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Abstract

This paper investigates the mechanisms that can be used to enhance the absorption performance of poro-
elastic materials in the viscous regime. It is shown that by adding small inclusions in a poro-elastic foam
layer, a mass-spring effect can be introduced. If the poro-elastic material has relatively high viscous losses
in the frequency range of interest, the mass-spring effect can enhance the sound absorption of the foam by
introducing an additional mode in the frame and increasing its out-of-phase movement with respect to the
fluid part. Moreover, different effects such as the trapped mode effect, the modified-mode effect, and the
mass-spring effect are differentiated by decomposing the absorption coefficient in terms of the three energy
dissipation mechanisms (viscous, thermal, and structural losses) in poro-elastic materials. The physical and
geometrical parameters that can amplify or decrease the mass-spring effect are discussed. Additionally,
the influence of the incidence angle on the mass-spring effect is evaluated and a discussion on tuning the
inclusion to different target frequencies is given.

Keywords: Meta-poro-elastic material, Biot-Allard poroelastic model, Mass-spring effect, Viscous regime

1. Introduction

Porous materials are widely used as acoustic absorbers. They are inefficient and bulky solutions at low
frequencies since they only exhibit perfect or near perfect absorption at the so-called quarter-wavelength
resonance frequency. Multi-layering is a well-known and traditional approach to improve the efficiency of

porous materials at low frequencies, which is again limited by the allowable thickness [1]. Researchers
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have recently addressed this issue using unconventional solutions, such as embedding inclusions in the
foam to create macroscopically inhomogeneous porous materials. Groby et al. [2] investigated the effect of
low/high contrast inclusions in terms of both modal behavior and the acoustic response. They showed that,
by considering a high contrast inclusion, the modified mode of the porous layer can be induced, leading to
an increase in the absorption. The modified mode of the porous layer is defined as modes with evanescent
waves in the ambient fluid and propagative waves in the porous layer, hence leading to energy entrapment in
the porous layer. Moreover, they showed that the modified mode frequency has a positive frequency offset
with respect to the natural frequency of the homogeneous layer. This frequency offset is dependent on the
periodicity length and the inclusion dimension. Later on, Groby et al. [3] used periodic rigid inclusions to
improve the absorption of a rigid-frame foam layer under the quarter-wavelength limit. They demonstrated
that if the size of the inclusion is comparable to the acoustic wavelength, energy can be trapped between the
inclusion and the rigid backing, and therefore be dissipated through viscous and thermal effects. Moreover,
they showed that perfect or near perfect absorption due to this trapped mode can be achieved above the
decoupling frequency, i.e. in the inertial regime. Their findings led Lagarrigue et al. [4] to create a meta-
porous layer using a periodic array of rigid split-ring resonators (analyzed in the air by Krynkin et al. [5])
which, when used as inclusions in a rigid-frame foam, improve the absorption by combining the trapped
mode phenomena and the resonance of the fixed rigid split-ring resonators. Additionally, in Ref. [6] authors
extended the idea to a 3D configuration by using Helmholtz resonators to enhance the absorption coefficient
of a rigid-frame porous material in the inertial regime due to Helmholtz resonances and the trapped mode
effect. In a more recent work, Weisser et al. [7] investigated the concept of a meta-poro-elastic system below
the decoupling frequency. They considered two different types of elastic inclusions; a homogeneous and
relatively stiff inclusion made of steel or plexiglass, and a thin-wall resonant shell inclusion filled with air,
having a pronounced mode in the lower frequency regime. The stiffer inclusion, made of rubber, resulted in
similar performance as a rigid inclusion in the rigid-frame foam layer [3]. The more flexible shell inclusion,
however, led to additional absorption enhancement at low frequencies due to the flexural modes of the shell.
Zielinski [8] investigated numerically the effect of introducing periodic point-mass inclusions in a poro-
elastic layer. He showed that the absorption performance of poro-elastic materials can be improved by the
so-called mass-spring effect, where the foam under the mass inclusions acts as a spring, creating a mass-
spring system with a certain resonance frequency depending on the mass and location of the inclusion. This

effect was shown experimentally in Ref. [9] in the context of transmission loss improvement when multiple
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mass inclusions were added to a foam layer. In view of exploiting frame vibrations, active meta-poro-elastic
layers with piezoelectric inclusions were proposed by Zielifiski in Ref. [10] to actively modify the vibrations
of the elastic skeleton of the poro-elastic layer in order to increase sound absorption. This idea was further
studied in Ref. [11], where small passive inclusions were added to enhance the active effect. Recently, the
use of resonant behavior at the micro-scale to improve the acoustic performance of poro-elastic materials
has been investigated and discussed in Refs. [12, 13], where micro-scale resonators are embedded in the
pores of the poro-elastic material. These resonators consist of a cantilever beam with added mass at the tip.
Lewinska et al. have demonstrated that the visco-thermal dissipation is increased by the local resonant effect
and this is due to the complex coupling between the solid and fluid phase. Moreover, they have shown that
the micro-resonators attenuate the fast compressional wave and that the amount of this attenuation depends
on the pore size, the opening ratio (area fraction of the opening in the pores), and the viscosity of the fluid
in the pores.

