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Plant functional traits have proved useful in identifying life his-
tory strategies1,2 for predicting plant community assembly3,4 
and for assessing the impact of vegetation composition and 

diversity on ecosystem functioning5,6. Consequently, vegetation 
models including coupled climate–vegetation models benefit from 
a better representation of plant trait variation to adequately anal-
yse terrestrial biosphere dynamics under global change6,7. Today, 
in combination with advanced gap-filling techniques8, databases of 
plant traits have sufficient coverage to allow quantitative analyses of 
plant form and function at the global scale9. Analysing six funda-
mental traits, Díaz and colleagues10 revealed that essential patterns 
of form and function across the plant kingdom can be captured by 
two main axes. The first reflects the size spectrum of whole plants 
and plant organs. The second axis corresponds to the ‘leaf econom-
ics spectrum’11 emerging from the necessity for plants to balance leaf 
persistence against plant growth potential. The concept of a global 
spectrum of plant form and function has since been investigated 
from various perspectives12–14. It has been shown, for instance, that 
orthogonal axes of variation in size and economics traits emerge 
even in the extreme tundra biome13 or at the scale of plant commu-
nities12. However, it remains unclear whether the two axes remain 

dominant for extended sets of traits or when differentiating among 
growth forms. A particular knowledge gap is what environmental 
controls determine these two axes of plant form and function.

There is ample evidence that large-scale variation of individual 
plant traits is related to environmental gradients. Early plant bio-
geographers suggested that climate and soils together shape plant 
form and function15–17 but could not propose a more precise the-
oretical framework describing these fundamental relationships. 
Over the last decades, examples have thus accumulated without 
an overall framework in which to place them13,18,19. For instance, 
tree height depends on water availability20,21 while leaf economics 
traits depend on soil properties, especially soil nutrient supply, as 
well as on climatic conditions reflected in precipitation18,22,23. Leaf 
size, leaf dark respiration rate, specific leaf area (SLA), leaf N and 
P concentration, seed size and wood density, all show broad-scale 
correlations with climate or soil22,24–27. It has also been reported 
that many of these traits show latitudinal patterns24–27. Generalizing 
such insights is, however, not trivial, as soil properties partly mir-
ror climate gradients, as a consequence of long-term soil formation 
through weathering, leaching and accumulation of organic mat-
ter—processes related to temperature and precipitation28; however, 
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Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models 
of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant 
traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level 
and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests 
they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across 
more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate 
effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics 
traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, varia-
tion in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to 
improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
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climate-independent features reflecting geology and surface mor-
phology also contribute to soil fertility28. Soil may furthermore 
buffer climate stresses; for example, by alleviating water deficit in 
periods of low precipitation29.

Combining the insights suggests that the global spectrum of 
plant traits reveals two internally correlated orthogonal groups and 
that many plant traits are individually linked to environmental gra-
dients, we expect that both trait groups should closely follow gra-
dients of climate and soil properties. Here, we investigate to what 
extent the major dimensions underpinning the global spectrum of 
plant form and function can be attributed to global gradients of cli-
mate and soil conditions; and to what extent these factors can jointly 
or independently explain the global spectrum of form and function.

We compiled and analysed a dataset of 17 functional traits with 
a sufficient number of records in the TRY database9 to character-
ize the main ecoregions of the world30, that is, environmentally 
homogeneous areas with distinct biota (Extended Data Fig. 1). The 
dataset is based on 225,206 georeferenced observations comprising 
records of 20,655 species. The trait data were complemented with 21 
climate variables and 107 soil variables (Methods; Supplementary 
Tables 1 and 2). Trait–environment relationships were analysed for 
species medians aggregated to ecoregions using ridge regression31, 
a robust method (Supplementary Figs. 1–3) suitable to deal with 
high-dimensional, unbalanced and collinear predictors in combina-
tion with hierarchical partitioning32 (Methods).

Results
Our main analysis is based on median trait values of plant spe-
cies per ecoregion. The rationale is that species presence indicates 
how the trait space can be realized in a given environment. Spatial 

aggregation is a suitable means to increase the detectability of global 
trait patterns (Supplementary Fig. 3), as described in earlier studies, 
where traits have been binned by temperature classes33 or for differ-
ent altitudinal ranges22. Extreme outliers, for instance towering trees 
such as the Californian Sequoia (Sequoiadendron sempervirens), 
may still exist far away from the equator, where precipitation is suf-
ficiently high20 but their influence is outweighed in our approach 
by an increasing fraction of small-statured herbaceous species from 
tropical to temperate and boreal regions.

Orthogonal axes and trait clusters. To understand whether the 
axes of variation identified for the grouping of six traits10 also hold 
for the extended set of 17 traits, we cluster their trait–trait corre-
lations (Fig. 1a and Supplementary Fig. 4) and further represent 
these relations on the basis of their principal components (PCA; 
Methods). This analysis supports the clear distinction of size versus 
economics traits identified by Díaz and colleagues10. The group of 
size traits contains two subclusters. The first includes height and 
seed size traits: plant height (height), seed mass, seed length and 
dispersal unit length (dispersal length). The second subset con-
tains traits that are linked through plant hydraulic scaling rela-
tionships34 and contrasts high conduit density (that is, number of 
conduits per sapwood cross-sectional area) with high leaf area and 
leaf fresh mass (leaf f mass). Economics traits represent dry mass 
and nutrient investments in plant tissues, and the rate and dura-
tion of returns on those investments11. They are represented by leaf 
nitrogen content per leaf area (leaf N area), leaf nitrogen (leaf N), 
phosphorus (leaf P) and carbon (leaf C) content per dry mass, leaf 
N to P ratio (leaf N:P) and SLA. Stem specific density (stem density) 
takes an intermediate position (Fig. 1b) but more closely clusters 
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0.07 0.03 0.06 0.16 0.28 0.23 0.32 0.24 0.29 0.09 0.14 0.17 0.38 0.36 0.34 0.34

