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Implementing the meta-analytic approach for the evaluation of 

surrogate endpoints in SAS and R: A word of caution 

The meta-analytic approach has become the gold-standard methodology for the 

evaluation of surrogate endpoints and several implementations are currently 

available in SAS and R. The methodology is based on hierarchical models that are 

numerically demanding and, when the amount of data is limited, maximum 

likelihood algorithms may not converge or may converge to an ill-conditioned 

maximum such as a boundary solution. This may produce misleading conclusions 

and have negative implications for the evaluation of new drugs. In the present 

work, we explore the use of two distinct functions in R (lme and lmer) and the 

MIXED procedure in SAS to assess the validity of putative surrogate endpoints in 

the meta-analytic framework, via simulations and the analysis of a real case study. 

We describe some problems found with the lmer function in R that led to a poorer 

performance as compared with the lme function and MIXED procedure. 

Keywords: surrogate markers; lme; lmer; proc mixed; meta-analytic approach 

1. Introduction 

Surrogate endpoints have helped pharmaceutical companies to carry out faster and more 

efficient clinical trials. They have also contributed to improve our understanding of some 

diseases and to identify and track public health concerns. Cholesterol, blood sugar levels, 

and blood pressure are just some examples of surrogate endpoints that have played a 

prominent role in medical research and practice, but the use of surrogate endpoints has 

also raised some controversy (Micheel and Ball 2010). For instance, long-term hormone 

replacement therapy significantly lowered “bad” cholesterol and raised “good” 

cholesterol in women, but at the same time, it increased their chances of heart attacks and 

strokes (Writing Group for the Women’s Health Initiative Investigators 2002). In spite of 

these drawbacks, the potential of surrogate endpoints to speed up the approval of new 

therapeutics remains appealing, such as in the context of evaluating the efficacy of 

urgently needed vaccines during the SARS or Covid-19 pandemic.  
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The first attempts to define and quantify surrogacy took place over 30 years ago 

in the so-called single trial setting (STS), i.e., the putative surrogate was evaluated using 

data from a single clinical trial. Methods developed in the STS suffered from many 

conceptual problems and, at the beginning of the 21st century, a new approach was 

introduced based on meta-analysis. The so-called meta-analytic approach offered an 

alternative method to carry out the evaluation of surrogate endpoints and became the 

gold-standard in this domain. It assumes that the new treatment is evaluated in a sequence 

of clinical trials that target slightly different populations (owing to differences in the 

inclusion/exclusion criteria, protocol, and/or differences between countries where the 

trials take place, among other reasons) and estimate potentially different expected causal 

treatment effects for the surrogate and true endpoints. The methodology is based on 

hierarchical models; it is numerically demanding, and convergence issues are often 

encountered, especially when only a few trials are available.  

Nowadays there are several functions or procedures available to fit a variety of 

hierarchical models. It is of interest in the present work to compare some functions that 

are implemented in standard software packages and widely used by statisticians in 

industry and academia to assess the validity of surrogate endpoints. More specifically, we 

explored the performance of the methodology using the lmer and lme functions in R as 

well as the MIXED procedure in SAS (Bates et al. 2020; Pinheiro et al. 2020; SAS 

Institute Inc. 2020). 

The rest of the manuscript is organized as follows. In Section 2, the meta-analytic 

approach is introduced. In Section 3, related software implementation is explained and a 

case study in schizophrenia is analysed to provide better insight about the application. A 

simulation study, used to compare the performance of the aforementioned functions, is 
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described in Section 4. The results of the simulations are presented in Section 5. Finally, 

some conclusions are given in Section 6. 

2. The meta-analytic approach: Lights and shadows 

Let us assume that data from i = 1, …, N clinical trials are available, in the ith of which j 

= 1,…,ni subjects are enrolled. Further, let us denote the true and surrogate endpoints for 

patient j in trial i by Tij and Sij, respectively, and the indicator variable for the new 

treatment by Zij. The random treatment allocation in a clinical trial context naturally leads 

to the following bivariate model: 

൜
𝑇௜௝ =  µ்௜ +  𝛽௜𝑍௜௝ +  𝜀்௜௝

𝑆௜௝ =  µௌ௜ +  𝛼௜𝑍௜௝ +  𝜀ௌ௜௝ 
 (1) 

where µTi and µSi are trial-specific intercepts, βi and αi are trial-specific expected causal 

treatment effects and εTij and εSij are correlated error terms, assumed to be zero-mean 

normally distributed with covariance matrix: 

Σ = ቀ
𝜎்் 𝜎்ௌ

𝜎்ௌ 𝜎ௌௌ
ቁ (2) 

Notice that now the evaluation exercise is carried out across different populations and 

one can decompose the trial-specific parameters in the following way: 

൮

µௌ௜

µ்௜

𝛼௜

𝛽௜

൲ = ൮

µௌ

µ்

𝛼
𝛽

൲ + ൮

𝑚ௌ௜

𝑚்௜

𝑎௜

𝑏௜

൲ (3) 

where the second term on the right-hand side of (3) is assumed to follow a zero-mean 

normal distribution with covariance matrix: 
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D = ൮

