
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Novel Non-cryptographic Hash Functions for Networking and Security

Applications on FPGA

Peer-reviewed author version

Claesen, Thomas; SATEESAN, Arish; VLIEGEN, Jo & MENTENS, Nele (2021)

Novel Non-cryptographic Hash Functions for Networking and Security Applications

on FPGA. In: 2021 24TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM

DESIGN (DSD 2021), IEEE COMPUTER SOC, p. 347 -354.

DOI: 10.1109/DSD53832.2021.00059

Handle: http://hdl.handle.net/1942/36536

Novel Non-cryptographic Hash Functions for
Networking and Security Applications on FPGA

Thomas Claesen
KU Leuven & UHasselt

Belgium
thomasclaesen@live.be

Arish Sateesan
imec-COSIC/ES&S

ESAT, KU Leuven, Belgium
arish.sateesan@kuleuven.be

Jo Vliegen
imec-COSIC/ES&S, ESAT

KU Leuven, Belgium
jo.vliegen@kuleuven.be

Nele Mentens
imec-COSIC/ES&S, ESAT

KU Leuven, Belgium
LIACS, Leiden University

The Netherlands
nele.mentens@kuleuven.be

Abstract—This paper proposes the design and FPGA imple-
mentation of five novel non-cryptographic hash functions, that
are suitable to be used in networking and security applica-
tions that require fast lookup and/or counting architectures.
Our approach is inspired by the design of the existing non-
cryptographic hash function Xoodoo-NC, which is constructed
through the concatenation of several Xoodoo permutations. We
similarly construct non-cryptographic hash functions based on
the concatenation of several rounds of symmetric-key ciphers.
The goal is to achieve high performance in combination with
good avalanche properties, which are required in order to have
a significant change in the output value as a result of a limited
change in the input value. We simulate how many rounds are
needed to achieve satisfactory avalanche scores and we implement
the corresponding non-cryptographic hash functions on an FPGA
to evaluate the occupied resources and the performance. One of
the proposed non-cryptographic hash functions, namely GIFT-
NC, outperforms all previously proposed non-cryptographic hash
functions in terms of throughput and latency, in exchange for an
acceptable increase in FPGA resources.

Index Terms—non-cryptographic hash functions, NIST
lightweight standardization competition, FPGA, avalanche met-
rics

I. INTRODUCTION

Hashing is the practice of taking a message of arbitrary
length and converting it into a digest of fixed length. A hash
function is a one-way function, which means recovering the
original message from the digest is not feasible in practice.
Hash functions make an important building block in security
applications and are part of data structures like dictionaries
and associative arrays, that are employed in many networking
applications. In network applications, a network flow is repre-
sented by a flow identifier which is extracted from the packet
header and consists of source and destination addresses and
ports. These flow identifiers are required to be stored in or
queried from a data structure. Hash-based lookup architectures
provide fast lookup and low memory overhead. Probabilistic
data structures in network security applications, such as Bloom
filters [1] for fast lookups and sketches [2] for fast counting,
also use hash functions as important components. Even though
cryptographic hash functions offer high levels of security, not
all of their security properties, such as preimage resistance,
second preimage resistance and collision resistance [3], are
necessary in probabilistic data structures employed in network
security applications. The throughput of these data structures

also depends on the performance of the hash computations,
which makes the speed of the hash functions a crucial factor.
If cryptographic hash functions would be used in these data
structures, processing at line rate in high-speed networks
would be impossible. Therefore, this paper concentrates on
the design of novel non-cryptographic hash functions.

Non-cryptographic hashes for applications such as Bloom
filters, hash tables, and sketches must be fast, uniformly
distributed and must have excellent avalanche properties [4],
[5]. The latter indicates how well a hash function succeeds
in minimizing the correlation between the input text and
the generated digest. Security properties such as pre-image
resistance are of minor importance. Universal classes of hash
functions [6] are most commonly employed in most of the
network applications, but at the cost of increased latency. One
way to reduce the latency in network applications is to employ
a single hash function having a large enough output size and
then split the output to generate multiple hash values. Sateesan
et al. [7] have shown that this technique can significantly
improve the speed to match Terabit networks without any
adverse effects on false positive rates. Yet, choosing a suitable
non-cryptographic hash function which can serve the purpose
is a cumbersome task. The FNV and Murmur series hash
functions [8], [9] show excellent avalanche properties, but
exhibit high latency with larger inputs. Also, the hardware
suitability of FNV and Murmur hashes, like many other non-
cryptographic hashes, is limited, because they target efficient
execution in software [7]. The latency of these hashes is
dependant on the size of the input key. Some of the recent
work has proven that non-cryptographic hashes constitute a
significant proportion of the overall resource requirements of
data structures [10].