0.17 0.2 0.08 0.18 0.33 0.28 0.41 0.41 0.29 0.17 0.12 0.18 0.4 0.43 0.31 0.34
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Fig. 1 | Previously identified global axes of variation in size and economics traits hold for an extended trait set (n = 36,197 species per ecoregion 
median). The set of 17 investigated traits (Supplementary Table 5) can be primarily divided into size and economics traits, which load differently onto the 
two PC axes describing their global distribution. a, Heatmap of covariation. Trait correlations are indicated using absolute Pearson correlation coefficients, 
with green shades indicating high absolute correlation and yellow shades indicating low absolute correlation. On the left, the distance tree of traits derived 
from hierarchical clustering is illustrated. Three resulting groups are: (1) size-related traits (blue) consisting of conduit density (conduit dens), leaf area, 
leaf fresh mass (leaf f mass), plant height (height), seed mass, dispersal unit length (dispersal len) and seed length (seed len); (2) economics traits (red) 
comprising SLA, leaf n content per area (leaf n area), leaf n, P and C concentrations, leaf n/P ratio (leaf n:P) and stem specific density (stem dens); and 
(3) a third (yellow) consisting of the number of seeds per reproduction unit (seeds u), leaf δ15n (leaf d15n) and vessel element length (vessel len). b, The 
first two PCs of the PCA. Arrow tips refer to the loading of the traits (Supplementary Fig. 6). Contour lines delineate the colour scale that corresponds to 
the kernel density of species (dense, red to sparse, light yellow; 20%, 50%, 95% and 99% of all species). PC1 explains 33% of trait variation and PC2 15% 
(Supplementary Fig. 5).
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with this set of economics traits (Fig. 1a), suggesting a syndrome 
of traits promoting slow to fast nutrient and carbon processing at 
the whole-plant level35–37. Furthermore, we identify a third group 
of traits that appear to be only weakly correlated with any other 
trait. This third group contains seed number per reproduction unit 
(seeds U), leaf δ15N (leaf d15N) and vessel element length (vessel 
length). The first two principal components (PC) of the PCA on 
the trait data represent 48% of the overall variation (Supplementary 
Fig. 5). PC1 is determined by size traits and accounts for 33% of the 
variance; PC2 is determined by economics traits and accounts for 
15% of the variance (Fig. 1b and Supplementary Fig. 6). These two 
main axes remain clearly identifiable when the analysis is conducted 
separately for woody and non-woody species (Supplementary  
Figs. 7 and 8). The remaining PCs each account for less than 10% 
of variance (PC3 = 9.36%). In the following, we focus on the two 
groups of size and economics traits (Supplementary Fig. 5).

Latitudinal trait variation. As an investigation of broad-scale gra-
dients among size and economics traits, we analyse latitudinal gra-
dients of the first (PC1) and second (PC2) principal components. 
PC1—representing primarily size-related traits—shows a strong 
linear latitudinal signal (on the basis of species: r2(PC1) = 0.37, 
at the ecoregion level r2(PC1aggregated) = 0.84; Fig. 2a). By contrast, 
the axis representing primarily economic traits, PC2, shows little 
response to latitude (on the basis of species: r2(PC2) = 0.01, at the 
ecoregion level r2(PC2aggregated) = 0.08; Fig. 2b, for woody non-woody 
species Supplementary Fig. 9), except for a dip at 35° and declin-
ing sharply at 60° where the species density also drops (but see 
Supplementary Fig. 10 for comparison to an independent dataset 
from arctic latitudes which shows the same pattern). Latitudinal 
gradients are known to be strongly related to climate, due to the 
distribution of solar energy and general atmospheric circula-
tion patterns. Therefore, we propose that those climate (and soil) 
aspects that co-vary with latitude consistently determine size traits, 
while they have little effect on economics traits, which are more 
strongly affected by latitude-independent soil (and climate) effects 
(Supplementary Fig. 11).

Climate and soil: joint and independent effects. The differ-
ences in latitudinal relationships between the two PC axes support 
the hypothesis that different environmental factors should drive  

variation within the separate groups of size versus economics traits. 
We assess the joint and independent effects of climate and soil on 
trait variability (ridge regression, RR; Table 1 and Fig. 3). Overall, size 
traits are better explained (RR; r2 = 0.55; maximum r2 = 0.78 for con-
duit density; Table 1) than are economics traits (RR; r2 = 0.40; maxi-
mum r2 = 0.55 for leaf N:P ratio; Table 1). We find a substantial joint 
effect of climate and soil variables—in every case larger than either 
unique effect—which reflects strong interactions between specific 
climate and soil predictors (RR with hierarchical partitioning (HP); 
Fig. 3b and Supplementary Fig. 12). However, we also observe inde-
pendent effects of climate and soil (RR with HP; Fig. 3 and Table 1).  
The independent climate effects are observed across traits but size 
traits tend to be better explained by the independent climate effects 
than are economics traits. In contrast, independent soil predictors 
are relevant for all economics traits but not size traits (apart from a 
small contribution to leaf area). We interpret these results as evidence 
for the importance of both joint and independent effects of climate 
and soil variables for whole-plant strategies2,37,38 which we show here 
at the global scale along with a dichotomous tendency of a stronger 
imprint of climate factors on size traits and of soil conditions on eco-
nomics traits (Fig. 3, Supplementary Figs. 13–38 and Supplementary 
Table 3). We propose that the dominance of joint effects implies 
that interactions between soil and climate properties are of primary 
importance in plant trait ecology; as opposed to trait syndromes 
being defined by single environmental variables in isolation.