𝑑ௌௌ 𝑑ௌ் 𝑑ௌ௔ 𝑑ௌ௕

𝑑ௌ் 𝑑்் 𝑑்௔ 𝑑்௕

𝑑ௌ௔ 𝑑்௔ 𝑑௔௔ 𝑑௔௕

𝑑ௌ௕ 𝑑்௕ 𝑑௔௕ 𝑑௕௕

൲ (4) 

Based on these ideas, Buyse et al. (2000) proposed to assess surrogacy at two different 

levels, the so-called trial and individual level. At the trial-level these authors quantify 

surrogacy using the coefficient of determination: 

𝑅෠௧௥௜௔௟
ଶ =

൬
ௗೄ್
ௗೌ್

൰
೅

൬
ௗೄೄ ௗೄೌ
ௗೄೌ ௗೌೌ

൰
షభ

൬
ௗೄ್
ௗೌ್

൰

ௗ್್
 (5) 

This metric always lies in the unit interval, it takes value zero if and only if 𝛽௜ is 

independent of  (𝜇ௌ௜, 𝛼௜) and value one when the former is deterministically related to the 

later. Clearly, any value in between will give different evidence about the validity of the 

surrogate at this level. A special case arises where the prediction of the treatment effect 

on the true endpoint can be done independently of the random intercept associated with 

the surrogate. In that case, the coefficient of determination reduces to: 

 𝑅௧௥௜௔௟
ଶ =

ௗೌ್
మ

ௗೌೌௗ್್
 (6) 

At the individual-level, surrogacy is defined as the association between both endpoints 

after adjustment by trial and treatment and it is captured by the coefficient of 

determination: 

𝑅௜௡ௗ
ଶ =

ఙ೅ೄ
మ

ఙೄೄఙ೅೅
 (7) 

This metric has a similar interpretation but, unlike trial-level surrogacy, the individual-

level does not depend on the treatment and it can be interpreted as a quantification of the 

biological plausibility of the surrogate. An endpoint producing a high individual-level 
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surrogacy is always a potential surrogate. However, it may fail to be predictive at the 

trial-level for a specific treatment that follows a causal path that completely avoids it. As 

expressed in Equation (7), the individual-level surrogacy is based on the variance-

covariance matrix of the residual Σ, and since the replication at this level is usually large, 

there are typically no issues with the estimation of the 𝑅௜௡ௗ
ଶ  (Van der Elst et al. 2015). In 

addition, the main goal of surrogate endpoints is to predict the treatment effect on the true 

endpoint and, consequently, trial-level surrogacy is commonly the most relevant 

dimension. Therefore, the focus of this study will be limited to the trial-level surrogacy 

only. 

The meta-analytic approach overcame many of the conceptual problems that 

previous methods had, but it also created a number of serious practical challenges. For 

instance, fitting the above hierarchical model often implies a considerable computational 

burden. Tibaldi et al. (2003) suggested several simplifications to tackle this problem, like 

treating the trial-specific parameters in (1) as fixed effects in a two-stage approach. At 

the first stage, the bivariate regression model (1) is fitted for each trial separately and the 

trial-specific parameters are treated as fixed effects. Then, at the second stage, the 

estimated treatment effects on the true endpoint are regressed on the estimated treatment 

effects on the surrogate endpoints and the intercepts associated with the surrogate 

endpoints as: 

𝛽መ௜ = 𝛾଴ + 𝛾ଵ 𝜇̂ௌ௜ + 𝛾ଶ 𝛼ො௜ + 𝜖௜ (8) 

Essentially, the trial-level surrogacy metric 𝑅௧௥௜௔௟
ଶ  is estimated using the 

coefficient of determination obtained by regressing 𝛽መ௜ on (𝜇̂ௌ௜, 𝛼ො௜). Another important 

limitation of the methodology is that it requires a large amount of data. In fact, one needs 

to have several clinical trials where the expected causal effects of the treatment on both 
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the surrogate and true endpoints are assessed. The availability of such data may be a 

serious problem, especially at the early stages of the drug development process, when 

surrogate endpoints are needed most. A possible workaround to this problem is to use 

other units of analysis. The choice of an alternative unit of analysis, e.g., centre or country, 

may depend on practical considerations such as the information available in the data, 

experts' considerations about the most suitable unit for a specific problem, the amount of 

replication at a potential unit's level, and the number of patients per unit. From a technical 

point of view, the most desirable situation is when the number of units and the number of 

patients per unit are both sufficiently large. Of course, after choosing a specific unit for 

the analysis, one always has to reflect carefully on the status of the results obtained. 

Arguably, they may not be as reliable as one might hope for, and one should undertake 

every effort possible to increase the amount of information available. This issue has been 

covered at large by Cortiñas Abrahantes et al. (2004) and we refer the interested reader 

to this work for more details. 

3. Software implementation and case study 

In this section, we introduce a commonly used software implementation to assess the 

validity of surrogate endpoints within the meta-analytic framework. We then exemplify 

the methodology using a case study in schizophrenia to provide better insight about the 

application. The interested reader can find the details about the SAS and R codes in the 

Supplementary Material accompanying the manuscript, while more generic code and the 

illustration about how it relates with the notations in Section 2 are given in Section 3.1. 