In this work, we target high-speed implementations of non-
cryptographic hash functions on FPGA, in order to serve
lookup and counting applications that rely on the reconfig-
urability, the parallelism, the ability to work as a standalone
unit, and the low time to market offered by FPGAs. The trend
of moving security and networking applications to FPGAs in
order to achieve a higher throughput is motivated in [11]. We
propose to use a concatenation of the rounds in symmetric-key
ciphers as hashes. We reduce the number of rounds in order
to optimize the performance in hardware, while preserving the
avalanche properties. Inspired by Xoodoo-NC [7], we consider

96-bit hash functions because network (security) applications
typically process source and destination addresses and ports
that constitute a total of 96 bits of the header of incoming
network packets. We evaluate the resource utilization and
performance of the resulting non-cryptographic hash functions
to finally conclude that we outperform all previously proposed
work in terms of speed.

II. BACKGROUND AND RELATED WORK

Non-cryptographic hashes are fast and resource-efficient
compared to cryptographic hashes. However, popular non-
cryptographic hash functions such as FNV-1a [8] and Mur-
mur3 [9] are optimized for implementation in software and do
not perform well in hardware. FNV-1a and Murmur3 employ
multiplication as the core operation, which is a complex
operation in hardware. Moreover, FNV-1a processes 8 bits per
cycle and Murmur processes 32 bits per cycle, which also
causes the execution delay to be dependent on the message
size. Some of the non-cryptographic hash implementations
on FPGA presented by Grochol and Sekanina [12] prove to
be faster than FNV-1a and Murmur3 in terms of operating
frequency, but the overall execution delay is not fast enough
for high-speed applications such as Terabit Ethernet network
applications.

Cryptographic hash functions have been proposed based
on lightweight symmetric-key algorithms, which provide both
area-efficiency and security, but are typically slower than non-
cryptographic hash functions because they need a relatively
large number of rounds to satisfy all security requirements. A
number of papers target FPGAs as the platform for running
the lightweight cryptographic algorithms [13]–[15], [15], [16].
Even though most of the implementations are resource and
energy efficient, high latency is still a drawback. The imple-
mentation of the Photon lightweight hash function presented
in [13], [15], [15], [16] shows a minimum cycle count
of 12 and a maximum cycle count of 1680. Similarly for
Spongent hash [14]–[16], the minimum cycle count is 45 and
the maximum cycle count is 1980. Most lightweight hash
functions have in common that the latency is large. This is not
acceptable in high-speed network security applications where
processing at line-rate is a matter of utmost concern. Reduced-
round versions of these functions result in deteriorated security
properties while maintaining the avalanche properties. For
non-cryptographic hash functions, this is sufficient. Xoodoo-
NC [7] is the result of such an effort. It uses the cryptographic
permutation Xoodoo [17] and is proven to be very efficient.
In this work, we evaluate a number of non-cryptographic
hash functions that are based on reduced-round symmetric-key
algorithms with respect to avalanche properties, performance
and FPGA resource utilization.

III. LIGHTWEIGHT CIPHERS

We arbitrarily choose five symmetric-key ciphers for our
analysis: Pyjamask [18], GIFT [19], SKINNY [20], AES [21]
and SPECK [22]. These ciphers are briefly described in this
section. It is pointed out that any special modifications to the

first or last round in these algorithms are not discussed here
nor are they implemented. Only the regular round function of
the ciphers is considered. For a more in-depth and complete
description, we forward the interested reader to the specifica-
tions. Some of the ciphers have a 96-bit block size, which
matches our goal to design 96-bit non-cryptographic hash
functions. Some ciphers have a 128-bit block size. For those,
the avalanche properties shown in Sect. IV are calculated for
the entire 128-bit output, but the hardware implementation
results are generated for only 96 bits, while fixing 32 bits
to 0.