We next ask how the climate and soil datasets are interdependent 
and which predictors add the most relevant information. For this 
purpose, we related all traits to environmental variables in a redun-
dancy analysis (RDA; Methods; Fig. 4). The RDA again identifies 
two main axes of size and economics traits (Fig. 4a), which are now 
shown together with the environmental variables that co-vary lin-
early with those traits (Fig. 4b and Supplementary Fig. 39). The first 
RDA axis corresponds to size traits (Fig. 4a) and represents an axis 
of water and energy (for example, precipitation, vapour pressure 
and temperature; Fig. 4b). Two attributes of soil texture important 
for water retention—the fraction of gravel and clay—also vary along 
this axis. The second RDA axis corresponds to economics traits 
(Fig. 4a) co-varying with an axis of soil variables generally associ-
ated with soil fertility (that is, soil texture (silt versus sand), water 
holding capacity, carbon concentration and stocks), as well as the 
climate variable mean solar radiation (Fig. 4b).
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Fig. 2 | Size traits, not economics traits vary with latitude: the PC1 of the PCA on 17 plant traits shows a clear latitudinal gradient while PC2 does not 
(n = 36,197 species per ecoregion median). Contour lines delineate the colour scale that corresponds to the kernel density of species (dense, red to 
sparse, light yellow; 5%, 95%, 99% quantiles). Mean estimates aggregated at 1° absolute latitude are indicated as black dots. The line refers to a linear 
model (ordinary least squares). a, PC1 representing mainly size traits (conduit density, leaf area, leaf fresh mass, plant height, seed mass, dispersal 
unit length, seed length) regressed against absolute latitude. Linear model: r2 = 0.38 without bins; r2 = 0.84 aggregated at 1° absolute latitude. b, PC2 
representing mainly economics traits (leaf n, leaf n per area, leaf P, leaf n:P ratio, SLA, leaf C, stem density) regressed against absolute latitude. Linear 
model: r2 = 0.01 without bins; r2 = 0.08 aggregated at 1° absolute latitude.
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Discussion
This study shows that the proposed global spectrum of plant form 
and function fits well to a substantially extended trait space com-
pared to the original study10, with seven traits that capture the 
whole-plant size spectrum and seven traits that capture the leaf 
economic spectrum and only three traits that do not fall along 
these dimensions (Fig. 1b). One explanation could be that the vary-
ing fraction of woody and non-woody species would drive these 
patterns. However, we showed that these two main trait groups 
remain clearly identifiable when the analysis is conducted sepa-
rately, yet with fewer samples, for woody and non-woody species 
(Supplementary Fig. 8).

However, we cannot discard the possibility that additional traits 
may add relevant axes of trait variation. For example, our study 
does not include carbon fixation rates39 or fire adaptation traits40, 
nor does it include any root traits—representing an essential gap to 
be filled at the global scale41. The respective data are too scarce to yet 
be integrated with global datasets. If such data were available they 
would have the potential to fundamentally change our perception 
of global plant form and function, and their relation to ecosystem 
functioning.

Variation in size traits, represented by PC1 in Fig. 1b, shows a 
clear latitudinal gradient (Fig. 2b). In contrast, variation in econom-
ics traits (represented by PC2) does not show a latitudinal trend. 
Only a dip is apparent at around 35° (absolute), in addition to a 
decrease at high latitudes above 60° (absolute) where available data 
become increasingly limited. However, comparison to a recent arc-
tic dataset indicates that this decrease in variation at high latitudes 
reflects available observations (see Supplementary Fig. 10 for a 
comparison to independent data). These patterns might represent a 
response to nutrient limitation and drought42,43 in water-scarce and 
nutrient-scarce deserts and Mediterranean regions (Supplementary 

Fig. 40) or boreal and arctic areas characterized by short growing 
periods slowing down mineralization. The dip at ~35° indeed can 
be related to low water availability (Supplementary Fig. 41). At high 
latitudes, cold winters and short growing seasons constrain plant 
height13 and require on average more conservative nutrient-use 
strategies (like evergreen leaves) and protection against frost dam-
age than the global mean, despite the high functional diversity in 
economics traits observed at these latitudes13. Additional datas-
ets may shed more light on specific conditions, for example see 
Bjorkman et al.19. Future studies should quantify how individual 
stressors, for example radiative stress or water stress, relate to global 
patterns of trait variation.

The climate and soil factors used in this analysis explain up to 
77% of observed trait variation—a high fraction given that trait 
variation is widely known to be determined also by other factors 
such as biotic interactions (for example, soil biota) and anthro-
pogenic effects or disturbances and local effects such as those of 
microclimate12,44–46. Recent findings on how different trait groups 
vary with the environment indicate that size and economics traits 
vary differently13 and in particular respond differently to climate 
and soil19.

Our analyses reveal a dominant joint effect of climate and soil 
drivers on trait variation—as already suggested by a number of ear-
lier studies18,19,22 but not yet quantified globally.

