5 + F2
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Using the fact that the g libraries are independent,

F3 = Covπ

[∑g
i=1 nij

πj

,

∑g
i=1 ni,j+1

πj+1

|n∗

]

=

g
∑

i1=1

g
∑

i2=1

Covπ

[

ni1j

πj

,
ni2,j+1

πj+1

|n∗

]

=

g
∑

i=1

Covπ

[

nij

πj

,
ni,j+1

πj+1

|n∗

i

]

=

g
∑

i=1

Covπ

[

∑K

k=1 n′

ijk

πj

,

∑K

k=1 n′

i,j+1,k

πj+1

|n∗

i

]

=
1

πjπj+1

g
∑

i=1

∑

k1

∑

k2

Covπ

[

n′

ijk1
, n′

i,j+1,k2
|n∗

i

]

=
1

πjπj+1

g
∑

i=1

K
∑

k=1

Covπ

[

n′

ijk, n
′

i,j+1,k|n
∗

i

]

= −
1

πjπj+1

g
∑

i=1

K
∑

k=1

(

n∗

ik

πjϕjk
∑K

l=1 πlϕlk

πj+1ϕj+1,k
∑K

l=1 πlϕlk

)

. (34)

The expressions for F4 and F5 are similar to the expression (34):

F4 = −
1

πj(1 − π1 − . . . − πK−1)

g
∑

i=1

K
∑

k=1

{

n∗

ik

πjϕjk
∑K

l=1 πlϕlk

πKϕK,k
∑K

l=1 πlϕlk

}

(35)

F5 = −
1

(1 − π1 − . . . − πK−1)πj+1

g
∑

i=1

K
∑

k=1

{

n∗

ik

πKϕKk
∑K

l=1 πlϕlk

πj+1ϕj+1,k
∑K

l=1 πlϕlk

}

(36)

Hence, using equations (34), (35),(36) and (32), we have that

Ij,j+1,m(π, n∗) = −
1

πjπj+1

g
∑

i=1

K
∑

k=1

(

n∗

ik

πjϕjk
∑K

l=1 πlϕlk

πj+1ϕj+1,k
∑K

l=1 πlϕlk

)

+
1

πj(1 − π1 − . . . − πK−1)

g
∑

i=1

K
∑

k=1

{

n∗

ik

πjϕjk
∑K

l=1 πlϕlk

πKϕK,k
∑K

l=1 πlϕlk

}

+
1

(1 − π1 − . . . − πK−1)πj+1

g
∑

i=1

K
∑

k=1

{

n∗

ik

πKϕKk
∑K

l=1 πlϕlk

πj+1ϕj+1,k
∑K

l=1 πlϕlk

}

+

∑g
i=1

∑K
k=1

{

n∗

ik

(

πKϕKk
PK

l=1
πlϕlk

)(

1 − πKϕKk
PK

l=1
πlϕlk

)}

(1 − π1 − . . . − πk−1)2
. (37)
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4 Simulations

In this section, we give the description of the settings for the simulations. We will perform
1000 simulations in the case that there is only a single library available and 1000 simulations
in the case that there are multiple (20) libraries available. We will generate 21000 libraries
containing 2000 tags under six different conditions: three different true probabilities of ex-
pression π and two different transition matrices Ω. The parameter π = (π1, . . . , πK) will be
estimated using the EM Algorithm as explained in Section 3. The number of iterations that
we use for the EM algorithm is the same as in Beissbarth et al. (2004), namely 50 iterations.
We will also use the observed tag counts as starting values for the EM algorithm.
The goals of our simulations are:

1. the potential gain in terms of bias comparing the estimates obtained by using the EM
algorithm with the estimates when there is no correction for the sequencing errors, i.e.,
the observed expression probabilities ;

2. the potential gain in terms of bias resulting from the use of 20 libraries as compared
with the estimates obtained using only one library;

3. the gain in terms of bias when the true transition matrix is known;

4. the gain in terms of bias comparing smaller sequencing errors with larger sequencing
errors;

5. the comparison of the bias of the estimates resulting from the use of Φ with the
estimates obtained by using ΦB.

4.1 The true probabilities of expression of a tag

The three different true probabilities of expression that we will use, are displayed in Table
1. The plots of the true probabilities of expression are shown in Figure 1.