All the works mentioned above and many others like Refs. [14, 15, 16, 17, 18, 19] show great potential
in meta-porous and meta-poro-elastic systems as an innovative solution to create narrow or broadband ab-
sorbers at low frequencies. However, the contributions were mainly focused on improving the absorption
performance of foams with a low decoupling frequency and thus acting in the inertial regime. The current
work focuses on improving the absorption performance of poro-elastic materials with a high decoupling fre-
quency, for which the frame vibration cannot be neglected, by exploiting the resonant behavior induced by
the mass-spring effect. Therefore, this paper investigates meta-poro-elastic systems with inclusions that are
modeled under different assumptions, namely rigid and motionless, point-mass, and elastic, to distinguish
the mechanisms that influence the acoustic response. With this gained knowledge, configurations can be
designed that achieve absorption enhancement over a broader frequency range by combining these mech-
anisms. In this work, the Biot theory [20, 21] of poro-elastic materials is used to account for the frame’s
motion. Additionally, the criteria under which the mass-spring effect can be achieved are discussed in detail.
Furthermore, a general guideline is given to tune the mass-spring absorption peak to a targeted frequency.

This paper is structured as follows. Section 2 explains the modeling technique used for the poro-elastic
material and the inclusions. Section 3 includes three main parts. The first part discusses different structural
resonant behaviors in meta-poro-elastic systems, while the second one dives deeper into the concept of the
mass-spring effect. The third part concludes the section with a qualitative study on the tunability of the

mass-spring effect.
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2. Problem formulation

This section consists of four parts. The first part describes the problem configuration. The model used
for the poro-elastic material is detailed in the second part. The third part explains the models used for the

inclusion and the fourth part details the field variables representation in a periodic configuration.

2.1. Problem configuration

The cases studied in this paper, depicted in Figure 1, are assumed to be invariant in the z—direction. The
studied cases include an acoustic domain (£2,), being the ambient fluid, and a poro-elastic domain (€2,) with
a thickness Ly and a rigid backing on the bottom. The poro-elastic and acoustic domains are periodic in
the x—direction with a unit cell characteristic length of L,. The x—direction periodicity is accounted for by
using periodic field variables, as described in Section 2.4. Moreover, meta-poro-elastic cases are considered
by introducing a rod inclusion of radius r at the location of (%, y). Additionally, the system is constrained
in the y—direction at the base end and is impinged by a plane wave at the top end with an oblique incidence

angle 6.

0. 0
gi Q % Q
ﬁ 2r
: x : :
~ H H s
y : : : :
X
Case 0 Meta-poro-elastic

case

Figure 1: Schematic view of the cases considered in this paper.

2.2. Poro-elastic material modeling

The theory of Biot [20, 21, 22] is used to model the poro-elastic material such that the visco-elasticity
and motion of the frame are taken into account. This is to ensure that viscous effects are correctly accounted
for when analyzing the absorption behavior below the decoupling frequency.

The mixed u-p formulation [23, 24] of the Biot poro-elasticity theory [20, 21, 25] is used, in which

the primary field variables are the solid phase displacements u and the fluid pressure in the pores p. This
4
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formulation is valid for harmonic motion, and is described by the following set of coupled solid and fluid

phase equations of motion:

V.o(u) +wpu+yVp =0, (1)
Vp+ 2 )52y u =0, 2
p P 7¢2 (2)
with )
. . P . 5 O
p=pn-==, Y= ('0~——T). 3)
P22 P2 R

Here, ¢ is the porosity, while p11, §22, and §;» are the effective densities which take into account the fact that
the relative flow through the pores is not uniform and that there is a visco-inertial interaction between the
solid and fluid phases leading to energy dissipation induced by the relative motion of the two phases [23, 26].
Furthermore, Q is a coupling coefficient between the dilatation and stress of the two phases, while R is the
bulk modulus of the fluid phase. The second-order tensor o-(u), which appears in the solid phase equation
of motion (1), describes the stresses in the elastic frame in vacuum and depends only on the solid phase

displacement, namely,

a:A(V.u)I+N(Vu+VTu), 4)

where I is the second-order identity tensor, while A and N are the Lamé coefficients of the visco-elastic
frame. When v, N, and n denote the bulk Poisson ratio, shear modulus, and loss factor of the frame,
respectively, then: N = N(1 +in) and A = IE—EVN . Note that both these coefficients are complex-valued
because of the visco-elastic behaviour of the frame leading to structural energy losses.