A. SPECK

The SPECK block cipher family holds 10 different varia-
tions of the SPECK algorithm, having block sizes of 32, 48,
64, 96, and 128 with varying key sizes ranging from 64 to
256. This paper focuses only on the cipher with a block size
and key size of 96 bits. SPECK is an add-rotate-xor cipher,
which means it only uses these three operations to calculate
the ciphertext. SPECK with a block size and key size of 96-
bits consists of 28 rounds. During the rounds, the key and the
plaintext are split into two parts of 48 bits. The most significant
bits of the plaintext (PT) and the key (K) are stored in PT1

and K1 respectively, while the least significant bits are stored
in PT2 and K2.
Round function: In SPECK, each round performs three
operations: Rotation, Addition, and XOR. First, PT1 is rotated
8 bits to the right, this is followed by an addition with PT2.
Then, PT1 is XORed with K2. For PT2, the operations start
after the addition with PT1, with rotating 3 bits to the left
followed by an XOR with PT1. Fig. 1 shows how this is done
for a single round. After each round, the output is connected
to the input of the next round.
Key schedule: The key changes every round for SPECK, this
round function works similarly to the encryption round for the
plaintext. The only difference is the XOR, where the second
operand is the round number, starting from 0 (the first round)
and incrementing by 1 in every round.

B. Pyjamask

The Pyjamask block cipher family [18] contains two al-
gorithms which support both 96-bit and 128-bit block sizes.
Both algorithms use a 128-bit key, perform 14 rounds and
rely on a Substitution-Permutation Network (SPN) structure
to transform the plaintext into the ciphertext. The plaintext is
structured in a bit-by-bit left-right, top-down structure, where
each row consists of 32 bits. Each row Ri starts from 32×i and
increments by 1, where i ∈ 0, 1, 2, 3. Depending on the block
size of the chosen algorithm, 3 or 4 rows are used. The cell
which holds the lowest index represents the most significant bit
of the plaintext and the cell with the highest index represents
the least significant bit. The key is represented in the same
way as the plaintext. Only this time, there are 4 rows used
of which each contain 32 bits. Once the plaintext enters the
algorithm, it will be referred to as the internal state.

Fig. 1. Functional representation of a single round of the 5 chosen block ciphers: SPECK, Pyjamask, GIFT, AES, and SKINNY.

Round function: Each round is composed of three operations,
which happen in sequential order: AddRoundKey, SubBytes
and MixRows. AddRoundKey first XORs n bits of the key
with the internal state. n is 128 for both Pyjamask-128 and
Pyjamask-96, however, in case of the latter only the 96 most
significant bits are addressed. The result of the XOR is passed
through an SBOX. Finally, the internal state is multiplied with
a constant matrix.
Key schedule: Throughout the algorithm, different keys are
used in each AddRoundKey. These keys are called subkeys,
and all originate from the original secret key. To receive
these subkeys, three operations are executed in each round on
the current round key: MixColumns, MixRows and Constant
Addition. Because Pyjamask-96 and Pyjamask-128 both use
128-bit keys, the same operations are used to create the
subkeys.

C. GIFT

The GIFT block cipher [19] family contains two algorithms:
GIFT-64 and GIFT-128. Both use a key size of 128 bits, while
the former uses a block size of 64 bits and the latter of 128
bits. In this paper, GIFT-128 is used. Like Pyjamask, GIFT is
an SPN cipher containing 40 rounds.
Round function: Each round of GIFT is based on three opera-
tions, namely SubCells, PermBits, and AddRoundKey. Similar
to SubBytes in Pyjamask, each 4-bit column is compared to
an Sbox and replaced by the appropriate value. The PermBits
operation shuffles all the bits in the internal state according to
a specific permutation. Finally, the AddRoundKey operation
adds the roundkey to the internal state through an XOR.
Key Schedule: GIFT follows a simple key schedule operation
to minimize the area in hardware. The key is split in to blocks
Ki of 32 bits each as in the AddRoundKey operation, where
i ∈ {0, 1, 2, 3}. K0, K1 and K2 are then shifted towards the
least significant bits of the key state, while K3 now holds
the most significant bit. K3 is then split again into two 16-bit
blocks, K3,1 and K3,2. These two blocks are then right-rotated
over 2 and 12 positions, respectively.