π1 Tag ’AAAA’ ’CCCC’ ’GGGG’ ’TTTT’
Percentage 25% 25% 25% 25%

π2 Tag ’AAAA’ ’AAAC’ ’CCCC’ ’CCCG’
Percentage 12.5% 12.5% 12.5% 12.5%
Tags ’GGGG’ ’GGGT’ ’TTTA’ ’TTTT’
Percentage 12.5% 12.5% 12.5% 12.5%

π3 Tag ’AAAA’ ’AAAC’ ’CCCC’ ’CCCG’
Percentage 20% 5% 20% 5%
Tag ’GGGG’ ’GGGT’ ’TTTA’ ’TTTT’
Percentage 20% 5% 5% 20%

Table 1: The three different true probabilities of expression

The ordering of the tags is such a that ’AAAA’ has tag number 1, ’AAAC’ tag number
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2, ’CCCC’ tag number 86, ’CCCG’ tag number 87, ’GGGG’ tag number 171, ’GGGT’ tag
number 172, ’TTTA’ tag number 253 and ’TTTT’ tag number 256.
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(a) True probabilities of expression 1
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(b) True probabilities of expression 2
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(c) True probabilities of expression

Figure 1: True probabilities of expression

These true parameter configurations have been chosen because they can give us a good inside
on how the algorithm works, on how the algorithm correct for sequencing errors. The first
vector π1 represents the simple situation of four tags for which the probabilities of expression
are all equal to 25%. With only 4 true tags, we can study how the amount of their expression
probability that we expect to be underestimated, is scattered across tags that have a zero
true tag count. This situation is our primary interest and thus we will only show the plots
concerning the parameter π1 is the result section. The second π2 and third parameter π3 are
chosen to study the effect of the presence of true first order neighbour tags.
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4.2 The transition matrix

To assess the effect of the chosen sequencing errors on the estimation of the parameter π,
we will use two different error rates for one tag. This will result into two different transition
matrices Ω1 and Ω2.
The first error rate for a nucleotide we consider is 10%. This results in an error rate of
1 − 0.94 = 34.4% for the 4-bp tags and gives us the following matrix:

Ω1 =









0.9 0.0333 0.0333 0.0333
0.0333 0.9 0.0333 0.0333
0.0333 0.0333 0.9 0.0333
0.0333 0.0333 0.0333 0.9









.

The second error rate for a nucleotide we consider is 5%. This results in an error rate of
1 − 0.954 = 18.6% for the 4-bp tags and gives us the following matrix:

Ω2 =









0.95 0.0167 0.0167 0.0167
0.0167 0.95 0.0167 0.0167
0.0167 0.0167 0.95 0.0167
0.0167 0.0167 0.0167 0.95









.

The true transition matrix is unknown and need to be estimated before we estimate the
parameter π. We mimic the estimation of Ω̂1 and Ω̂2 by disturbing the matrices Ω1 and Ω2,
respectively, with a small error. This is done by sampling from a Dirichlet distribution with
mean Ω and a certain variance factor, so that

Ω̂ =









ω11 + ǫ11 ω12 + ǫ12 ω13 + ǫ13 ω14 + ǫ14

ω21 + ǫ21 ω22 + ǫ22 ω23 + ǫ23 ω24 + ǫ24

ω31 + ǫ31 ω32 + ǫ32 ω33 + ǫ33 ω34 + ǫ34

ω41 + ǫ41 ω42 + ǫ42 ω43 + ǫ43 ω44 + ǫ44









,

with E[ǫij ] = 0.

The matrices Ω̂1 and Ω̂2 are then used to construct the matrix Φ. Note that the matrices Ω̂1

and Ω̂2 still have the property that for each row the elements sum up to one. The estimation
of Ω̂ is done for each simulation. This means that we estimate Ω̂ 1000 times.
However we also run simulations assuming that Ω2 is the true transition matrix, i.e. Ω̂2 = Ω2.
So, the construction of Φ in this case is based on the matrix Ω2. The goal of this set of
simulations is to compare the bias introduced by Ω̂2 with the bias resulting from working
with the known true transition matrix Ω2.

4.3 Generation of the libraries

The SAGE libraries we use for the estimation of the parameter π consist of the observed
counts.
To generate the observed counts, we need to generate the true counts first. The true counts
are generated by sampling from a multinomial distribution with parameters π1, π2 or π3, the
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number of tags per library Ni (i = 1, . . . , g) and the number of libraries g. The number of
tags per library is set equal to 2000 for all libraries.
To obtain the observed counts we need to mimic the sequencing error process. This is a
process in which the true counts are scattered around the most probable error tags. This
will lead to non-zero counts for tags which have a true zero count. So we need to do the
following:

1. Build the matrix Φ as given in equation (1).

2. For tag j we use the jth column of the Φ-matrix. We call this vector τ . Then sampling
the multinomial with parameters τ and sample size nij gives us the subset of the
observed tag counts for tag j.

3. Repeating the previous step for all true tags and summing over all subsets gives us a
library with the observed tag counts.