3.1 Software implementation 

We compared four functions in this study: lme with description of the within-group 

correlation and heteroscedasticity structure, indicated by the additional correlation and 
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weights statement in the model (denoted as lme1 this code allows for heteroscedastic and 

correlated error terms), lme without description of the within-group correlation and 

heteroscedasticity structure (denoted as lme2 this code considers homoscedastic and 

uncorrelated error terms), lmer, and proc MIXED with unstructured (UN) variance-

covariance parameterization for both the random-effects and residual matrices, 

respectively. The lme function is provided in the R package nlme (Version 3.1-149 was 

used in this study) whereas lmer can be found in the R package lme4 (Version 1.1-25 was 

used in this study). As for the MIXED procedure, it is incorporated within SAS/STAT 

software (Version 15.2 was used in this study). 

The lme1 model is implemented using the code: 

lme(response ~ -1 + endpoint + endpoint:treat, random = ~ -1 + endpoint + 

endpoint:treat | trial, data = <data>, correlation = corSymm(form = ~ 1 | trial/subject), 

weights = varIdent(form = ~ 1 | endpoint)), 

where the response vector contains the outcomes of the surrogate and true endpoints for 

the patient given by the variable subject, the endpoint variable indicates if the value of 

the response vector corresponds to the surrogate or true endpoint, and the variables treat 

and trial refer to the treatment received by the patients and the trial he/she belongs to, 

respectively. The first part of the code (response ~ -1 + endpoint + endpoint:treat) allows 

us to estimate the average intercepts and treatment effects across trials given by the first 

vector on the right side of equation (3). In addition, the random statement (random = ~ -

1 + endpoint + endpoint:treat | trial) specifies the random effects of the model given by 

the second vector on the right hand of equation (3) and allows to estimate the variance-

covariance matrix D in equation (4). Finally, the statement correlation = corSymm(form 

= ~ 1 | trial/subject) and weights = varIdent(form = ~ 1 | endpoint) specify the variance-

covariance matrix for the error structure Σ in equation (2), with varIdent(form = ~ 1 | 
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endpoint) indicating that the errors are heteroscedastic. The lme2 model differs from the 

lme1 only in the absence of the correlation and weights arguments. 

 The following code is used to implement the lmer model: 

lmer(response ~ -1 + endpoint + endpoint:treat + (-1 + endpoint + endpoint:treat | trial), 

data = <data>), 

where, similarly to lme1, the part of the code (response ~ -1 + endpoint + endpoint:treat) 

allows us to estimate the average intercepts and treatment effects across trials while the 

code (-1 + endpoint + endpoint:treat | trial) specifies the random effects of the model. 

The error structure assumes independence and equal variances. 

 Finally, in the SAS implementation we used this code: 

PROC MIXED data = <data>; 

CLASS endpoint subject trial; 

MODEL response = endpoint endpoint*treat; 

RANDOM endpoint endpoint*treat / subject = trial; 

REPEATED endpoint / subject = subject(trial); 

RUN; 

where all variables (response, endpoint, subject, treat, and trial) have been explained 

previously. The CLASS statement indicates the categorical variables used in the model. 

The formula in the MODEL statement allows us to estimate the average intercepts and 

treatment effects across trials (first term on the right-hand side of equation 3), while the 

RANDOM statement specifies the random effects of the model given by the second vector 

on the right-hand of equation (3). Lastly, the REPEATED statement indicates the 

variance-covariance matrix for the error structure Σ. 

The default settings of each function were used in the present work. More 

information about the algorithm, optimization, and convergence criteria adopted by each 
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function can be found in the Supplementary Material. However, a detailed comparison 

between different settings is beyond the scope of this manuscript. We believe that the 

findings presented here will still be generally valid despite different convergence criteria 

between functions. Other than that, it is our intention to minimize any restrictions in the 

programming step to remain as close as possible to common practice, where typical users 

primarily stick to the default setting in their analysis.  

3.2 Schizophrenia study 

In this subsection, we introduce the motivating case study. The data come from a meta-

analysis of five double-blind randomized clinical trials, comparing the effects of 

risperidone to conventional antipsychotic agents for the treatment of chronic 

schizophrenia. The data set can be accessed in the R library Surrogate (Van der Elst et al. 

2020) and has previously been used in the surrogate evaluation literature (Alonso et al. 

2017; Burzykowski et al. 2005). Schizophrenia is one of the most disabling and 

emotionally devastating illnesses affecting humans and it is characterized by a 

constellation of distinctive and predictable symptoms. The symptoms that are most 

commonly associated with the disease are called positive symptoms, that denote the 

presence of grossly abnormal behaviour. Less obvious than the positive symptoms but 

equally serious are the deficit or negative symptoms that represent the absence of normal 

behaviour. These include flat or blunted affect (i.e. lack of emotional expression), apathy, 

and social withdrawal. Several measures exist to assess a patient’s global condition. Two 

sensitive psychiatric scales are the Positive and Negative Syndrome Scale (PANSS) and 

the Brief Psychiatric Rating Scale (BPRS). PANSS provides an operationalized, drug-

sensitive instrument, which is highly useful for both typological and dimensional 

assessment of schizophrenia while BPRS is a sub-scale of PANSS. Interest is in knowing 
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to which extent a simpler and easier to administered scale like BPRS can be used as a 

substitute for a more reliable and complex scale like PANSS, when assessing the efficacy 

of these or similar drugs. 