The formulae for the effective densities p;1, P22, and p1» can be found, for example, in Refs. [22, 23, 27].
They depend not only on the (homogenised bulk) densities of solid and fluid phases but also on a frequency-

dependent viscous damping coefficient [22, 27]:

b =1iw ¢p, (d/(a)) - aoo), (5)

which accounts for viscous interaction forces. This coefficient is related to the fluid phase density ¢p,
(here, p, is the density of air, i.e. the actual fluid in pores) and to the difference between the frequency-

dependent viscous dynamic tortuosity @(w) and kinematic tortuosity a of the porous material. Johnson et
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al. [28] proposed a semi-phenomenological model for @(w) depending on the transport parameters of porous
material, viz. the viscous permeability (or airflow resistivity o), porosity ¢, kinematic tortuosity @, and
viscous characteristic length A. The effective moduli O and R can be computed from formulae provided
in [25, 22, 23, 24]. In particular, they depend on the dynamic (i.e. frequency-dependent) effective bulk
modulus of air-saturated rigid porous medium for which a semi-phenomenological model was proposed by
Champoux and Allard [29]. In that way, the Biot-Allard model [22, 27, 28, 29] for sound propagation and
absorption in poro-elastic materials is applied in this work for all analyses assuming a visco-elastic frame,
while the Johnson-Champoux-Allard (JCA) equivalent-fluid model [22, 28, 27] is occasionally used for

comparison when the frame is assumed rigid.

2.3. Inclusion modeling

In this paper, three different ways are used to model the inclusion in order to isolate different effects, i.e.
the mass-spring effect, the trapped mode effect, and the effect of the modified mode of the frame, leading to

an increase in the absorption coefficient in dedicated frequency ranges.

2.3.1. Point- mass inclusion
The first and the most simple approach is to consider the inclusion as a concentrated mass (), dis-
tinguishing the mass-spring effect from the others. Therefore, an inertial weak contribution is added to the

variational formulation of the poro-elastic material [8]:

WF, + f w?my 5(X — Xp)u - wdQ, =0. (6)
Q

P

WEF, is the weak form for a poro-elastic material in the domain Q,,, mj is the point-mass of the inclusion

concentrated at the point Xg, ¢ is the Dirac delta function, and w is the test function for u.

2.3.2. Rigid and motionless inclusion

In the second approach, to exclude the effect due to the motion of the inclusion (resonance behaviour),
and therefore, to identify the effect induced by the inclusion size and geometry (trapped mode effect and
modified mode of the frame), the inclusion of finite size is simply considered rigid and motionless. To
model this, boundary conditions for a rigid and impervious wall are applied on the inclusion surface I,
which means that the solid phase displacements and normal displacements of the fluid phase are zero

on I, [30, 24]. Since the second condition (which describes the fact that there is no relative mass flux

6
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across the impervious boundary) is naturally handled in the enhanced u-p formulation [24] (i.e. the corre-
sponding surface integral in the weak formulation is zero), only the kinematic condition for the solid phase

displacements [24], i.e. u = 0 on I'y;, needs to be included.

2.3.3. Elastic inclusion

In the third approach, the coupling between different effects (inertial, trapped mode effect, and modified
mode of the frame) is taken into account by modeling the inclusion as an isotropic elastic domain and as-
suming that the poro-elastic layer is glued to the surface of this domain. Therefore, coupling conditions are
applied on the interface I',.. between the poro-elastic and elastic domains, namely [30, 24]: the continuity
of the total normal stresses at the interface, no relative mass flux across the impervious interface, and the
continuity of the solid phase displacement vector of poro-elastic medium u and the elastic displacement
vector u® of the inclusion. However, since in the u-p formulation the coupling between the poro-elastic
and elastic media is natural, only the kinematic coupling condition, i.e. u = u® on I'p, has to be explicitly

imposed [24].

2.4. Field representations

As the problem is periodic in space and is excited by a plane wave, the field variables are considered to
be periodic (in the x-direction) in the poro-elastic domain €2, acoustic domain €2, and elastic domain €2e.