The orthogonality of the two main dimensions of plant trait 
variation suggests that different aspects of climate and soil vari-
ables are relevant to explain plant trait patterns at the global scale 
(Supplementary Figs. 11–39). While latitude-related variables 
(mainly climate) explain size traits, variables that share less explana-
tory power with latitude (mainly soil) explain economics traits 
(Supplementary Table 4 and Supplementary Fig. 11). The RDA 
presented in Fig. 4 (Supplementary Fig. 39) provides some insight 

Table 1 | Showing for each trait the variance explained (r2) by ridge regression models for 220 ecoregions and the independent 
effects for climate and soil listed from hierarchical partitioning that, respectively, add up with the joint effect to the variance 
explained by climate or soil

Traita Group Explained varianceb by soil 
and climate (r2)

Soil (independent effectb) 
(r2)

Climate (independent 
effectb) (r2)

Joint effectb (r2)

Ridge regression model Hierarchical partitioning Hierarchical partitioning Hierarchical 
partitioning

Seed length Size 0.4 –0.01 0.08 0.33

Dispersal length Size 0.26 –0.01 0.03 0.24

Seed mass Size 0.57 –0.01 0.09 0.49

Height Size 0.52 0.01 0.1 0.41

Leaf f mass Size 0.72 0 0.15 0.56

Leaf area Size 0.63 0.03 0.13 0.47

Conduit density Size 0.77 –0.01 0.22 0.56

Stem density Economics 0.41 0.03 0.02 0.36

Leaf C Economics 0.29 0.08 0.05 0.17

Leaf n:P Economics 0.55 0.06 0.12 0.38

Leaf P Economics 0.45 0.15 0.05 0.25

Leaf n area Economics 0.39 0.03 0.02 0.33

SLA Economics 0.41 0.09 0.13 0.19

Leaf n Economics 0.26 0.06 0.16 0.05

Vessel length Other 0.4 0 –0.03 0.42

Leaf d15n Other 0.51 0.05 0.1 0.35

Seeds u Other 0.1 –0.02 0.02 0.1
aFor full versions of traits, see main text. Mean values; minimum and maximum values from different cross-validation runs in Supplementary Table 8. negative values indicate a reduction of explained 
variance when respective variables are added to the ridge regression model.
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on the nature of these climate–soil interactions. The first RDA axis, 
which describes variation in size traits, resembles a latitudinal gra-
dient. On one extreme end, ample water supply from high and fre-
quent precipitation, abundant water vapour and constant rates of 
high solar radiation meet the fundamental requirements of plant 
physiology—water, sunlight and warm temperatures. Additionally, 
these conditions promote weathering of soil minerals but also 
microbial activity, contributing to fast turnover rates of organic 
matter supporting nutrient provisioning28,47; in brief, they represent 
conditions that allow plants to grow fast and tall in the race for light. 
Large vessels supporting large leaves promote high rates of water 
transport and thus growth, which is only possible because of the 
small risk of embolism under these benign water conditions43. The 
high carbon gains can be invested in large fruits and seeds (seed 
mass, seed length and dispersal unit length). Further along this 
gradient, the above-mentioned plant requirements become limited: 
water supply and temperatures are reduced and slow metabolic 
rates aboveground and belowground. In ecoregions of the boreal 
and desert biomes, conduit diameter is constrained by the risk of 
cavitation during freeze–thaw cycles43 and water scarcity, amplified 
by little water holding capacity of gravel-rich soils. Our analysis thus 
indicates that size traits appear to be related to a latitudinal gradient 
of climatic favorability for plant growth determined by water and 
light availability.

Important correlates of water and nutrient availability are associ-
ated with the second RDA axis, describing variation in economics 
traits. Traits associated with an acquisitive strategy are related to 
indicators of soil fertility, most importantly silt and organic mat-
ter concentration as well as pH (refs. 18,28). Soil pH is intermediate 
between the two axes, as might be expected given that pH reflects 
both broad-scale climate variation (especially aridity47) and a variety 
of processes related to nutrient availability and soil microbial com-
munities18,48–50. Silt forms the substrate of our most fertile soils as its 
structure is able to retain water against gravitation (unlike sand) but 
renders it accessible to plants under drought conditions28,51 (unlike 
clay). The high fertility is associated with a high concentration of 
organic matter, which has a high cation exchange capacity espe-
cially under high pH (ref. 47). On the opposite end of the gradient, 
sandy soils require adaptations to both water and nutrient limita-
tion. The trait configuration at the conservative end of the econom-
ics traits (low SLA, high tissue density and high organ longevity) 
represents an adaptation to both11,37. Various processes exist that 
lead to variation in the soil characteristics underlying the second 
RDA axis independent of latitude18—for example, sandstone as a 
geological substrate giving rise to sandy soils exists from the tropics 
to the arctic28,51. However, different climate variables related to solar 
radiation, temperature and precipitation, which influence long- 
and short-term soil development processes directly and indirectly 
via soil biology28,51,52, are related to this axis. Variation in economic 
traits is most probably the evolutionary response to exploiting this 
partly climate-independent edaphic niche axis.