There were a total of 2128 patients in the complete data set, 537 and 1591 of 

which were in the active control and experimental treatment group, respectively. Given 

the insufficient number of trials, the treating physician has often been used as the 

clustering variable when analysing these data in the meta-analytic framework. Following 

Equation (1) and (3) in Section 2, each trial has its own intercept and treatment effect for 

the true (PANSS) and surrogate (BPRS) endpoints, respectively. The trial-specific 

parameters were then decomposed into the fixed- and random-effects. The random-

effects are assumed to follow a zero-mean normal distribution with covariance matrix D 

as expressed in Equation (4). More explanation about the practical implementation of the 

model and the software code is detailed in the Supplementary Material. 

A summary of the results is shown in Table 1. [Table 1 near here] A special issue 

catches immediately the eye, the proc MIXED procedure with unstructured 

parameterization resulted in a negative 𝑅෠௧௥௜௔௟
ଶ . This undesirable problem is the direct 

consequence of a non-positive-definite D̂ matrix as it is clearly seen in the presence of a 

negative minimum eigenvalue. Oddly enough, the unstructured parameterization in proc 

MIXED forces the diagonal of D̂ to be positive but the complete matrix may still not be 

positive-definite. To tackle this issue, another parameterization for the D matrix, the so-

called non-diagonal factor-analytic structure with 4 factors (FA0(4)), was considered. 

This parameterization applies a log-Cholesky decomposition to the D matrix to address 

positive-definiteness constraints and results in substantial simplification of the 

optimization problem (Pinheiro and Bates 1996; West et al. 2015). This analysis produced 
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a moderate value of trial-level surrogacy but here again an almost singular matrix D̂ was 

obtained.  

The implementation of lmer led to the matrix D̂ with the highest condition number 

and a degenerated value for 𝑅෠௧௥௜௔௟
ଶ . A more reasonable estimate was obtained with lme1. 

In fact, this implementation produced the estimated D̂ with the smallest condition number 

and a large but acceptable estimate for trial-level surrogacy. Given that BPRS is a sub-

scale of PANSS such a large value of  𝑅෠௧௥௜௔௟
ଶ  may not be completely unexpected. 

However, the D̂ matrix obtained from lme1 was still nearly singular and, hence, all these 

results should be interpreted with extreme caution. Finally, the two-stage approach 

introduced in Section 2 was also applied and its results were in close agreement with 

those obtained from lme1. The numerical issues encountered in this case study are not 

uncommon and in the next section they are studied in more detail via simulation. 

4. Simulation study 

The simulations aim at mimicking the case study, i.e., the scenario in which an alternative 

unit of analysis is used to assess trial-level surrogacy in a meta-analytic framework. The 

random-effects model based upon combining model (1) and (3) was used to generate the 

data. The treatment allocation (Zij) was coded as -1 and 1 for the control and experimental 

group, respectively, to ensure the same components of variability in both treatment groups 

(Burzykowksi et al. 2005). The variable Zij was generated using a Bernoulli distribution 

with probability π = 0.5. In all simulations the mean structure parameters were fixed at 

µS = 450, µT = 500, α = 300, and β = 500, while the between-trial heterogeneity was 

defined as: 
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 D = γ ൮

1000 400 0 0
400 1000 0 0

0 0 1000 707.107
0 0 707.107 1000

൲  

The block-diagonal structure of the previous matrix implies that the trial-specific 

intercepts in model (1) are independent of the trial-specific treatment effects, and hence 

trial-level surrogacy can be calculated as the correlation between 𝛼௜ and 𝛽௜. More 

specifically, 𝑅௧௥௜௔௟
ଶ = 𝑐𝑜𝑟𝑟(𝑎௜, 𝑏௜)

ଶ = 0.5.  

Several conditions were varied. First, the number of clusters N = {5, 10, 20} were 

used to evaluate the performance of the meta-analytic approach in situations where it is 

implemented in a small, moderate, or large number of units. The term “cluster” was used 

interchangeably with “trial” and “unit of analysis”, with the latter serving as the most 

general term. The between-cluster variability (D), was either larger (γ = 1) or smaller (γ 

= 0.1) than the within-cluster variability. Furthermore, for each combination of the 

number of clusters and the value of γ, six simulation settings were defined based on the 

values of other parameters and a complete description of the settings considered are given 

in Table 2. [Table 2 near here] For instance, while the individual-level surrogacy was 

kept constant at 𝑅௜௡ௗ
ଶ = 𝑐𝑜𝑟𝑟(𝜀ௌ௜௝, 𝜀்௜௝)ଶ = 0.5, the within-cluster (residual) variability 

was differentiated into two conditions, homoscedastic (σSS = σTT in Simulation 1) and 

heteroscedastic (σSS ≠ σTT in Simulations 2 – 6), as were given by: 