We generate 21000 libraries with sample size N = 2000 so that we can perform 1000 simula-
tions for a single library and 1000 simulations for 20 libraries. We do this for the six different
situations (i.e., the three vectors π1, π2 and π3 each with the two transition matrices Ω1 and
Ω2 ). Note that the construction of the Φ-matrix in the second step of the generation process
is based on the matrices Ω1 and Ω2 and not on their estimates.
Figure 2 shows the mean of the observed counts n∗ over the libraries for the situation of the
first parameter π1 with the two transition matrices. Figures 2a and 2c represent the mean
of the observed counts n∗ for the single library case, where the mean is over 1000 libraries.
Figures 2b and 2d represent the mean of the observed counts n∗ for the 20 libraries case,
where the mean is over 20000 libraries. In Figure 2 the effect of the different sequencing
error rates can be observed. In the case of the matrix Ω2 with a small sequencing error rate,
the scatter of the true counts is smaller and thus the observed counts of the true tags are
larger than in the case of Ω1 with a larger sequence error rate. The same conclusion can be
made based the plots for the two other parameters (see Figures 21 and 22 in the appendix
A).

4.4 Convergence monitoring

The convergence of the estimation of π̂ is monitored through the relative distance between
the current estimate for the parameter and the previous estimate for the parameter in each
iteration step. We use the following formula for the relative distance:

d(k) = max

(

|π̂k−1 − π̂k|

π̂k−1

)

, (38)

where k = 1, . . . , 50 is the index of the iteration steps. The relative distance is calculated
for each simulation.
In addition, if π̂k converges to π̂, then the largest eigenvalue of the matrix

J(π̂) = I−1
c (π̂, n∗)Im(π̂, n∗) (39)
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Figure 2: Mean of observed counts for π1

gives the rate of convergence of the EM algorithm. The expression given in equation (39)
measures the fraction of information about π that is missing. So if J(π̂) increases, the con-
vergence speed decreases. The fraction of missing information may vary across the different
components of π̂.
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5 Results

In this section we give the results of the simulations explained in section 4. Only the plots
concerning the first true expression probabilities π1 are displayed. The plots concerning the
results for the parameters π2 and π3 can be found in the appendix sections B-F.

5.1 The observed expression probabilities

We can estimate the parameter π based on the observed counts without correcting for the
sequencing errors:

π̂∗

j =

∑g
i=1 n∗

ij

gN
, for j = 1, . . . , K (40)

with g the number of libraries per simulation. The estimator π̂∗ = (π̂∗

1, . . . , π̂
∗

K) is the vector
of the observed expression probabilities and is a maximum likelihood estimator.
In Figure 3 we see the comparison of the vector of the observed expression probabilities with
the parameter π1. Figures 3a and 3c show the results for the single library case and Figures
3b and 3d for the multiple libraries case. We can observe that the expression probabilities
of the true tags (see Table 1) are underestimated. Tags, which should have count zero, are
introduced with very small expression probabilities. The same conclusions can be made from
Figures 23 and 24 (see appendix B) of the results for the parameters π2 and π3.
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Figure 3: The observed expression probabilities π̂∗

1. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 25%. The other true
expression probabilities are equal to zero.
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5.2 Single library

Figure 4 shows the mean of the estimator π̂1 over the 1000 simulations. The mean of the
estimates obtain with the matrix Ω̂1 for a single library is shown in Figure 4a and for a
single library with matrix Ω̂2 in Figure 4c. The expression probabilities of the true tags (see
Table 1) are underestimated. In Figure 4a, the amount of the expression probabilities that
is underestimated for the true tags is approximately the same for the four tags. The same
observation can be made from Figure 4c. However, in the case of the matrix Ω̂2, the under-
estimation is smaller than when we use the matrix Ω̂1. Figures 4b and 4c are the enlarged
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Figure 4: The estimated expression probabilities π̂1. The true expression probabilities of the
four tags (see Table 1) are represented by the horizontal line at 25% in the subfigures (a)
and (c). The other true expression probabilities are equal to zero.

plots of the very small expression probabilities in the Figures 4a and 4c, respectively. From
these enlarged plots can be observed that all the tags with a true zero count have a small
probability of being expressed and that the expression probabilities of the tags, with true
count zero, is smaller in the case of the matrix Ω̂2 than in the case of the matrix Ω̂1.
The smaller underestimations of π1 and the smaller expression probabilities of the tags with
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true count zero when we use the matrix Ω̂2, is what we expected because of the smaller
sequencing errors.
Figure 5 shows the bias of the mean of π̂1 over the 1000 simulations for Ω̂1 versus Ω̂2. We
can make several conclusions from Figure 5. First of all, the bias in case of Ω̂1 is larger than
in case of Ω̂2. Secondly, the underestimation of the expression probabilities is approximately
of the same magnitude for the four true tags. In Figure 5(b), we zoom in on the smallest bias
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Figure 5: Single library: Bias of π̂1 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of
the estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.