D. AES

AES is probably the most popular and well-known cipher.
It has a block size of 128 bits and the key size can be either

128, 192 or 256 bits. Depending on the key size, the number
of rounds is 10, 12 and 14, respectively. This paper focuses
on the algorithm having a key size of 128 bits. Similar to
GIFT, the input plaintext is structured in a top-down,left-right
manner. The key is also structured in a similar fashion.
Round function: Each round consists of 4 operations:
SubBytes, ShiftRows, MixColumns and AddRoundKey. Ad-
dRoundKey performs a simple bitwise XOR of the key with
the internal State. Each round uses a different round key. These
round keys are calculated in the key schedule. In the next step,
each byte in the internal state is replaced through an SBOX
lookup. After the SBOX, the rows of the state are shifted
cyclically in a specific manner. Finally, in the MixColumns
step, a matrix multiplication is done. The state is updated with
the resulting product.
Key schedule: The key schedule generates a new round key,
starting from the initial key. Every key is split in four equally
sized parts. One of these parts is rotated and subsequently
passes another SBOX. The result of the SBOX is then XORed
with a round constant and another part of the incoming key.
The final two parts are finally XORed in turn with the previous
result.

E. SKINNY

The SKINNY block cipher family holds six algorithms,
namely SKINNY-64-64, SKINNY-64-128, SKINNY-64-196,
SKINNY-128-128, SKINNY-128-256, and SKINNY-128-384.
The first numerical value in the name is the block size used
in the algorithm, and the second value is the key size. In
this paper, we focus only on SKINNY-128-128. The plaintext
and key are initialized similar to AES, but in a left-right top-
down manner. The number of rounds of the SKINNY cipher
varies with the algorithm used. For SKINNY-128-128, the
number of rounds required are 40. Each round consists of 5
different operations: SubBytes, AddConstants, AddRoundKey,
ShiftRows and MixColumns.
Round function: The SubBytes operation follows the exact
operation of SubBytes in AES, the only difference being the
values in the SBOX.In the AddConstants operation, the round
constants are XORed to the first column of the internal State.
The round constant is a 6-bit number and is generated using
an LFSR, which changes every round. The key state is added

to the internal state in the AddRoundKey operation. Unlike the
AddRoundKey function in AES, only the 8 most significant
bytes of the key are XORed to the 8 most significant bytes of
the internal state. The ShiftRows function works the same way
as the ShiftRows function in AES, the only difference is that
the rows are shifted in the opposite direction. The MixColumns
function is the final round operation. Similar to MixColumns
in Pyjamask and AES, each column of the internal state is
multiplied by a constant Matrix M.
Key schedule: Just like other ciphers, the key is updated
in every round into different subkeys. In SKINNY, the key
updates are similar to the key schedule in GIFT.

IV. ANALYSIS OF NON-CRYPTOGRAPHIC HASH FUNCTIONS

The ciphers mentioned in the previous section have proven
to be secure, but not fast enough for applications such as
Bloom filters and sketching architectures. Our goal is to
use these ciphers as hash functions by reducing the number
of rounds and to analyze the avalanche properties [23] to
make sure that they are still satisfactory. The use of keys
does not cause any difference in avalanche properties, but
allows us to easily change the hash function by changing
the key value. The avalanche performance can be assessed
by analyzing to which extent the output value changes for a
slight change in the input of the hash function. If the hash
function does not show a good avalanche performance, the
randomization is poor for the hash function, which leaves the
function vulnerable to attackers. The avalanche properties are
determined here using three avalanche metrics put forward by
Daemen et al. [24]: Avalanche dependence, Avalanche weight
and Avalanche entropy, which are defined below.
Avalanche dependence: For a single-bit change in the input,
the number of bits in the output that may flip defines the
avalanche dependence. The avalanche dependence is defined
as:

Dav = n−
∑
i

g(p[i]) (1)

Here n is the number of bits in the output, and p is the
probability vector and p[i] represents the probability that the
bit i of the output flips for a single bit change in the input.
g(p) = 1 if p = 0 and g(p) = 0 otherwise.