Size traits are on average explained better than economics traits 
by the environmental variables considered in this study. The lower 
fraction of explained variance for economics traits could have sev-
eral causes. Firstly, data on soil factors that are likely to be very 
important, such as soil nitrogen and phosphorus availability18,23, 
are not yet available at a global scale. Secondly, economics traits 
show relatively more within-site variation than across-site varia-
tion in comparison to size traits (Supplementary Fig. 42), prob-
ably because economics traits vary more than size traits within one 
plant; for example, leaf N per area and SLA vary with age and light 
availability53. Thirdly, soil heterogeneity within ecoregions—both 
abiotic and biotic—may weaken the relationship between econom-
ics traits and environmental variables12,54,55. Reasons for small-scale 
soil variation are, for example, topography, soil age and thus fertil-
ity56 but also abundance of microbial communities and mycorrhiza 

that interact with climate, pH, soil properties and also plant traits50. 
Trait–environment relationships due to smaller scale variation 
require well-resolved soil data. However, we note that soil physics 
and chemistry explain a large portion of variance along the trait PC 
axis three (which itself explains slightly less than 10% of variance 
in the PCA (9.36%); Supplementary Figs. 5, 6 and 38). We expect 
that with improved soil datasets and a higher resolution, the joint 
control of climate and soil on trait variation will probably appear 
even stronger and more evenly distributed between the two groups 
of driver variables.

Our analysis can serve as reference for model developments that 
increasingly consider plant functional traits as part of vegetation 
dynamics under climate change44.

Individual plants and their trait syndromes are considered to be 
viable only within specific environmental conditions2. Therefore 
trait–environment relationships should be scale-independent. 
However, different plant strategies can be successful under given 
environmental conditions, which in addition are often confounded 
by small-scale variation. In analyses to date, trait–environment rela-
tionships become more apparent for aggregations higher than the 
community scale12, where most of the small-scale variation is aver-
aged out. In addition the difference between potential and actual 
vegetation is suggested to explain some of this gap13. Dynamic 
global vegetation models predict individual plant processes well 
but fail to produce reliable forecasts with a changing environ-
ment44. Deciphering at which spatial and temporal scale, or condi-
tions, actual vegetation is representative of potential vegetation may 
advance our understanding of community assembly and necessary 
model complexity.

Trait–environment correlations identified in our study should 
not be confounded with causality. Yet, the ubiquitous importance 
of climate variables for explaining current differences in trait 
expression at ecoregion scale, suggests that trait shifts will occur 
with climate change. Trait shifts are constrained by available trait 
combinations in addition to other constraints such as species dis-
persal. For example, our results indicate that plant size increases 
with temperature so long as sufficient water is available (Fig. 4 and 
Supplementary Figs. 19, 20 and 21), in line with the finding that spe-
cies become larger and large species are more prevalent at warmer 
and wetter sites in the tundra19. Global change is also reflected by 
soil degradation. Changes in soil parameters can be considered to 
also correspond with trait shifts, especially for economics traits. 
Human-induced soil degradation has many facets: often fertile top-
soil is lost or toxic substances accumulate; rooting is impeded and 
altered by artificial fertilizers; while soil formation takes millenia57. 
The trait shifts may thus be similarly complex and depend on the 
extent and type of soil degradation. For example, in areas of wind 
and water erosion, species that tolerate lower nutrient availability 
may be more successful and this may be reflected in lower leaf nutri-
ent contents (Fig. 4 and Supplementary Fig. 30). The fertilization 
of nutrient-poor grasslands, for example resulting from agricultural 
run-off, may shift these areas from more conservative to more com-
petitive species with higher leaf nutrient contents.

Plants as a whole need to balance both size and economics traits. 
To sustain human livelihoods, it may be important to understand 
the local expression of trait shifts and their global consequences for 
biodiversity when viable trait combinations change.

In conclusion, the insights extracted here advance our under-
standing of broad-scale plant functional patterns. In particular, we 
highlight the combination of independent and particularly joint 
effects of climate and soil on trait variation, an interaction that has 
to date been neglected because few studies include both in a single 
analysis, at the global scale as we have done here. In doing so, we 
identify an important gap in knowledge: what is the nature of cli-
mate–soil interactions that drive whole-plant trait variation and 
what distinguishes the majority of climate and soil factors having 
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joint effects on plant traits from those with independent effects? 
These are the sorts of questions that require answers to increase our 
capacity to predict plant functional diversity in a changing envi-
ronment. Such predictive power would contribute to a sound basis 
for assessing long-term feedbacks between global environmental 
change and the terrestrial biosphere, helping to constrain param-
eters of global coupled climate–vegetation models. Humans are cur-
rently modifying both climatic and edaphic conditions at the global 
scale. Climate envelope models used to predict vegetation shifts 
must be complemented by drivers related to large-scale anthro-
pogenic alterations of soil conditions resulting, for example, from 
land-use change, atmospheric nitrogen deposition, fertilization, 
liming and salinization. Our global analysis provides an essential 
context for finer-scale studies to directly tackle questions of biologi-
cal processes and mechanisms at landscape and community scales.

Methods
We extracted data on 17 plant functional traits from a gap-filled version of TRY 
database9 (Supplementary Table 5; www.try-db.org, accession date July 2017, 
request no. 3282) which includes published literature11,58–101,101–310. Quality control 
was conducted according to the published protocol of TRY.9, 311 Traits with 
z-score > 4 were excluded and those with z-score > 3 were checked for plausibility. 
Before this, missing data were imputed using a Bayesian hierarchical probabilistic 
matrix factorization (BHPMF) algorithm8,312 for an extended dataset, derived 
from TRY (Supplementary Table 6). Imputation was done to be able to include 
the maximum number of species in our analyses. Then the 17 traits were selected 
among the traits with the largest total number of entries. The data were attributed 
to ecoregions30 (Supplementary Table 7 and Extended Data Fig. 1) and aggregated 
to species median values. The imputed values were calculated using the whole 
dataset at the individual record level. BHPMF calculates the imputations from 
1,000 Gibbs sampler (Markov chain Monte Carlo) imputations by taking the 
mean of every twentieth imputation of these 1,000 ‘versions’, after the first 200 
are removed. Then the species median was calculated at the ecoregion level. We 
excluded observations that were not georeferenced because we could not attribute 
them to ecoregions. According to TRY regulations, data from experimental 
treatments (for example, fertilization) or from botanic gardens were also excluded. 
In total, we included 225,206 observations from 20,655 global unique species 
(36,197 unique species to ecoregion combinations). Throughout this study we used 
one of two aggregation levels: either species median per ecoregion (ER)30 resulting 
in unique species values per ecoregion (termed A1, n = 36,197 with n = 20,655 
globally unique species) or the aggregation to median ecoregions calculated from 
median species per ecoregion (termed A2, n = 220). R was used for all analyses and 
figures313.