values. These values correspond to the tags with a true zero count. Figure 5(b) clearly shows
that there no estimates with a zero bias, although the values are close to zero. Even for the
smallest bias values are the ones resulting from the use of Ω̂1 larger than those resulting from
Ω̂2.
The convergence of the estimation of π1 is monitored through the relative distance (see
equation (38)). In Figure 6 the mean relative distance over the 1000 simulations is given.
The relative distance in both case stabilizes after approximately 10 iterations. So there is
a plateau after 10 iterations, indicating that we cannot get a better convergence after more
than 50 iterations than we already have.
We are not able to calculate the Variance-Covariance matrix because the information matrix
corresponding to π̂1 is singular. Also the fraction of missing information can not be calcu-
lated due to the singularity of the complete-data information matrix Ic. This means that
we have 100% missing information. This may be an indication of identifiability problems.
Next, we assume that the matrix Ω2 is the true transition matrix and hence we use Ω2 for
the estimation of π1 instead of Ω̂2. Figure 7 shows us the mean of the estimator π̂1 over the
1000 simulations. Again the expression probabilities of the true tags are underestimated and
from the enlarged plot (Figure 7b) we observe that all the tags with a true zero count have
a small probability of being expressed. Now we can compare the bias of the estimates for π1

obtained with Ω2 with the results obtained with Ω̂2. Figure 8 shows that the bias is larger
when we estimate the transition matrix. Hence, if we know the true transition matrix, we
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Figure 6: Convergence monitoring through the relative distance
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Figure 7: The estimated expression probabilities π̂1 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal line at 25% in subfigure (a).
The other true expression probabilities are equal to zero.

can reduce the bias.
Finally, we can also compare the bias of π̂∗

1, the observed expression probabilities, with the
estimates from the EM algorithm. In Figure 9, it is shown that the bias of the observed ex-
pression probabilities is larger, as expected because there is no correction for the sequencing
errors.
Let us now discuss the results of the other two parameters π2 and π3. The plots to illustrate
the results can be found in the appendix section C. In these scenarios we have 8 tags (see
Table 1) that are uniformly expressed in case of π̂2 or where the first order neighbours tags
are less expressed than the four main tags in case of π̂3.
Figures 25 and 26 show the mean of the estimators π̂2 and π̂3 over the 1000 simulations.
The expression probabilities of the true tags (see Table 1) are underestimated and all the
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Figure 8: Bias comparison between Ω̂2(×) and Ω2(•)
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Figure 9: Bias of the observed expression probabilities (•) versus the estimates from the EM
algorithm (×)

tags with a true zero count have a small probability of being expressed. From the enlarged
plots (Figures 25b and 25d, Figures 26b and 26d) it can be observed that the probabilities
given to the tags with a true zero count are smaller in the case of the transition matrix Ω̂2

than in the case of the the matrix Ω̂1 for π̂2, but for π̂3 there does not seem to be a obvious
difference.
The bias plots of π̂2 and π̂3 (Figures 27 and 28) show that the bias is smaller in the case of
the matrix Ω̂2, as expected.
Figures 29 and 30 show the monitoring of the convergence through the relative distance. For
Ω̂1 the relative distance stabilizes after approximately 15 iterations and for Ω̂2 after approx-
imately 5 iterations. Again there is no indication for a better convergence after more than
50 iterations.
We are not able to calculate the Variance-Covariance matrices because the information ma-
trices corresponding to π̂2 and π̂3 are singular. Also the fraction of missing information
can not be calculated due to the singularity of the complete-data information matrices Ic.
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This means that we have 100% missing information. Again, we may have an indication of
identifiability problems.
Assuming that the matrix Ω2 is the true transition matrix, Figures 31 and 32 show the mean
of the estimator π̂1 over the 1000 simulations. Again the expression probabilities of the true
tags are underestimated and from the enlarged plots (Figures 31b and 32b) we observe that
all the tags with a true zero count have a small probability of being expressed. So, again,
knowing the true transition matrix reduces the bias of the estimates. We also compare the
bias of the observed expression probabilities π̂∗

2 and π̂∗

3 with the estimates resulting from the
EM algorithm. As expected, Figures 36 and 36 show that the bias of the observed expression
probabilities is larger.

5.3 Multiple libraries

Figure 10 shows the mean of the estimator π̂1 over the 1000 simulations. The enlarged plots
(Figures 10b and 10d) show that tags with a true zero count have a small probability of
being expressed. We can make the same observations as in the single library case, namely
that

• the amount of the expression probabilities that is underestimated for the true tags is
almost the same for the 4 tags;

• the probabilities given to the tags with true count zero, are smaller in the case of the
matrix Ω̂2;

• the underestimation is smaller in the case of the matrix Ω̂2.