The Avalanche dependence is satisfied when Dav = n for
all outputs as a result of a single bit change at the input.
Avalanche weight: The avalanche weight generalizes the
avalanche criterion and is defined as the expected Hamming
weight of the output difference for a single bit change in the
input. It is defined as:

wav =
∑
i

p[i] (2)

The condition is satisfied when the avalanche weight is
equal to 50% of the number of output bits i.e., wav ≈ n

2 ,
for all inputs with a single bit change (Hamming weight = 1).
Avalanche entropy: The avalanche entropy visualizes the
uncertainty of whether the bits in output flip or not for a single
bit change in the input. It is defined as:

Hav =
∑
i

(−p[i].log2(p[i])− (1− p[i]).log2(1− p[i])) (3)

The Hav generalizes the strict avalanche criterion. The
avalanche entropy is said to be satisfactory if it fulfills the
condition Hav ≈ n for all inputs with a single bit change.

In our analysis, to make sure that the avalanche metrics are
satisfactory in any given condition, the worst case values are
considered. To have high precision for the avalanche metrics,
we set the number of iterations M as large as 250’000, and
1√
M

is the expected standard deviation of each element in
the probability vector p [24]. In each iteration, all n bits are
flipped one by one and the avalanche metrics are calculated.
This ensures that the avalanche metrics obtained are stable and
precise.

The plot of the avalanche metrics of each cipher as a
function of the number of rounds is shown in Fig. 2. We add
NC (Non-Cryptographic) to the name of the cipher to indicate
that we are considering the reduced-round version in order to
construct the non-cryptographic hash function. While SPECK
has 28 rounds, SPECK-NC only requires 7 rounds to achieve
satisfactory avalanche properties. Pyjamask normally requires
14 rounds, but the avalanche metrics plot shows that only 2 or
3 rounds are required for Pyjamask-NC to meet the avalanche
properties. GIFT-NC requires only 6 to 7 rounds to achieve
the avalanche property requirements as shown in the figure,
in contrast to the actual 40 rounds in GIFT. The number of
rounds to have sufficient avalanche properties for AES-128
can also be reduced from 10 rounds to 3 rounds in AES-
NC. Similar to GIFT, SKINNY-128-128 also uses 40 rounds,
but requires only 6 rounds to meet the avalanche criteria in
SKINNY-NC. This analysis shows that we can use reduced-
round versions of cryptographic ciphers as non-cryptographic
hash functions. The number of rounds can be reduced 70-
85% while maintaining excellent avalanche properties. With
a reduced number of rounds, the latency can be improved
keeping the hardware resource requirement to a minimum. A
summary of the avalanche metrics analysis as a function of
the number of rounds is shown in Table I.

TABLE I
The number of rounds needed for meeting the avalanche criteria

Cipher Dav wav Hav r rav
SPECK-NC 96 47.45 95.68 28 7
Pyjamask-NC 96 47.73 95.96 14 3
GIFT-NC 128 63.39 127.95 40 7
AES-NC 128 63.0 127.43 10 3
SKINNY-NC 128 63.72 127.95 40 7
r: Number of rounds in the original cipher
rav : Number of rounds to meet avalanche criteria

V. HARDWARE EVALUATION

A. Experimental setup
The non-cryptographic hash functions are implemented on

an FPGA to evaluate the resource requirements and operating

Fig. 2. The avalanche metrics for SPECK-NC, Pyjamask-NC, GIFT-NC, AES-NC, and SKINNY-NC, respectively. The areas show the obtained metric
while the horizontal lines indicate the target. The legend indicates which colors are the Avalanche Dependence (Dav), the Avalanche Weight (wav), and the
Avalanche Entropy (Hav).

speed. The hash functions are evaluated on both Zynq and
Virtex Ultrascale+ FPGAs. All the values presented in the
paper are the implementation results on Virtex Ultrascale+
XCVU7P-FLVB2104-2-i device. The general block diagram
of the hardware implementation of the reduced-round ciphers
as hash functions is shown in Fig. 3. This figure shows that
the implementations are unrolled with only a register before
and after the rounds. Therefore, the cycle count is fixed to a
single clock cycle.