Hierarchical probabilistic matrix factorization. Description. BHPMF decomposes 
or factorizes probabilistically a matrix (probabilistic matrix factorization, PMF314) 
using information contained within different hierarchical levels (here, taxonomy) 
within a Bayesian framework8. The underlying premise of BHPMF is to gap-fill 
(or more accurately, to predict) traits of an individual plant using trait–trait 
correlations as well as intraspecific and interspecific trait variability.8. Using a 
Gibbs sampler (a Markov Chain Monte Carlo algorithm), BHPMF also provides 
a prediction confidence in the form of standard deviations which is a per-value 
estimate of uncertainty in trait predictions8. BHPMF can fill gaps if there is at least 
one value per row (species) and column (trait).

Implementation. The largest possible dataset was retrieved at the time when study 
was conducted, including 172 traits of 652,957 individuals (Supplementary  
Table 6). For data preparation before BHPMF, all individual-level trait data 
were firstly log-transformed and secondly normalized via zlog transformation 
(z =

x−x̄
s.d. ). Log transformation was chosen to achieve a closer-to-normal 

distribution of values per trait311,313. This transformation is considered necessary 
because a given difference for small trait values (absolute value) is likely to be 
physiologically more relevant than the same difference (absolute value) for large 
trait values.

BHPMF internally splits the datasets randomly into a training dataset (80%), a 
test dataset (10%) and a validation dataset (10%).

The training dataset is used during training of latent vectors, while the test data 
are tested against to improve the latent vectors, and finally the validation dataset 
serves as the basis for calculation of the root mean square error (RMSE) and 
stopping the optimization of latent vectors within BHPMF8. The validation dataset 
ensures ongoing amelioration of the model performance during the training 
process and stops the process after five consecutive iterations with stable RMSE. 
The test dataset is used only on the lowest taxonomic level (individuals × traits). 
BHPMF was run with a maximum of 1,000 iterations, whereas the first 200 
were discarded during the ‘burn-in’ phase, as predictions of these iterations 
are likely to be influenced by the initialization of BHPMF rather than being 

part of the probability density distribution to be sampled by BHPMF. To avoid 
autocorrelation, only every twentieth iteration was used to calculate the resulting 
trait values. The mean of these predictions result in the final trait values used as the 
output. Compared to the original data, the imputed values are similar in terms of 
trait–trait correlation, according to the Procrustes test provided in ref. 10.

Trait clustering. To define groups of correlated traits, we clustered species’ traits 
(species median per ecoregion, A1) on the basis of absolute pairwise Pearson 
correlation coefficients using a hierarchical clustering algorithm (‘complete linkage 
clustering’). Variables were transformed into distances previous to the clustering. 
Hierarchical clustering then attributes variables (here, traits) to groups of least 
distance and highest similarity. Traits were more like each other if they exhibited 
similar correlation patterns with all other traits. We set a distance between traits of 
1 as the threshold for defining trait clusters. We used the R package ‘stats’ function 
‘hclust’ included in R (ref. 315).

PCA. Values for all 17 traits (unique species per ecoregion, A1) were natural 
log-transformed and then projected onto components (PCA). We used the R 
package FactoMineR316 that scales data internally. After the PCA (A1), we extracted 
the variance explained (Fig. 1b and Supplementary Fig. 5) and respective loadings 
for the first five principle components (Fig. 1b and Supplementary Fig. 6), which 
are significant according to the number of axes to keep estimated using a sequential 
Bonferroni procedure (R package ade4 (refs. 317–321), function testdim). For the 
analysis (ridge regression package ‘glmnet’322,323) for Fig. 3, all environmental 
variables (climate and soil) were first reduced with this package to 20 PCs.

Environmental variables. To represent climate conditions we used 21 variables 
derived from WorldClim at a resolution of 1 km for temperature, precipitation, 
vapour pressure, solar radiation and wind (Supplementary Table 1). To characterize 
soil conditions we used 107 variables derived from the ISRIC data product 
‘SoilGrids’324–326 (https://soilgrids.org/ through ISRIC—WDC Soils). ‘SoilGrids’ 
provides global predictions of 17 fundamentally different soil characteristics (some 
for seven depths, that is 0, 5, 15, 30, 60, 100, 200 cm; Supplementary Table 2) at a 
resolution of 1 km. SoilGrids are publicly accessible environmental data (Creative 
Commons Attribution 4.0 International), with a collection of georeferenced soil 
profile data and are managed in World Soil Information Service324.