Σhomo = ቀ 300 212.132
212.132 300

ቁ 

Σhetero = ቀ 500 158.114
158.114 100

ቁ 

Balanced and unbalanced cluster sizes were considered. In the balanced scenario, 

all cluster sizes were equal, and three settings were evaluated: ni = 20 in Simulations 1 – 



13 
 

2, ni = 100 in Simulation 3 and ni = 500 in Simulation 4. The smaller cluster size is, on 

average, the number of observations one often encounters when units such as centres are 

used as cluster variable, while larger cluster sizes might be found when units like 

countries or trials are used (Alonso et al. 2017; Burzykowski et al. 2005). In the 

unbalanced scenario (Simulations 5 – 6) cluster sizes were determined based on a draw 

from a normal distribution with mean µ = ni = {20, 500} and rounded to the nearest 

integer. The standard deviation of the cluster size was determined as a fraction of the 

mean, i.e. σn = 0.25 ni. 

Simulations 1 and 2 were intended to explore the performance of the R and SAS 

implementations of hierarchical models in two practically relevant scenarios when 

evaluating surrogate endpoints. Indeed, when an alternative unit of analysis such as centre 

is used, small cluster sizes with homoscedastic or heteroscedastic variances are often 

encountered. Given that the lmer function, in its current implementation, does not allow 

modelling heteroscedastic and correlated error terms, Simulations 3 – 4 were considered 

to evaluate the impact of such misspecification on the results at moderate and large cluster 

sizes. Finally, the potential effect of unbalanced cluster sizes was explored in Simulations 

5 – 6 with a small and large average cluster size, respectively. 

A total of 500 data sets were generated for each scenario and the simulated data 

sets were then analysed based on the meta-analytic approach using the lmer and lme 

functions in R as well as the MIXED procedure in SAS. Similar parameter values were 

used in the simulation study by Van der Elst et al. (2015) and Flórez et al. (2019), though 

they had different objectives. During our simulation study, we compared results across 

several software procedures to evaluate the surrogate endpoint using the meta-analytic 

approach. In addition, two simplified model-fitting strategies, i.e. treating the trial-

specific parameters as fixed-effects in a two-stage approach and simplifying the random-
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effects structure by assuming that there is no heterogeneity in the random intercepts for 

the surrogate and true endpoints, were also explored in the study. The outcome of interest 

was the relative bias in the estimate of trial-level surrogacy, defined as the ratio between 

the difference of the mean 𝑅෠௧௥௜௔௟
ଶ  and the target 𝑅௧௥௜௔௟

ଶ  (which is 0.5) over the target 𝑅௧௥௜௔௟
ଶ . 

The proper convergence rate, i.e., when the model converged and the variance-covariance 

matrix of the random-effects (D) was positive-definite, was also evaluated. 

5. Simulation results 

5.1 Convergence rate 

Table 3 displays the rate of properly-converged data sets after being analysed by each 

function. [Table 3 near here] Proper convergence refers to the condition where the model 

converges and the variance-covariance matrix of the random-effects (D) is positive-

definite. Since it is important to guarantee that the value of 𝑅௧௥௜௔௟
ଶ  lies in the unit interval, 

the condition where the D matrix is positive-definite is of utmost interest. In Simulation 

1 where the variances of the residual terms were equal, the convergence rate obtained 

from lme1 and the MIXED procedure was less than 15% when the number of clusters was 

small (N = 5) and the between-cluster variability was smaller (γ = 0.1) than the within-

cluster variability. On the other hand, the lmer function seemed to produce a higher 

convergence rate (around 65%) in this strenuous setting. However, as we will see later, 

the 𝑅෠௧௥௜௔௟
ଶ  emanating from this function tended to overestimate the trial-level surrogacy 

due to convergence to an ill-conditioned maximum. Given that they are essentially fitting 

the same model, the rather different convergence rates found between lme2 and lmer in 

this and other settings is eye catching. The convergence rate was substantially improved 

when the number of clusters was increased and/or the between-cluster variability was 

larger (γ = 1) than the within-cluster variability. For lme1, lme2, and MIXED, we observed 
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improved convergence with larger between-cluster variability. However, this is slightly 

reversed with lmer. 

The results obtained in the heteroscedastic setting studied in Simulation 2, were 

similar to those of Simulation 1 for each function. Moreover, as can be seen in Simulation 

3 (ni = 100) and Simulation 4 (ni = 500), when the cluster size was increased, the 

convergence rate was also improved, prominently when the lme1 or proc MIXED 

procedure were used. In agreement with the study by Van der Elst et al. (2015), we found 

that the impact of imbalance in cluster size on the proper convergence rate was small. 

This can be observed by comparing the result from Simulation 2 and 6 when the mean 

cluster size was small (ni = 20) or Simulation 4 and 5 when the mean cluster size was 

larger (ni = 500). Finally, as expected for the simplified model-fitting strategies, the 

convergence rates were significantly improved in all simulation conditions.  