Therefore, each field variable W satisfies the Floquet-Bloch relation [31]:

W(x +d) = W(x)exp (ik - d), (7)

where d is the spatial periodicity and k = {ki, k», 0} is the in-plane component of the incident wave number.
In our case d = {d}, 0, 0}, where d; = L,. Then, the periodicity in solid, acoustic, and poro-elastic domains
can be taken into account by substituting the field variables W in the governing equations of each domain
by their periodic generalisations [32] W(x) = W(x, k) exp (ik - x). The corresponding weak forms associated
with the dynamic equations of each domain are given in Appendix A. Moreover, the mutual interaction
between the acoustic and poro-elastic domains is ensured in two steps [30]. In the first step, the continuity
of the pressure at the interface of the two domains is applied. In the second step, the pressure in the acoustic
domain at the interface is considered as a surface traction force on the solid phase of the poro-elastic domain,
while the structural acceleration due to the solid phase of the poro-elastic domain is applied on the acoustic

domain pressure. Readers are referred to [33] for the mathematical expression of the acoustic-poro-elastic
7
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coupling condition. Furthermore, the radiating boundary condition is applied by using the Floquet mode

decomposition, as explained in [31].

3. Results and discussion

This section is divided into three main parts. In the first part, the discussion focuses on the resonant
behaviors, namely the mass-spring resonance and the frame resonance in meta-poro-elastic materials, by in-
vestigating three cases. The differences between the modified mode and the mass-spring effects are pointed
out by analyzing the decomposed absorption coefficients in terms of three energy dissipation mechanisms,
i.e. viscous, thermal, and structural losses [27]. In the second part, the mass-spring effect is studied in de-
tail. The investigation is mainly focused on the conditions under which the mass-spring effect is amplified
or disappears. These limits are evaluated, taking into account the inclusion mass and size, as well as the
poro-elastic material properties. In the third part, an optimization routine is used to derive optimum values
for geometrical parameters of the inclusion such that the mass-spring effect is obtained at a specified fre-
quency. The evolution of these parameters over frequency is then analyzed to derive a qualitative guideline

to design a meta-poro-elastic material for a targeted frequency.

3.1. Resonant behavior in poro-elastic materials

This section investigates the induced resonant behaviors in the poro-elastic skeleton due to the added
inclusions and how they improve the absorption performance. Two resonant behaviors are studied: the
modified mode of the frame and the mass-spring effect. The former refers to the first mode of the frame
and how the vibration pattern and occurring frequency are influenced by the periodicity introduced in the
system and the added stiffness/mass by the inclusion. The latter is a new mode of the system due to the
mass of the inclusion which is resonating on the stiffness of the poro-elastic frame, hence constituting a
mass-spring system.

The resonant behavior in the poro-elastic material is studied by considering three cases. The first case
is the reference case (case 0) and is composed of a homogeneous (i.e. without inclusions) foam layer with a
thickness of L, = 24 mm set on a rigid backing. In the second and third cases, a steel rod inclusion with a
radius of » = 0.4 mm is introduced at y4 = 4 mm (case A) and yg = 20 mm (case B) from the rigid backing
respectively. In both of these cases, the width of the periodic cell is L, = 8 mm, which is the distance along
the x-axis between the periodically embedded inclusions. In all analyses, Biot’s poro-elasticity theory is

used to model the poro-elastic foam, where the Johnson-Champoux-Allard (JCA) [22, 28, 29] model is
8
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used to determine the effective density and bulk modulus for the air saturating the pores. The required
Biot-JCA parameters used in all analyses are those for a polyurethane foam given in Table 1, where N,
are the shear modulus and loss factor of the frame, v is the bulk Poisson ratio, p; is the bulk density, ¢ is the
porosity, @« is the tortuosity, A, A’ are the viscous and thermal characteristic lengths, and o is the airflow
resistivity. These parameters are taken from Ref. [23]. Note also that the transport parameters ¢, @, A,
A’, and o are used by the JCA model of equivalent fluid when (for comparison) the foam is modeled as a

rigid-frame porous material.

N (kPa) 7 v pr(kgm’) ¢  aw Aum) A (um) o (Pas/m?)
55 0.055 0.3 31 097 252 37 119 87000

Table 1: The Biot parameters of the foam [23]

COMSOL Multiphysics is used to discretize and solve the Finite Element (FE) analyses for each case.
These problems have been implemented using the weak formulations given in Appendix A. Mesh conver-
gence studies have been performed for all cases resulting in FE meshes consisting of 893, 1006, and 1275
quadratic elements, yielding 6126, 10197, and 14751 DOFs, for the meta-poro-elastic system with the rigid

inclusion model, point-mass inclusion model, and elastic inclusion model, respectively.