The bias of π̂1 for Ω̂1 versus Ω̂2 is shown in Figure 11. As is the case for a single library, we
can see that the bias of the estimates resulting from the use of Ω̂2 is smaller than the bias of
the estimates when Ω̂1 was used. Again we have that the underestimation of the expression
probabilities is approximately of the same magnitude for the four true tags.
Focusing on the smallest bias values (these correspond to the tags with a true zero count)
(see Figure 11(b)), the observation that there are no estimates with a zero bias can be made,
although the values are close to zero. Within the smallest values is the bias resulting from
the use of Ω̂1 are larger than the bias resulting from working with Ω̂2.
The monitoring of the convergence of the estimation is given in Figure 12, where we show the
mean relative distance over the 1000 simulations. The relative distance is both case seems
to stabilizes after approximately 40 iterations and again there is no indication for a better
convergence after more than 50 iterations.
As in the single library case, we are not able to calculate the Variance-Covariance matrix
because the information matrix corresponding to π̂1 is singular. Also the fraction of missing
information can not be calculated due to the singularity of the complete-data information
matrix Ic. This means that we have 100% missing information and probably identifiability
problems.

Now we assume that the matrix Ω2 is the true transition matrix. Figure 13 shows us the
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Figure 10: The estimated expression probabilities π̂1. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 25% in the subfigures
(a) and (c). The other true expression probabilities are equal to zero.

mean of the estimator π̂1 over the 1000 simulations. The expression probabilities of the
true tags are underestimated. From the enlarged plot (Figure 13b) we observe that all the
tags with a true zero count have a small probability of being expressed. Figure 14 shows
comparison of the bias of the estimates for π̂1 obtained with Ω2 with the results obtained
with Ω̂2. As is the case for a single library, we have that the bias is larger for the case where
we estimate the transition matrix.

Finally, we can compare the bias of the observed probabilities π̂∗

1 with the estimates from
the EM algorithm. From Figure 15, the larger bias of the observed probabilities is observed,
as expected.

Now we discuss the results of the other two parameters π2 and π3. The plots to illustrate
the results can be found in the appendix section D.
Figures 37 and 38 show the mean of the estimators π̂2 and π̂3 over the 1000 simulations.
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Figure 11: 20 libs: Bias of π̂1 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of the
estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.
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Figure 12: Convergence monitoring through the relative distance

The expression probabilities of the true tags (see Table 1) are underestimated and all the
tags with a true zero count have a small probability of being expressed. From the enlarged
plots (Figures 25b and 25d, Figures 38b and 38d) it can be observed that the probabilities
given to the tags with a true zero count are smaller in the case of the transition matrix Ω̂2

than in the case of the matrix Ω̂1.
The bias plots of π̂2 and π̂3 (Figures 39 and 40) show that the bias is smaller in the case of
the transition matrix Ω̂2, because of the smaller sequencing errors. Figures 41 and 42 show
the monitoring of the convergence through the relative distance. For both Ω̂1 and for Ω̂2 the
relative distance stabilizes after approximately 40 iterations. The obtained plateau does not
indicates towards a better convergence after more than 50 iterations.
As above, we are not able to calculate the Variance-Covariance matrix because the informa-
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Figure 13: The estimated expression probabilities π̂1 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal line at 25% in subfigure (a).
The other true expression probabilities are equal to zero.
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Figure 14: Bias comparison between Ω2(•) and Ω̂2(×)

tion matrix corresponding to π̂1 is singular. The fraction of missing information can not be
calculated due to the singularity of the complete-data information matrix Ic. This means
that we have 100% missing information and probably identifiability problems.
We assume now that Ω2 is the true transition matrix. Figures 43 and 44 show that the
expression probabilities of the true tags are underestimated and from the enlarged plots
(Figures 43b and 44b) we observe that all the tags with a true zero count have a small
probability of being expressed. The comparison of the bias of the estimates resulting from
using Ω̂2 with the estimates for which we used Ω2, in Figures 45 and 46, shows that the bias
is larger for the case where we estimate the transition matrix.
Finally, we compare the bias of the observed expression probabilities π̂∗

2 and π̂∗

3 with the
estimates resulting from the EM algorithm. As expected, Figures 47 and 48 show that the
bias of the observed expression probabilities is larger.
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Figure 15: Bias of the observed expression probabilities (•) versus the estimates from the
EM algorithm (×)
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5.4 Single library versus 20 libraries