Aggregation of traits and environmental variables to ecoregions. To determine 
trait–environment relationships, we aggregated trait as well as environmental 
data to regions, here ecoregions30 (ecoregion aggregation A2, see also above; 
Supplementary Table 7). Ecoregions are environmentally homogeneous areas, 
nested within biogeographic realms (defined by refs. 327,328) and biomes (modified 
after refs. 329,330 but see ref. 30). As a first estimate, ecoregions are distinct biotas328,331 
defined by the physiognomy of the prevailing climatic climax vegetation30. These 
areas of distinct biotas, areas of relatively uniform flora or fauna, are next subset 
into provinces with substantial differences of vegetation on the basis of a selection 
of plants and animals, maps and expert knowledge30,331. At global scale Olson 
et al.30 defined 867 ecoregions. Ecoregions were chosen as the scale of aggregation 
for their high signal-to-noise ratio and the ability to correct for sampling bias. 
While the grid scale has higher spatial resolution, it lacks estimates of species 
richness (equivalent of Kier species richness174) and is not as well explained by 
the climate and soil (Supplementary Fig. 3) and distribution of grids is globally 
uneven (Extended Data Fig. 1) in comparison to ecoregions. The global sampling 
distribution is recognized to show a bias towards Europe9, which is even more 
pronounced in the lower level data (grid scale) than in the more aggregated 
one (Extended Data Fig. 1). Our method accounts for this oversampling and 
reproduces a stable pattern, even when species in oversampled ecoregions are 
deleted (Supplementary Fig. 2).

For each of the 867 ecoregions, we calculated the median ecoregion aggregate 
trait value from the median trait values of all species identified in each region. 
For further analyses, we only used regions with >20 species and a representation 
of >1% of the estimated species richness of the ecoregion30. Preliminary tests 
with different selection criteria (for example, number of species and inclusion or 
exclusion of 1% of species richness estimate by Kier et al.174) showed that lower 
numbers of species per ecoregion result in weaker explained variance, while 
stricter rules reduced the number of ecoregions. These selection criteria serve as 
a quality control because ecoregions with poor representation of species richness 
are excluded, as we can expect the regression to the mean to be stronger with 
more species data. A total of 220 ecoregions met these criteria and were included 
in the analysis. On average, these ecoregion-level trait values were based on 164 
species-level trait medians (with a maximum of 1,245 species in Tapajós-Xingu 
moist forests; Supplementary Table 7). In total, we aggregated 36,197 median 
species trait values to ecoregions. These ecoregions cover the global latitudinal 
gradient (Fig. 2) as well as a substantial fraction of the geographic space (Extended 
Data Fig. 1). To aggregate environmental variables to ecoregions, we associated 
each trait observation with its corresponding values of climate and soil variables. 
Then, we averaged over all values within one ecoregion. Thus, the selected 
environmental variables represent averages that are weighted by the number and 
locations of trait observations within ecoregions.
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Model building. Ecoregion trait values (natural log-transformed, A2) were related 
to all environmental variables using ridge regression31, which is a well-established 
linear regression method that is suitable to deal with a large number of collinear 
predictors and uneven numbers of predictors for climate and soil. We used the 
R package ‘glmnet’322,323. From aggregating trait values to ecoregion medians we 
obtain 220 samples for each trait. The environmental predictors of climate and 
soil were reduced to 20 each by means of a PCA. In addition, the environmental 
predictors show relatively high collinearity, thus duplicated information. Ridge 
regression addresses collinearity among predictors by shrinking (regularizing) 
regression coefficients according to a penalty on the L2 norm of the vector of 
regression coefficients. The regularization parameter lambda was obtained via 
tenfold cross validation. The variance explained was derived from an iterative 
holdout set (tenfold cross validation), that is, prediction of 90% of randomly 
sampled ecoregions for inclusion in model building and then predicting the 
remaining 10% of the data to evaluate the quality of the models. The final model 
predicts the remaining 10% of unused ecoregions. This prediction-loop was 
repeated until all ER trait values are predicted, that is, resulting in different linear 
models. Repeated r2: the r2 is the squared correlation of predicted versus original 
ER trait values. This procedure was repeated 50 times and the explained variances’ 
(r2) mean, minimum and maximum were calculated. For the purpose of defining 
how much of the explained variance is due to independent and joint information 
in the data streams, we used hierarchical partitioning32. Model outputs (r2) of 
all repetitions (n = 50, if not indicated differently) were used as input (ridge 
regression, partial least squares (PLS) with and without PCA, random forest).

Redundancy analysis. To relate trait–trait covariation to trait–environment 
covariation, we performed a redundancy analysis (R package ‘vegan’). 
Ecoregion-aggregated traits (A2) were normalized and natural log-transformed. 
Scaled climate and soil variables were used as predictors. To decrease the factor 
that quantifies collinearity (variance inflation factor, vif), only the topsoil layer was 
selected (Fig. 4). For Supplementary Fig. 39, additional model tuning based on vif, 
with the exclusion of two variables with vif > 20, led to a model with vif < 10, which 
can be considered low cocorrelation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Plant trait data were accessed from the TRY database (https://try-db.org, request no. 
3282, date accessed July 2017, see also Extended Data Fig. 1). All TRY data required 
to reproduce this analysis, and the corresponding R scripts, are provided in an 
open TRY File Archive (https://www.try-db.org/TryWeb/Data.php). Climate data 
WorldClim are publicly available via https://www.worldclim.org/ (accessed May 
2018). Soil data, namely SoilGrids (https://soilgrids.org/, accessed June 2018) are 
publicly available. Ecoregion information30 shapefiles are publicly available (accessed 
January 2014, Sciencebase.gov), The estimate of species richness per ecoregion174 
is publicly available (accessed January 2014, databasin.org. Data for this study 
can be accessed on Github (https://github.com/juliajoswig/ Repo_ClimateSoil_
TraitSpectrum). For Extended Data Fig. 1 and Supplementary Fig. 7, the Geodata 
product of the Missions Database ‘ArcWorld Supplement’ (GMI) was used.