5.2 Trial-level surrogacy: Relative bias 

Table 4 summarizes the results obtained when proper convergence was achieved, i.e., the 

estimates were calculated based on the data sets where the corresponding function (lme, 

lmer, or proc MIXED) converged to a maximum with a positive-definite D matrix. [Table 

4 near here] Let us start by discussing the results obtained in the setting in which all 

functions fitted the correct model, i.e., Simulation 1. Interestingly, the R̂2
trial emanating 

from the lmer and lme2 functions exhibited a large positive relative bias for all values of 

N when γ = 0.1. This is a rather unexpected result given that both implementations 

describe the correct data generating mechanism. More in line with expectations, proc 

MIXED and lme1 exhibited much smaller relative bias that decreased with the number of 

clusters. Furthermore, when the between-cluster variability was larger than the within-

cluster variability (γ = 1) all functions delivered similar results. 
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In Simulations 2 – 4 lme2 and lmer are fitting misspecified models, whereas lme1 

and proc MIXED are correctly describing the data generating mechanism. When the 

within-cluster variability is larger than the between cluster variability the impact of the 

misspecification is substantial for small cluster sizes (Simulation 2) and noticeable for 

moderate sizes (Simulation 3). However, for large cluster sizes (Simulation 4) all 

implementations lead to comparable results, i.e., the impact of the misspecification 

becomes negligible. As it can be clearly seen in Simulations 5 – 6, a similar behaviour is 

observed for unbalanced cluster sizes, i.e., the misspecification has a large impact when 

the average cluster size is small (Simulation 6) and it becomes negligible when the 

average cluster size is large (Simulation 5). In general, the two-stage approach produced 

smaller relative bias in all simulations compared to the results from the other functions, 

except in the smallest number of cluster (N = 5) setting. Meanwhile, the simplified model 

generated the smallest relative bias amongst all the other functions, which is sensible 

considering the simulation data-generating mechanism was based on this simplified 

model. Finally, the Monte Carlo standard errors are also reported in Table 5. They do not 

vary between functions within the same simulation and setting condition. As predicted, 

the Monte Carlo standard errors decrease when the number of clusters are higher.   

6. Conclusions 

Nowadays there are several functions and procedures available to fit a variety of 

hierarchical models. Therefore, it is important to know the constraints and limitations of 

different implementations when tackling the evaluation of surrogate candidates. To our 

knowledge, until now there have not been studies comparing the performance of different 

software tools to assess the validity of surrogate endpoints within the meta-analytic 

framework. The present work aims to tackle this gap by comparing the performance of 

three very popular implementations of hierarchical models, when assessing the validity 
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of surrogate markers in the meta-analytic framework. Rather surprisingly, some 

substantial differences were actually found.  

The performance of lme with description of the within-group correlation and 

heteroscedasticity structure, indicated by the additional correlation and weights statement 

in the model (denoted as lme1), lme without description of the within-group correlation 

and heteroscedasticity structure (denoted as lme2), lmer, and proc MIXED with 

unstructured (UN) variance-covariance parameterization for both the random-effects and 

residual matrices was investigated in a case study in schizophrenia as well as the 

simulation study. 

From the analysis of the case study in schizophrenia, some important messages 

can be drawn. Without the necessity for an in-depth understanding, one may need to be 

aware of different limitations and constraints in some software procedures and their 

impact on the results. In the evaluation of a candidate surrogate endpoint, the estimation 

of the covariance parameters of the random effects and residuals (D and Σ matrices, 

respectively) is crucial. The proper estimation of these matrices requires the numerical 

optimization of the log-likelihood functions, subject to constraints imposed on the 

parameters to ensure the positive-definiteness of the D and Σ matrices (West et al. 2015). 

It can sometimes happen that the iterative estimation routines converge to a value that 

lies very close to or outside the boundary of the parameter space, leading to the violation 

of positive-definiteness. 

West et al. (2015) proposed some alternative approaches for fitting a model when 

problems in the estimation of the covariance occur. When convergence fails because of 

few and highly unbalanced trials, Van der Elst et al. (2015) used multiple imputation to 

reduce model convergence problems. A non-iterative unbiased estimator based on the so-

called split-sample methodology and pseudo-likelihood may also be considered as 
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another option to alleviate the computational difficulties in the surrogacy evaluation 

based on this meta-analytic approach (Flórez et al. 2019). 

It is important to note that at the time of this writing, the lmer function does not 

allow to fit models with heterogeneous and correlated residual variance structure. Among 

other possible reasons, this limitation might explain the large relative bias observed on 

the estimated trial-level surrogacy obtained with the function. However, the bias seems 

to get smaller when the cluster size is moderate or large and the between cluster variability 

is larger than the within-cluster variability. Interestingly, even when the residuals are 

homoscedastic and independent, the results obtained with lme are often less biased than 

those obtained with lmer.  

More generally, the simulation study seems to indicate that lme and proc MIXED 

produced lower relative bias for R2
trial compared to lmer. In general, one should interpret 

the parameter estimates with caution, especially when there are indications that the 

estimate of the D matrix may not be positive-definite. In such a situation, alternative 

approaches like the two-stage approach or the simplified model may be of value. These 

two strategies exhibited rather good results concerning bias and they offer a greater 

computational stability. Finally, we want to point out that caution is needed when the 

results of a simulation study are extrapolated beyond the settings used to generate the 

data. For instance, in our simulations the random intercepts and treatment effects are 

independent and the error terms are normally distributed. Further studies will be needed 

to explore if similar results are also obtained when the random intercepts and treatment 

effects are correlated or when the surrogate and/or true endpoint are not normal. 
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Table 1. R2 trial and condition number for Schizophrenia data: Results across software 

procedures. 