In this subsection, we want to compare the bias of π̂1 obtained from the simulations for a
single and 20 libraries. In this following Figures 16a, 16b and 16c,we show the bias of the
mean of π̂1 over the 1000 simulations for the three possible transition matrices Ω̂1, Ω̂2 and
Ω2, respectively.
In all three Figures we can see the benefit in terms of bias if we can use 20 libraries rather
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(a) Bias of 1 library vs 20 libraries for Ω̂1
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(b) Bias of 1 library vs 20 libraries for Ω̂2
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(c) Bias of 1 library vs 20 libraries for Ω2

Figure 16: Bias of 1 library (×) vs 20 libraries (•) for Ω̂1, Ω̂2 and Ω2

than only a single library. Focusing on the true tags (see Table 1), the bias for these tags
seems to be the largest in the case of Ω̂1 and the smallest in the case of Ω2, as expected.
Next we look at the results of the other two parameters π2 and π3. The Figures 49 and 50
both show the reduces of the bias if we can use multiple libraries rather than only a single
library.
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5.5 Restriction of first order sequencing errors

In this subsection, we present the results from the simulations for a single library and mul-
tiple libraries where the method of Beissbarth et al. was adopted, i.e. the sequencing errors
come from the first order neighbours. Hence the matrix ΦB, as defined in section 2 is used
for the estimation of the parameter π. We assume that Ω2 is the true transition matrix and
so Ω2 is used to build Φ. The matrix Ω2 is also used for the construction of ΦB, but with
the restriction that sequencing errors can only coming first order neighbours.
Figure 17 gives the mean over the 1000 simulations of a single library and 20 libraries for π1

with the method of Beissbarth et al. (2004).
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Figure 17: The estimated expression probabilities π̂1. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 25% in the subfigures
(a) and (c). The other true expression probabilities are equal to zero.
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We can see that if we use the Beissbarth method then there is also an underestimation
of the four true tags (see Table 1). Again, all the tags with a true zero count have a small
probability of being expressed. The relative distance (see Figure 18), that monitors the con-
vergence, appears to stabilize after approximately 10 iterations, which is faster than most
of the cases discussed in the previous subsections. Here, the plateau also does not give an
indication towards a better convergence after more than 50 iterations.
As is the case in the previous subsections, we are not able to calculate the Variance-
Covariance matrix because the information matrix corresponding to π̂1 is singular. So the
fraction of missing information can not be calculated due to the singularity of the complete-
data information matrix Ic, meaning that we have 100% missing information. This may be
again an indication of identifiability problems.
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Figure 18: Convergence monitoring through the relative distance for π̂1

Let us now compare the results of the case where we use the matrix Φ (i.e. our method)
with the case where we use ΦB. From Figure 19, it is clear that in both cases the bias of π̂1

for ΦB is larger than for Φ. So, although the relative distance seems to stabilize quite fast,
the estimates using the method developed by Beissbarth et al. (2004) are worse than when
our method. We show a comparison of the bias of π̂1 resulting from using ΦB for a single
library with multiple libraries in Figure 20. The bias is smaller for the multiple libraries
case. However the difference between the bias resulting from the multiple library case and
the bias resulting from a single library is not as large as in the situation shown in Figure
16c.

Finally, we look at the results for the parameters π2 and π3. Figure 51 and Figure 52 give the
mean over the 1000 simulations of a single library and 20 libraries for π2 and π3, respectively,
with the method of Beissbarth et al. (2004). If the Beissbarth method is used then there is
an underestimation of the eight true tags (see Table 1). Again, all the tags with a true zero
count have a small probability of being expressed.
The relative distance (see Figures 55 and 56), that monitors the convergence, appears to sta-
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Figure 19: Bias of π̂1 for ΦB(×) versus Φ(•)
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Figure 20: Bias of 1 library (×) vs 20 libraries (•) for ΦB

bilize after approximately 10 iterations, which is faster than most of the cases discussed in
the previous subsections but again there is no indication for a better convergence after more
than 50 iterations. We are not able to calculate the Variance-Covariance matrix because the
information matrix corresponding to π̂1 is singular. So the fraction of missing information
can not be calculated due to the singularity of the complete-data information matrix Ic,
meaning that we have 100% missing information.
Let us now compare the results of the case where we use the matrix Φ with the case where we
use ΦB . From Figures 53 and 54, it is clear that the bias of π̂2 and π̂3 for ΦB is larger than
for Φ. So, although the relative distance seems to stabilize quite fast, the estimates using
the method developed by Beissbarth et al. (2004) are again worse than when our method.
We show the comparison of the bias of π̂2 and π̂3(using ΦB) for a single library with multiple
libraries in Figure 57. The bias is smaller for the multiple libraries case.
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6 Conclusions