3.1.1. Sound absorption of the homogeneous poro-elastic layer

The total sound absorption and the corresponding decomposed absorption coeflicients for case 0, with
normal angle of incidence, are shown in Figure 2. It can be seen that simultaneously a dip in total absorption
and viscous losses, as well as a peak in the structural losses, appear at approximately 820 Hz. This frequency

corresponds to the resonance frequency of the frame with rigid backing [22], which is calculated as follows:

1 K.
- |2 8
f r 4 Ly o1 ( )
where K. = 2((11 __szz)v . Since the structural losses directly correspond to the amount of strain in the solid phase

of poro-elastic material, the structural loss at the resonance frequency of the frame is increased. However,
viscous losses depend on the viscous coupling coefficient, which is dependent on foam properties, and the
out-of-phase movement of the fluid and solid phase. The latter explains the dip at f; (in-phase movement of
the fluid in the pores and the frame), and also the peak above f, (anti-phase displacement of the frame and

the fluid).
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Figure 2: Partial absorption coefficient for different dissipation mechanisms for the poro-elastic foam without inclusions.

Another important characteristic of poro-elastic materials is the decoupling frequency f., at which the
transition from viscous to inertial regime occurs. The harmonic motion of the fluid phase does not excite
the frame above this frequency [22], i.e. the two phases are decoupled and the energy is dissipated mainly
due to the inertial effect as opposed to the viscous drag between the two phases. The decoupling frequency

is commonly defined as follows [21]:
_ 9o
27,

fe )

where p, is the density of air. It should be noted that above this frequency, the rigid frame assumption
is valid and therefore the equivalent fluid model predicts the behavior of the poro-elastic layer with good
accuracy. Even below f., for poro-elastic materials with sufficiently stiff (rigid) skeleton, no significant
vibrations will be induced in the skeleton by airborne acoustic waves.

It is worth mentioning that other criteria can be used to identify the decoupling frequency such as the
inverse quality factor [34] in the case of foams with very low viscous characteristic length. The decoupling
frequency for the type of foam we are targeting (foams with a high value of flow resistivity) is at high
frequencies, more specifically for the foam used in this work the decoupling frequency is at 11.2 kHz.
Therefore, there is a significant deviation of the equivalent fluid model with respect to the theory of Biot in

the studied frequency range, see Figure 3.
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Figure 3: Absorption coeflicients calculated for the homogeneous poro-elastic layer using the Biot-JCA (i.e. Biot-Allard) model
and for the corresponding rigid-frame porous layer calculated using the JCA model of equivalent fluid.

3.1.2. Sound absorption of meta-poro-elastic systems in case of normal incidence angle

In this part, the (partial) absorption coefficients of case A and case B are calculated considering the three
different modeling techniques detailed in Section 2.3 to distinguish different resonant behaviors, i.e. the
mass-spring and modified mode effects. Below, the results corresponding to the different ways to model the
inclusion are discussed, i.e. first for case A and then for case B. Afterward, the resonant behaviors induced
in case A and case B due to the mass-spring system are compared to each other. These results are depicted
in Figure 4. Moreover, the absorption coefficient of case O is recalled for comparison to have a view on the

effect of inclusion on the acoustic response.

1. Different inclusion modeling techniques: Case A

The results are discussed in two steps. The first step considers the absorption coefficient corresponding to
the model that assumes a motionless inclusion. The second step explains the results that take into account

the inclusion motion.

o Rigid and motionless inclusion model It can be seen that the absorption coeflicient obtained using
the rigid and motionless inclusion model is almost identical to the one obtained for case O (cf. Figure 4
(a)) with a slight shift of the resonance frequency of the frame to a higher frequency (i.e. from 820 Hz
to 910 Hz). This indicates that the rigid and motionless inclusion stiffens the skeleton, causing the

first mode of the frame to be shifted upwards in frequency. The stiffening of the foam is due to the

11
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fact that the inclusion is modeled only by constraining the foam, and since the fixed rigid inclusion is

located very close to the rigid backing, it results in an extended area of rigid-like boundary condition.