Procedure  PANSS and BPRS 

R2 trial ME CN 

SAS: two-stage approach 0.919 NA NA 

SAS: proc MIXED (UN) -1.564 -0.289 962.451 

SAS: proc MIXED (FA0) 0.685 1.107e-05 8.859e+06 

R: lme 0.938 1.518e-05 39503.3 

R: lmer 1 1.453e-08 9.806e+09 

UN = unstructured; FA0 = factor-analytic; ME = minimum eigenvalue; CN = condition 

number; NA = not available 
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Table 2. Simulation parameter. 

Parameter Simulation 

1 2 3 4 5 6 

Cluster size (ni) 20 20 100 500 500 20 

Balance status Balanced  Unbalanced  

σSS 300 100 100 100 100 100 

σTT 300 500 500 500 500 500 

σST 212.132 158.114 

µS, µT, α, β 450, 500, 300, 500 

d11 = d22 = d33 = d44 1000 

d12 = d21 400 

d34 = d43 707.107 

d13 = d31 = d14 = d41 = d23 = 

d32 = d24 = d42 

0 

R2 trial target 0.5 

R2 individual target 0.5 
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Table 3. Proper convergence rate. 

  Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 

  γ γ γ γ γ γ 

Function  Number of clusters 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 

lme1 5 0.108 0.606 0.076 0.540 0.378 0.758 0.888 0.952 0.852 0.956 0.080 0.500 

 10 0.804 0.998 0.704 0.986 0.984 0.998 1 1 1 0.998 0.654 0.996 

 20 1 1 0.986 0.950 1 0.672 1 0.818 1 0.802 0.980 0.944 

lme2 5 0.042 0.476 0.050 0.480 0.320 0.746 0.630 0.806 0.610 0.806 0.038 0.468 

 10 0.484 0.966 0.520 0.968 0.916 0.926 0.856 0.854 0.846 0.862 0.494 0.976 

 20 0.846 0.944 0.858 0.950 0.904 0.882 0.840 0.872 0.844 0.830 0.846 0.960 

lmer 5 0.654 0.738 0.634 0.748 0.754 0.708 0.714 0.634 0.648 0.656 0.602 0.694 

 10 0.846 0.824 0.850 0.830 0.924 0.816 0.878 0.812 0.900 0.842 0.868 0.848 

 20 0.946 0.858 0.924 0.866 0.936 0.848 0.910 0.804 0.926 0.864 0.952 0.882 

proc MIXED 5 0.110 0.614 0.094 0.564 0.418 0.806 0.724 0.914 0.716 0.906 0.086 0.548 

 10 0.820 0.998 0.744 1 0.994 1 1 1 1 1 0.704 1 

 20 1 1 0.996 1 1 1 1 1 1 1 0.988 1 

Two-stage 

approach 

5 1 1 0.998 0.998 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 

Simplified 

model 

5 0.736 0.912 0.720 0.900 0.938 0.988 0.996 1 0.994 0.998 0.722 0.930 

10 0.972 0.986 0.930 0.992 1 1 1 1 1 1 0.942 0.998 

20 0.998 1 0.998 1 1 1 1 1 1 1 0.992 1 

Note: γ = between-cluster variability; lme1 = lme with correlation and weights statement; lme2 = lme without correlation and weights statement;  

Simulation 1: σSS = σTT, balanced ni = 20; Simulation 2: σSS ≠ σTT, balanced ni = 20; Simulation 3: σSS ≠ σTT, balanced ni = 100; Simulation 4: σSS ≠ σTT, balanced ni = 500; 

Simulation 5: σSS ≠ σTT, unbalanced ni (µ = 500); Simulation 6: σSS ≠ σTT, unbalanced ni (µ = 20) 
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Table 4. Mean relative bias of R2 trial obtained from each function when proper convergence occurred, i.e. when D was positive-definite. 

  Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 

  γ γ γ γ γ γ 

Function  Number of clusters 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 

lme1 5 0.183 0.385 0.194 0.351 0.340 0.390 0.384 0.412 0.394 0.404 0.285 0.344 

 10 0.160 0.131 0.125 0.126 0.127 0.118 0.122 0.116 0.119 0.116 0.145 0.119 

 20 0.076 0.049 0.078 0.031 0.067 0.022 0.051 0.045 0.050 0.025 0.062 0.020 

lme2 5 0.030 0.360 0.155 0.353 0.321 0.396 0.395 0.407 0.369 0.409 0.146 0.360 

 10 0.284 0.163 0.249 0.156 0.164 0.123 0.132 0.110 0.136 0.119 0.328 0.157 

 20 0.372 0.082 0.313 0.073 0.114 0.058 0.060 0.037 0.066 0.037 0.301 0.073 

lmer 5 0.687 0.437 0.649 0.435 0.479 0.378 0.387 0.374 0.396 0.343 0.705 0.432 

 10 0.462 0.146 0.410 0.146 0.175 0.093 0.106 0.092 0.113 0.094 0.453 0.128 

 20 0.419 0.068 0.348 0.071 0.099 0.046 0.051 0.040 0.055 0.041 0.353 0.066 

proc MIXED 5 0.210 0.388 0.237 0.370 0.378 0.406 0.374 0.410 0.375 0.404 0.339 0.376 