In this project we proposed a statistical model for the propagation of sequencing errors in
the case that we have multiple SAGE libraries and correct for the sequencing error through
an EM algorithm.
A general conclusion that can be made is that the model does not 100% correct the sequenc-
ing errors. Thus the estimates are not entirely free of sequencing errors. This can be seen
through the underestimation of the expression probabilities for the true tags (see Table 1)
and the introduction of small expression probabilities for tags with a true zero tag count.
In the simulation study, we studied the potential gain in terms of bias comparing the esti-
mates obtained by using the EM algorithm with the estimates when there is no correction
for the sequencing errors, i.e., the observed expression probabilities. The conclusion that can
be made from the Figures 9, 35 and 36 is that in the single library case there is a reduction
in the bias of the estimates obtained by the EM algorithm with both transition matrices Ω1

and Ω2. The same conclusion can be made for the multiple library case. The conclusions
are what we expected because the observed expression probabilities are not corrected for
sequencing errors.
In subsection 5.4, we studied the potential gain in terms of bias resulting from the use of 20
libraries as compared with the estimates obtained using only one library. From Figure 16,
we can clearly see the reduction of the bias when the estimates are obtained in the multiple
library case. The same canclusion is true for the other parameters π2 and π3. This con-
clusion is in the line of our expectations because there is more information available for the
estimation in the multiple case.
For the single and multiple library case, we studied the potential gain in terms of bias when
the true transition matrix is known. From the Figures 8 and 14, the conclusion can be made
that there is a gain in terms of bias when the true transition matrix is known, as expected.
Again, we can make the same observation for the other parameters π2 and π3.
We also studied the potential gain in terms of bias comparing smaller sequencing errors with
larger sequencing errors through the comparison of the transition matrix Ω2 with the transi-
tion matrix Ω1, respectively. For the single and multiple library case we can make the same
conclusion, namely that the bias of the estimates is reduced when the transition matrix Ω2

(corresponding to smaller sequencing errors) is used.
Finally, in subsection 5.5, we studied the comparison of the bias of the estimates resulting
from the use of Φ with the estimates obtained by using ΦB. Several conclusion can be made.
Firstly, when using the method of Beissbarth et al. (2004), the expression probabilities of
the true tags are underestimated and tags with a true zero count are introduced with small
expression probabilities. Secondly, there is a gain in terms of bias for the estimates resulting
from the multiple libraries case compared to the estimates resulting from the use of only a
single library. However, the difference between the bias of these two cases is not as large as
when we apply our method (described in section 3). We also compared the estimates result-
ing from the method developed in section 3 with the method of Beissbarth et al. (2004). As
well in the multiple libraries as in the single library case, the bias of the estimates resulting
from our method is smaller than the bias of the estimates resulting from the method of
Beissbarth et al. (2004).
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We encounter several problems with respect to the convergence of the EM algorithm. We
use 50 iterations in the EM algorithm as suggested in Beissbarth et al. (2004). Within the
50 cycles, the relative distance stabilizes around a value between 0.5 and 0.8. Beissbarth et

al. (2004) faced a similar problem. From the monitoring of the convergence, we see that the
tags that made it difficult to converge, are in fact the tags with a very small probability of
being expressed. The expression probabilities for these tags were smaller than 1 × 10−3.
Another problem is the estimation of the Variance-Covariance matrix of the estimates π̂1, π̂2

and π̂3. First we construct the information matrix and by inverting this matrix we obtain
the Variance-Covariance matrix. However, the problem is the inversion of the information
matrix, because of its singularity. Due to the singularity, we are also not able to calculate
the fraction of missing information as given in the equation (39). Hence, we most likely have
100% missing information. The problematic estimation of the Variance-Coviance matrix
may be an indication of identifiability problems.
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A Plots of section 4.3
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Figure 21: Mean of observed counts for π2
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Figure 22: Mean of observed counts for π3
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B Plots of section 5.1
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Figure 23: The observed expression probabilities π̂∗

2. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 12.5%. The other true
expression probabilities are equal to zero.
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Figure 24: The observed expression probabilities π̂∗

3. The true expression probabilities of the
four tags (see Table 1) are represented by the horizontal lines at 20% and 5%. The other
true expression probabilities are equal to zero.
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C Plots of section 5.2
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Figure 25: The estimated expression probabilities π̂2. The true expression probabilities of
the eight tags (see Table 1) are represented by the horizontal line at 12.5% in the subfigures
(a) and (c). The other true expression probabilities are equal to zero.
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Figure 26: The estimated expression probabilities π̂3. The true expression probabilities of
the eight tags (see Table 1) are represented by the horizontal lines at 20% and 5% in the
subfigures (a) and (c). The other true expression probabilities are equal to zero.
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Figure 27: 1 library: Bias of π̂2 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of the
estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.
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Figure 28: 1 library: Bias of π̂3 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of the
estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.