Fig. 3. General hardware setup of hash implementation

B. Evaluation

Latency and Throughput: The number of rounds r for
each cipher has been chosen corresponding to the number of
rounds required to meet the sufficient avalanche properties (see
Table I). The plaintext is the input to the hash function and
the resulting ciphertext is the output of the hash. Adding a
key is not really necessary and the addition of key does not
affect the avalanche properties. In textbook hash functions,
the digest should always be the same, given the same input.
In some applications, however, it is useful to have multiple,
independent hash values for the same input, like in Bloom
filters. Adding a key to the block cipher allows to generate

multiple independent hash values using the same hash function
but with different keys.

To analyze the timing, the worst negative slack is plotted
against varying clock periods and is shown in figures Figs. 4
to 8. For each cipher, the timing results with and without
adding the key are plotted. In general, it can be seen from
the figures that the implementation with key is slightly slower
compared to the implementation without key. This is because
of the fact that all the calculations involving the key are
completely eliminated in the implementation without key. It
is also evident from the plots that for larger FPGAs, the
latency is lower. The maximum possible frequency for each
implementation on hardware is given in Table II. Comparing
to each other, GIFT-NC exhibits the best operating frequency
and proves to be faster than the other ciphers. With and without
using the key, the variations in latency of GIFT-NC, Pyjamask-
NC, and SKINNY-NC are negligible. However, adding the
key in SPECK-NC and AES-NC adds around 17% latency,
as computational steps and hence the delay involving the key
calculations are added.

The throughput of the hash function is a function of the
latency and input block size. The throughput here is calculated
using the equation Block size

latency in cycles×fmax, where fmax is the
maximum operating frequency. The throughput is of the order
of ten thousands as the latency is only a single clock cycle
thanks to the unrolling.

Resource requirements: The resource utilization of the
implementations for the best achievable latency is shown in
Table III. GIFT-NC proves to be the most resource-efficient of
all the compared ciphers when the key is included. SPECK-NC

Fig. 4. Timing analysis of SPECK-NC Fig. 5. Timing analysis of Pyjamask-NC

Fig. 6. Timing analysis of GIFT-NC Fig. 7. Timing analysis of AES-NC

Fig. 8. Timing analysis of SKINNY-NC

uses the lowest resources when the key is not added. AES-NC
and SKINNY-NC are the most expensive in terms of resources,
while showing moderate operating frequency. SPECK-NC,
even though showing efficiency in resource utilization without
the key, requires ≈3× more resources when the key is added.
GIFT shows the least variation in resources whether the key
is added or not.
Comparison with related work: In this work, we focus
on reduced-round, reduced-logic implementations of non-

TABLE II
Maximum operating frequency of hash implementations

Hash Max. Frequency Max. Frequency
Function (without key) (with key)

SPECK-NC 171.6 MHz 144.8 MHz
Pyjamask-NC 279.4 MHz 271.6 MHz

GIFT-NC 369.7 MHz 365.8 MHz
AES-NC 255.9 MHz 214.8 MHz

SKINNY-NC 202.4 MHz 202.5 MHz

TABLE III
Resource utilization

Hash function LUTs Flip Flops LUTs Flip Flops
(without key) (without key) (with key) (with key)

SPECK-NC 432 192 1273 384
Pyjamask-NC 811 448 1615 448

GIFT-NC 546 512 665 512
AES-NC 2225 512 3402 512

SKINNY-NC 2176 512 2348 512

cryptographic hash functions based on existing ciphers. Hence,
a straightforward comparison with the existing full-fledged
implementations of the same ciphers on FPGA is not fair. For
example, the throughput of the FPGA implementation of AES-
128 and SPECK-96 given by Diehl et al. [25] are 119 Mbps
and 1622 Mbps, respectively, which is 206× and 10× lower
than our reduced-round implementations. Similarly, the high-

throughput implementation of SKINNY-128 on FPGA [20] has
a throughput/LUT of 3.06 Mbps, which is 3 times lower than
our reduced-round implementation. To have a fair comparison,
we have also implemented FNV-1a and Murmur3 hash on
FPGA and compared with the reduced-round ciphers. The
comparison of some of the fast non-cryptographic hashes with
our implementations is shown in Table IV.