Code availability
The code is available on Github (https://github.com/juliajoswig/
Repo_ClimateSoil_TraitSpectrum).
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Extended Data Fig. 1 | Map of Ecoregion data. Map of ecoregions (30) included in this study (n=220).
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intellectual property of Esri and are used herein under license. Copyright  Esri. All rights reserved. For more information about Esri software, please visit 
www.esri.com. 
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The overarching objective of this study is to test whether the major dimensions underpinning the global spectrum of plant variation, 
such as the size and leaf economics spectra, are the result of joint and/or independent variation of climate and soil.  
For this study, we compiled and analyze a dataset of 17 functional traits for 225,206 geo-referenced observations comprising records 
of 20,655 global unique species (36,197 unique species to ecoregion combinations) covering the main worlds’ ecoregions – 
environmentally homogeneous areas characterized by distinct plant assemblages (Methods, Extended Data Figure 1). The trait data 
were complemented with 21 climate variables (Supplementary Tab. 1) as well as 107 soil variables (Supplementary Tab. 2). Trait-
environment relationships were analyzed on the basis of ecoregions using a combination of a regression technique and hierarchical 
partitioning (for details see Methods).

Research sample We extracted data of 17 plant functional traits from the TRY data base1 (Supplementary Tab. 5, Supplementary Tab. 6, www.try-
db.org, accession date July 2017, request nb.3282) including published literature (see manuscript). To be able to include the 
maximum number of species in our analyses, we used the gap-filled version of TRY, with missing data were imputed using a Bayesian 
Hierarchical Probabilistic Matrix Factorization (BHPMF) algorithm, but observed values were kept. We excluded observations that 
were not geo-referenced. In total, we included 225,206 observations from 20,655 global unique species (36,197 unique species to 
ecoregion combinations). The data were stratified by ecoregions (see below), aggregated to species median values per ecoregion and 
log-transformed. 
 
To represent climate conditions we used 21 variables derived from the WorldClim reanalysis product at a resolution of 1 km 
(accession date May 2018). We extracted values for temperature  (annual average, diurnal range, max of warmest month, min of 
coldest month, sd), precipitation (annual average, min, max, sd), vapour pressure (annual average, min, max, sd), solar radiation 
(annual average, min, max, sd) and wind (annual average, min, max, sd; see Supplementary Tab. 1). 
 
To characterise soil conditions we used 107 variables derived from the ISRIC data product ‘SoilGrids’  (soilgrids.org through ISRIC - 
WDC Soils, Supplementary Tab. 2). ‘SoilGrids’ provides global predictions of soil characteristics for seven depths, i.e. 0, 5, 15, 30, 60, 
100, 200 cm at a resolution of 1 km.  
In total, we included 128 environmental variables. Before performing the ridge regression, climate and soil variables were reduced to 
20 variables each by means of a principle component analysis (PCA). 
 

Sampling strategy The data were stratified by ecoregions, aggregated to species median values per ecoregion and log-transformed. To determine trait-
environment relationships, we aggregated trait as well as environmental data to ecoregions (Supplementary Tab.7)  Ecoregions are 
environmentally homogeneous areas characterized by distinct plant assemblages. At global scale Olson et al. defined 867 ecoregions. 
For each of the 867 ecoregions, we calculated the median of all species median trait values. For further analyses we only included 
regions with >20 species and a representation of >1% of the estimated species richness of the ecoregion.  
To aggregate environmental variables to ecoregion level, we associated each geo-referenced trait observation with its corresponding 
values of climate and soil variables. Then, we averaged over all values within one ecoregion. Thus, the selected environmental 
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variables represent averages that are weighted by the number and location of trait observations within ecoregions. 

Data collection Trait data was collected in the framework of TRY (Kattge et al. 2011). 

Timing and spatial scale Trait-data: geo-referenced global point data 
Climate- data: gridded data (1km resolution) 
Soil: gridded data of up to 7 different depths (1km resolution) 

Data exclusions For trait observations, we only included geo-referenced data.  
For environmental data, we only included the grid-level information if a trait data point was located there. 
For ecoregions we only included regions with >20 species and a representation of >1% of the estimated species richness of the 
ecoregion.  

Reproducibility All attempts to repeat the results were successful. 
Per default, the ridge regression was repeated 50 times for each trait. The mean, minimum and maximum of r2 and independent 
effect give an estimate of model spreads (Table 1, Supplementary Tab. 9). 
All TRY data required to reproduce this analysis, and the corresponding R-scripts, are provided in an open TRY File Archive (https://
www.try-db.org/TryWeb/Data.php).  

Randomization  
To estimate how much of the ecoregion trait variation (r2) is explained by random environmental variables, we performed the ridge 
regression followed by hierarchical partitioning (see methods „ridge regression“ and “hierarchical partitioning”) and paired climate or 
soil with noise. The noise data set comprised randomly sampled values for a variable set, as large as the soil variable set (n=107). We 
performed ridge regression analysis with noise data, together with climate or soil. Then we calculated the independent effect of 
noise from climate or soil data. 
The independent effect of randomized data (noise) is never above 0 (negative values due to large difference between r2_total and 
r2_noise and model variabiliy; Supplement Fig 2). 
 
Moreover, we sampled for each ecoregion the minimum requirement for selection (Kier species richness of 1% and 20 species) and 
erased randomly (n=3) the rest of the species observations. See Supplement Fig. 2. 

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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