C PLOTS OF SECTION 5.2 45

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
is

ta
nc

e

Number of iterations

(a) 1 library: π
2
, Ω̂1

0 10 20 30 40 50
0.75

0.8

0.85

0.9

0.95

1

D
is

ta
nc

e

Number of iterations

(b) 1 library: π
2
, Ω̂2

Figure 29: Convergence monitoring through the relative distance for π̂2
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Figure 30: Convergence monitoring through the relative distance for π̂3



C PLOTS OF SECTION 5.2 46

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

ba
bi

lit
y

Tags

(a)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

P
ro

ba
bi

lit
y

Tags

(b) detail of (a)

Figure 31: The estimated expression probabilities π̂2 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal line at 12.5% in subfigure
(a). The other true expression probabilities are equal to zero.
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Figure 32: The estimated expression probabilities π̂3 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal lines at 20% and 5% in
subfigure (a). The other true expression probabilities are equal to zero.
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Figure 33: Bias comparison between Ω2(•) and Ω̂2(×) for π̂2
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Figure 34: Bias comparison between Ω2(•) and Ω̂2(×) for π̂3
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Figure 35: Bias of the observed expression probabilities (•) versus the estimate π̂2 from the
EM algorithm (×)
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Figure 36: Bias of the observed expression probabilities (•) versus the estimate π̂3 from the
EM algorithm (×)
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D Plots of section 5.3
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Figure 37: The estimated expression probabilities π̂2. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 12.5% in the subfigures
(a) and (c). The other true expression probabilities are equal to zero.
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Figure 38: The estimated expression probabilities π̂3. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal lines at 20% and 5% in the
subfigures (a) and (c). The other true expression probabilities are equal to zero.
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Figure 39: 20 libs: Bias of π̂2 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of the
estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.
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Figure 40: 20 libs: Bias of π̂3 for Ω̂1 versus Ω̂2. The crosses (×) represent the bias of the
estimates resulting from the use of Ω̂1 and the dots (•) the bias of the estimates resulting
from the use of Ω̂2.
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Figure 41: Convergence monitoring through the relative distance for π̂2
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Figure 42: Convergence monitoring through the relative distance for π̂3
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Figure 43: The estimated expression probabilities π̂2 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal line at 12.5% in subfigure
(a). The other true expression probabilities are equal to zero.
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Figure 44: The estimated expression probabilities π̂3 for Ω2. The true expression probabilities
of the four tags (see Table 1) are represented by the horizontal lines at 20% and 5% in
subfigure (a). The other true expression probabilities are equal to zero.
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Figure 45: Bias comparison between Ω2(•) and Ω̂2(×) for π̂2
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Figure 46: Bias comparison between Ω2(•) and Ω̂2(×) for π̂3
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Figure 47: Bias of the observed expression probabilities (•) versus the estimate π̂2 from the
EM algorithm (×)
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Figure 48: Bias of the observed expression probabilities (•) versus the estimate π̂3 from the
EM algorithm (×)



E PLOTS OF SUBSECTION 5.4 56

E Plots of subsection 5.4
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(a) Bias of 1 library vs 20 libraries for Ω̂1
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(b) Bias of 1 library vs 20 libraries for Ω̂2
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(c) Bias of 1 library vs 20 libraries for Ω2

Figure 49: Bias of 1 library (×) vs 20 libraries (•) for Ω̂1, Ω̂2 and Ω2 (π̂2)
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(a) Bias of 1 library vs 20 libraries for Ω̂1
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(b) Bias of 1 library vs 20 libraries for Ω̂2
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(c) Bias of 1 library vs 20 libraries for Ω2

Figure 50: Bias of 1 library (×) vs 20 libraries (•) for Ω̂1, Ω̂2 and Ω2 (π̂3)
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F Plots of section 5.5
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Figure 51: The estimated expression probabilities π̂2. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal line at 12.5% in the subfigures
(a) and (c). The other true expression probabilities are equal to zero.
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Figure 52: The estimated expression probabilities π̂3. The true expression probabilities of
the four tags (see Table 1) are represented by the horizontal lines at 20% and 5% in the
subfigures (a) and (c). The other true expression probabilities are equal to zero.
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Figure 53: Bias of π̂2 for ΦB(×) versus Φ(•)
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Figure 54: Bias of π̂3 for ΦB(×) versus Φ(•)
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Figure 55: Convergence monitoring through the relative distance for π̂2
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Figure 56: Convergence monitoring through the relative distance for π̂3
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Figure 57: Bias of 1 library (×) vs 20 libraries for ΦB(•)
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