TABLE IV
Comparison of maximum frequencies, throughput (Tp), throughput per LUT

(Tp/LUT), and delay with related work

Design Block Size Maximum Tp Tp / LUT Latency
(In/Out) Frequency (Mbps) (Mbps/LUT) (ns)

Murmur3 96/64 120.6 MHz 2573 4.54 24.87
FNV-1a 96/128 122.9 MHz 925 1.63 130.08
SipHash [12] 96/16 182.8 MHz 1463 1.38 21.88
XORHash [12] 96/16 627.3 MHz 2868 9.86 11.13
NSGAHash7 [12] 96/16 184.1 MHz 1473 18.41 21.72
Xoodoo-NC [7] 96/96 363.6 MHz 34’906 112.96 2.75
SPECK-NC (ours) 96/96 171.6 MHz 16’473 38.13 5.82
Pyjamask-NC (ours) 96/96 279.4 MHz 26,822 32.70 3.58
GIFT-NC (ours) 96/128 369.7 MHz 35’491 65.00 2.70
AES-NC (ours) 96/128 255.9 MHz 24’566 11.04 3.91
SKINNY-NC (ours) 96/128 202.4 MHz 19’440 8.93 4.93

As shown in the table, the throughput of the previously
proposed non-cryptographic hash functions is significantly
lower compared to our implementations. Only the through-
put of Xoodoo-NC is somewhat comparable. XORHash [12]
shows the highest operating frequency of all related work,
but the throughput compared to SPECK-NC is still 5.74×
lower, where SPECK-NC has the lowest throughput among our
implementations. GIFT-NC shows the best throughput, which
is 12.4× higher than that of XORHash and slightly higher
than Xoodoo-NC. Besides the throughput per LUT, which was
already given in Table IV, we calculate another metric that
takes into account both the latency and the FPGA resources.
It is calculated as 1/(latency ∗ LUTs) and shown in Fig. 9
together with the throughput/LUT . The higher these two
parameters, the better the performance of the hash function.

Fig. 9. Throughput and latency with respect to resource utilization

Xoodoo-NC [7] exhibits the best throughput per LUT, which
is 1.7× higher than GIFT-NC, so for applications where area
plays an important role, Xoodoo-NC should be preferred over
GIFT-NC. Another observation when evaluating throughput

per area is that Murmur3, FNV-1a, and NSGAHash employ
29, 38, and 3 DSP blocks, respectively, in their implemen-
tations, whereas our reduced-round ciphers do not use any
DSP slices. GIFT-NC also has the lowest execution delay
among all the implementations. The area-latency performance
of hashes shows similar characteristics as throughput-area
for all hashes except for the NSGAHash7 and XorHash.
Both NSGAHash7 and XorHash shows increased area-latency
performance, thanks to the relatively lower area to latency
ratio, while all other hashes’ area-latency performance closely
follows their throughput-area characteristics.

VI. CONCLUSION

In this paper, we investigate the use of reduced-round
versions of existing lightweight ciphers to serve as non-
cryptographic hash functions. In order to do so, we simulate
the avalanche properties of each cipher as a function of
the number of rounds. Based on the minimum number of
rounds required to satisfy the avalanche requirements, we
evaluate the resource utilization and latency on an FPGA,
assuming completely unrolled and non-pipelined architectures.
We show that the newly proposed GIFT-NC outperforms all
previously proposed hash functions in terms of throughput and
latency. Also the other non-cryptographic hash functions that
we evaluate, are valuable alternatives for GIFT-NC, which
allows to have a pool of different non-cryptographic hash
functions with desirable throughput and latency. This is im-
portant for applications that need more than one different non-
cryptographic hash function in high-speed lookup or counting
architectures.

ACKNOWLEDGEMENT

This work is supported by the ESCALATE project, funded
by FWO and SNSF (G0E0719N), and by Cybersecurity Ini-
tiative Flanders (VR20192203).