Point-mass and elastic model — The same observation does not hold for the point-mass inclusion
(see Figure 4(b)) or the elastic inclusion (see Figure 4(c)), as there is clearly an additional peak in
the absorption coefficient. This peak is lower in frequency and is more localised in the point-mass
model as compared to the elastic inclusion model since in the point-mass model only the inertial
effect is considered while the elastic model also accounts for the size effect. Additionally, we would
like to draw the reader’s attention to the two peaks in structural losses (see Figure 4(b),(c)), which
indicate two resonance frequencies in the system. These peaks are at 770 Hz and 980 Hz for the
point-mass inclusion, and they are at 840 Hz and 1250 Hz for the elastic inclusion. To identify the
mass-spring resonance and the modified mode, the real part of the vertical component of the fluid and
solid displacements (v and v/) of case A with point-mass inclusion are evaluated at the frequencies
of the total absorption peaks induced by the out-of-phase motion excited after the two structural loss
peaks, see Figure 5. The vibration pattern of the frame at 820 Hz clearly presents a localized motion
around the inclusion, while at 1250 Hz a modeshape of the skeleton modified due to the presence of
the inclusion addition is noticeable. This indicates that the first structural loss peak is induced by the

mass-spring resonance.

v, =820 Hz ~10°® vf, =820 Hz v, f=1250 Hz ~10° vf, 21250 Hz -10°
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Figure 5: The displacement field (with v referring to the solid displacement along y—axis and v/ referring to the fluid displacement
in the same direction) of case A with point-mass inclusion at f = 820 Hz (left), and f = 1250 Hz (right). These frequencies refer
to the peaks in the total absorption coeflicient after the mass-spring and frame resonances, respectively.

II.  Different inclusion modeling techniques: Case B

The acoustic response related to different inclusion models is discussed for case B in the same manner as

for case A.
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o Rigid and motionless inclusion model  As it is observable from Figure 4, the results obtained using

the model with fixed (i.e. motionless) rigid inclusion differ significantly from those of case 0 because
the longer distance between the inclusion and the rigid backing (as compared to case A) leads to a
shift in the frame resonance frequency to higher frequencies. Therefore, the peak appearing in the
total absorption and the partial structural absorption for the case with fixed rigid inclusion is simply

due to the modification of the mode of the frame.

Point-mass and elastic model  For these models, a similar behavior (as in case A) is observed in case
B. Specifically, the point-mass and elastic inclusion models both exhibit two peaks in structural losses
resulting from the mass-spring system and the modified mode of the frame, respectively. Again, this
can be confirmed by visualizing the displacement fields at the total absorption peaks induced by these

effects and comparing them to each other, see Figure 6.
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Figure 6: The displacement (with v referring to the solid displacement along y—axis and v/ referring to the fluid displacement in
the same direction) of case B with point mass inclusion at f = 1010 Hz (left), and f = 1620 Hz (right). These frequencies refer to
the peak in the total absorption coefficient after the mass-spring and frame resonance.
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On the one hand, the absorption enhancement for case B is achieved over a broader frequency band
as compared to case A for both the embedded elastic and point-mass inclusions due to the combined
mass-spring and modified mode effects. On the other hand, the resonance frequency of the frame is
shifted to higher frequencies as compared to case A and case 0 and the system reaches a perfect or
almost perfect absorption at higher frequencies. As a result, the absorption coeflicient is reduced at
some higher frequencies in the meta-poro-elastic system as compared to case 0. For example, the
maximum absorption for case 0 is 0.95 at 1140 Hz and is reduced at this frequency to 0.78 when an

elastic inclusion is added, cf. Figure4(f).
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IlIl.  Comparison of mass-spring resonance in case A and case B

When comparing the resonance frequency of the point-mass or elastic inclusion of case A to case B, it
can be seen that by increasing the distance between the inclusion and the rigid backing that the peak is
shifted down in frequency. This behavior can be explained by considering the foam under the inclusion as a
spring. Therefore, increasing its length leads to a decrease in its stiffness, which results in a lower resonance

frequency of the mass-spring system.

3.1.3. Sound absorption of meta-poro-elastic systems under oblique incidence angle

To assess the utility of the meta-poro-elastic system in real applications, the performance of the con-
sidered meta-poro-elastic configurations under oblique incidence angle is evaluated. Figure 7 shows the
(partial) absorption coefficients calculated for case A and case B under different angles of incidence (6)

varying from 0°, i.e. normal incidence, to 78°, i.e. close to grazing incidence.

081 081

061 061

0.4r 0.4r

021 021

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
f[Hz] f[Hz]

i

Figure 7: The total absorption coefficient (solid lines) and the partial structural absorption coefficient (dotted lines) of case A and
case B with elastic inclusions under oblique incidence angle (6).