 10 0.166 0.131 0.142 0.132 0.135 0.118 0.122 0.116 0.119 0.117 0.182 0.119 

 20 0.076 0.049 0.085 0.051 0.067 0.047 0.051 0.050 0.050 0.048 0.066 0.040 

Two-stage 

approach 

5 0.387 0.404 0.352 0.403 0.410 0.406 0.405 0.411 0.390 0.395 0.390 0.393 

10 0.108 0.123 0.069 0.116 0.103 0.115 0.115 0.116 0.094 0.093 0.065 0.081 

20 0.048 0.047 -0.006 0.040 0.047 0.045 0.047 0.049 0.013 0.012 -0.047 -0.005 

Simplified 

model  

5 0.091 0.123 0.118 0.116 0.134 0.113 0.111 0.111 0.108 0.111 0.060 0.106 

10 0.050 0.048 0.031 0.051 -0.001 -0.002 -0.009 -0.010 -0.015 -0.008 0.030 0.002 

20 0.041 0.035 0.053 0.035 0.009 -0.005 -0.009 -0.010 -0.011 -0.015 -0.027 -0.007 

Note: γ = between-cluster variability; lme1 = lme with correlation and weights statement; lme2 = lme without correlation and weights statement;  

Simulation 1: σSS = σTT, balanced ni = 20; Simulation 2: σSS ≠ σTT, balanced ni = 20; Simulation 3: σSS ≠ σTT, balanced ni = 100; Simulation 4: σSS ≠ σTT, balanced ni = 500; 

Simulation 5: σSS ≠ σTT, unbalanced ni (µ = 500); Simulation 6: σSS ≠ σTT, unbalanced ni (µ = 20) 
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Table 5. Monte Carlo standard errors of R2 trial obtained from each function when proper convergence occurred, i.e. when D was positive-

definite. 

  Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6 

  γ γ γ γ γ γ 

Function  Number of clusters 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 

lme1 5 0.293 0.247 0.258 0.243 0.235 0.242 0.243 0.249 0.246 0.250 0.258 0.252 

 10 0.240 0.220 0.238 0.220 0.230 0.218 0.224 0.217 0.222 0.217 0.232 0.220 

 20 0.180 0.161 0.189 0.158 0.165 0.165 0.161 0.161 0.160 0.165 0.197 0.162 

lme2 5 0.296 0.250 0.287 0.245 0.243 0.245 0.242 0.247 0.249 0.250 0.312 0.253 

 10 0.236 0.224 0.245 0.223 0.234 0.218 0.224 0.220 0.219 0.219 0.240 0.219 

 20 0.167 0.164 0.180 0.163 0.165 0.159 0.158 0.160 0.162 0.162 0.191 0.164 

lmer 5 0.237 0.254 0.250 0.257 0.241 0.252 0.244 0.246 0.247 0.240 0.222 0.258 

 10 0.240 0.223 0.247 0.225 0.232 0.217 0.222 0.223 0.221 0.217 0.258 0.224 

 20 0.180 0.161 0.194 0.164 0.160 0.161 0.159 0.161 0.157 0.162 0.203 0.164 

proc MIXED 5 0.295 0.247 0.278 0.243 0.234 0.245 0.238 0.247 0.244 0.249 0.241 0.253 

 10 0.241 0.220 0.241 0.221 0.232 0.218 0.224 0.217 0.222 0.217 0.240 0.220 

 20 0.180 0.161 0.192 0.162 0.165 0.161 0.161 0.160 0.160 0.160 0.198 0.165 

Two-stage 

approach 

5 0.261 0.252 0.266 0.253 0.245 0.251 0.247 0.250 0.250 0.256 0.253 0.260 

10 0.219 0.218 0.220 0.219 0.226 0.217 0.223 0.217 0.222 0.219 0.223 0.219 

20 0.155 0.159 0.162 0.159 0.159 0.161 0.160 0.160 0.162 0.164 0.167 0.164 

Simplified 

model  

5 0.319 0.307 0.318 0.304 0.298 0.304 0.303 0.302 0.302 0.302 0.315 0.306 

10 0.277 0.254 0.280 0.257 0.249 0.240 0.240 0.237 0.237 0.238 0.266 0.247 

20 0.200 0.179 0.214 0.179 0.175 0.169 0.168 0.167 0.168 0.167 0.216 0.181 

Note: γ = between-cluster variability; lme1 = lme with correlation and weights statement; lme2 = lme without correlation and weights statement;  

Simulation 1: σSS = σTT, balanced ni = 20; Simulation 2: σSS ≠ σTT, balanced ni = 20; Simulation 3: σSS ≠ σTT, balanced ni = 100; Simulation 4: σSS ≠ σTT, balanced ni = 500; 

Simulation 5: σSS ≠ σTT, unbalanced ni (µ = 500); Simulation 6: σSS ≠ σTT, unbalanced ni (µ = 20) 

 