REFERENCES

[1] Adam Kirsch and Michael Mitzenmacher. Less hashing, same perfor-
mance: Building a better Bloom filter. In European Symposium on
Algorithms, pages 456–467. Springer, 2006.

[2] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[3] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of applied cryptography. CRC press, 2018.

[4] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[5] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[6] J Lawrence Carter and Mark N Wegman. Universal classes of hash
functions. Journal of computer and system sciences, 18(2):143–154,
1979.

[7] Arish Sateesan, Jo Vliegen, Joan Daemen, and Nele Mentens. Novel
Bloom filter algorithms and architectures for ultra-high-speed network
security applications. In 2020 23rd Euromicro Conference on Digital
System Design (DSD), pages 262–269. IEEE, 2020.

[8] Glenn Fowler, Landon Curt Noll, Kiem-Phong Vo, Donald Eastlake, and
Tony Hansen. The FNV non-cryptographic hash algorithm. Ietf-draft,
2011.

[9] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Perfor-
mance of the most common non-cryptographic hash functions. Software:
Practice and Experience, 44(6):681–698, 2014.

[10] Amit Kulkarni, Monica Chiosa, Thomas B Preußer, Kaan Kara, David
Sidler, and Gustavo Alonso. Hyperloglog sketch acceleration on fpga.
In 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL), pages 47–56. IEEE, 2020.

[11] Stephen M Trimberger and Jason J Moore. FPGA security: Motivations,
features, and applications. Proceedings of the IEEE, 102(8):1248–1265,
2014.

[12] David Grochol and Lukas Sekanina. Fast Reconfigurable Hash Functions
for Network Flow Hashing in FPGAs. In 2018 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), pages 257–263. IEEE, 2018.

[13] Mohammed Omar Awadh Al-Shatari, Fawnizu Azmadi Hussin, Azrina
Abd Aziz, Gunawan Witjaksono, and Xuan-Tu Tran. FPGA-Based
Lightweight Hardware Architecture of the PHOTON Hash Function for
IoT Edge Devices. IEEE Access, 8:207610–207618, 2020.

[14] Carlos Andres Lara-Nino, Miguel Morales-Sandoval, and Arturo Diaz-
Perez. Small lightweight hash functions in FPGA. In 2018 IEEE 9th
Latin American Symposium on Circuits & Systems (LASCAS), pages
1–4. IEEE, 2018.

[15] N Nalla Anandakumar, Thomas Peyrin, and Axel Poschmann. A very
compact FPGA implementation of LED and PHOTON. In International
Conference on Cryptology in India, pages 304–321. Springer, 2014.

[16] Bernhard Jungk, Leandro Rodrigues Lima, and Matthias Hiller. A
systematic study of lightweight hash functions on FPGAs. In 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), pages 1–6. IEEE, 2014.

[17] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
Xoodoo cookbook. IACR Cryptol. ePrint Arch., 2018:767, 2018.

[18] Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu
Rivain, Yu Sasaki, and Siang Meng Sim. Pyjamask: Block Cipher and

Authenticated Encryption with Highly Efficient Masked Implementation.
IACR Transactions on Symmetric Cryptology, pages 31–59, 2020.

[19] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: a small present. In
International Conference on Cryptographic Hardware and Embedded
Systems, pages 321–345. Springer, 2017.

[20] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. Skinny-aead and skinny-hash. IACR Transactions on Symmetric
Cryptology, pages 88–131, 2020.

[21] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced Encryption Standard
(AES), 2001-11-26 2001.

[22] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK lightweight
block ciphers. In Proceedings of the 52nd Annual Design Automation
Conference, pages 1–6, 2015.

[23] Réjane Forrié. The strict avalanche criterion: spectral properties of
boolean functions and an extended definition. In Conference on the
Theory and Application of Cryptography, pages 450–468. Springer,
1988.

[24] Joan Daemen, Seth Hoffert, G Van Assche, and R Van Keer. The design
of xoodoo and xoofff. 2018.

[25] William Diehl, Farnoud Farahmand, Panasayya Yalla, Jens-Peter Kaps,
and Kris Gaj. Comparison of hardware and software implementations
of selected lightweight block ciphers. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE, 2017.