As compared to normal incidence (Figure 4), the absorption curves under oblique incidence (Figure 7)
show three additional peaks in the structural losses (labeled as c, d, and e in Figure 7) when the incidence
angle deviates from 6 = 0°. Recall that the peaks marked with letters a and b correspond to the mass-spring
effect and the modified mode effect along the y—axis, respectively. The additional peaks are related to the
modes excited along the x—axis by the in-plane component of the incident plane wave. Two of which, i.e. c
and d, are the modified first- and second-order shear modes due to inclusion, while the other one, i.e. e, is an

additional mode excited by the inclusion resonating along the x—axis. The latter has a resonance frequency
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around 2400 Hz, which is double of the vertical mass-spring resonance for case A around 1250 Hz. This is
because the horizontal distance of the inclusion (L, = 8 mm) is double the vertical distance of the inclusion
from the rigid wall for case A (y4 = 4 mm).

To assess the performance of case A and case B (with elastic inclusions) with respect to case 0 in a
more general setting, the diffuse-field absorption of the two cases are compared to case 0 in Figure 8. This

evaluation confirms that the mass-spring effect is preserved under the assumption of diffuse-field.
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Figure 8: Diffuse-field absorption coefficient of case 0, case A, and case B.

3.2. Mass-spring effect

The previous part demonstrated that resonant behavior in a meta-poro-elastic system can lead to an
absorption peak, whether it is by alternating the frame vibration pattern at its first natural frequency or
by inducing an additional mode in the system, such as the mass-spring effect. This part investigates the

conditions under which this mass-spring resonance leads to absorption improvement.

3.2.1. Dependency on viscous transport parameters

The mass-spring effect leads to an increase in the absorption coefficient by forcing the poro-elastic
skeleton to move out-of-phase with respect to the fluid part due to the resonating inclusion. A larger phase
difference results in an increase in viscous losses. Therefore, intuitively it is understood that the absorption
coefficient enhancement due to the mass-spring effect strongly depends on the values of flow resistivity
(o) and viscous characteristic length (A). This statement is validated by considering case A and varying o
and A while keeping all the other parameters constant, and then plotting the absorption peak values due to

the mass-spring effect (the local maxima in the absorption curve between the frequencies at which the two
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structural-loss peaks appear), see Figure 9(a). It is apparent in Figure 9(a) that the increase of absorption
peak value is more sensitive to changes in the viscous characteristic length as compared to changes in
the flow resistivity. Additionally, normalised values of the real part of the viscous coupling coefficient,
i.e. Re(b/(wp.,)) see equation (5), are also calculated at those frequencies, and presented in Figure 6(b) for
various values of o and A. Recall that the viscous coupling coefficient (5) depends on the dynamic viscous
tortuosity @, which depends on o~ and A according to the Johnson et al. [28, 22] model, and this coefficient
corresponds to the amount of viscous losses. Note that Re(b) is used for the plot in Figure 9(b) because
the real part is associated with the dissipative part of the viscous forces, while the imaginary part Im(b) is
associated with the modification of tortuosity due to the added mass effect related to the viscous behaviour
of the fluid in the pores [27]. From the graphs in Figure 9, it can be seen that the mass-spring effect can
occur in all types of poro-elastic foams, but that pronounced improvements in absorption only occur in
foams with high flow resistivity and/or low viscous characteristic length (cf. white and light-gray areas in
Figure 9).
(a) (b)

0.95

0.9

10 10 ;
o [kPa/(m.s)] 02 A [mm] o [kPa/(m.s)] 02 A [mm]

Figure 9: The value of the absorption coefficient peak due to the mass-spring effect (a) and the value of normalised viscous coupling
coeflicient at the absorption peak frequencies (b) for different combinations of viscous characteristic length and flow resistivity.

3.2.2. Dependency on inclusion properties

The size and mass of the inclusion impact both the total absorption coefficient and the mass-spring
effect. To verify their effect, an investigation is carried out in three steps. In the first step, the effect of the
inclusion mass is investigated by keeping the size of the inclusion constant (» = 0.4 mm) and increasing
its mass density. In the second step, in order isolate the effect of inclusion size the inclusion mass is kept
constant and equal to that of a steel rod of radius » = 0.4 mm, while the inclusion size is increased. In the

third step, the combined effect of size and mass is evaluated by increasing the elastic inclusion size.
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1. The effect of inclusion mass

In the first step, the effect of the inclusion mass is investigated by considering the elastic inclusion of case
A and case B and increasing its mass density such that the inclusion mass (m) is equal to the mass (m,) of
a steel rod with radius r,; = 0.2,0.4,0.8,1.2,...,3.6 mm, while keeping the inclusion size constant and
equal to r = 0.4 mm. The total absorption coefficients, as well as the partial absorption coefficients due to
structural losses, are compared in Figure 10 for the considered values of the inclusion mass. Additionally,
the blue line in Figure 10 is the projection of the first structural losses peak on the f — r., plane. Similarly,
the red line is the projection of the second absorption peak on the f — r, plane. Moreover, the red and blue

dots are the values of total absorption at these structural peaks.
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Figure 10: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing an elastic rod inclusion with the same radius r = 0.4 mm and various masses (1)
equivalent to the mass (m,) of an inclusion with a radius of r = r,, in millimeter.

Considering both cases, it is clear that both the mass-spring resonance frequency (the blue line) and
the resonance frequency of the frame (the red line) are shifted down in frequency when the inclusion mass
is increased. For both cases, above a certain amount of mass addition (i.e. mj¢), the observed behavior
converges asymptotically as the mass increases. This means that the mass-spring resonance frequency
converges to zero for heavy inclusions, and the inclusion only modifies the mode of frame. Moreover, the
value of the peak in structural losses due to inclusion resonance decreases as it is shifted down in frequency

since at lower frequencies fewer cycles per second occur and hence less energy is dissipated.
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II.  The effect of inclusion size

The influence of different inclusions sizes, while keeping mass fixed, is shown in Figure 11. It can be seen
that the resonance frequency of the inclusion (the blue curve), increases for larger inclusion sizes, and hence
follows the opposite trend as for the previous study illustrated in Figure 10. This is explained by the fact
that increasing the size of inclusion leads to an increase in the effective area of the spring and a decrease
in the effective length of the spring [35]; thus, the spring stiffness is increased while the mass remains the
same which increases the mass-spring resonance frequency. Similarly, the resonance frequency of the frame
(the red curve) is also shifted up in frequency. The shift in resonance frequency of the frame is due to the
added stiffness to the frame in combination with a decrease in the distance between the inclusion and the
rigid backing as the inclusion dimension increases, which leads to an extended area of rigid-like boundary
condition on the foam and thus increasing the frame resonance frequency.

It should be noted that in case B the total absorption coefficient drops significantly for larger inclusions.
This occurs because the inclusion size becomes comparable to or larger than the two longitudinal wave-
lengths, i.e. /;l ~ 2 for r = 2.4 mm at f = 1500 Hz, and it is located very close to the surface. Consequently,
most of the wave is reflected. Additionally, the spacing between the inclusions decreases with the increase
in the inclusion size (because the width of the periodic cell remains the same), leading to a decrease in the
material that the sound wave can propagate through and be dissipated.

It can be seen that the peaks due to the mass-spring resonance are more pronounced for larger inclusions.
This is related to the fact that when the size of the inclusion is increased, the added mass is distributed over
a larger area, therefore it affects a wider area of the foam around it, i.e. increase in the frame displacement
which corresponds to a higher peak in the structural loss. Additionally, the resonance frequency of the
inclusion is shifted higher in frequency, where more cycles per second occur and hence more energy can be
dissipated.

To demonstrate the former, the field variables (i.e. the solid phase displacements, the fluid phase dis-
placements, and the pressure) at the inclusion resonance frequency (800 Hz) are shown for the smallest and
the largest inclusions in Figure 12, where the real part of the solid displacement along the x—axis and along
the y—axis, and the real part of the pore pressure are denoted by u, v, and p, respectively. The real part
of the fluid displacement along the x—axis and along the y—axis are indicated with «/ and v/, respectively.
Figure 12 shows that at f = 800 Hz for both cases the frame is excited by the resonating inclusion to move

out-of-phase with the fluid phase and it is clear that the area of the poro-elastic layer affected by the large
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Figure 11: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing an elastic inclusion with various radii r, but constant mass equal to that of a steel
rod with a radius 0.4 mm.

inclusion is larger than the area affected by the small inclusion.
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Figure 12: The field variables at f = 800 Hz in the poro-elastic layer with elastic inclusion with a radius of » = 0.2 mm (graphs on
the left) or 3.6 mm (graphs on the right).

Ill.  The combined effect of the inclusion mass and size

To conclude this study on the influence of geometry, the radius of, and accordingly the mass of, the steel
inclusion is varied. The total absorption, as well as the partial absorption coefficients due to structural
losses, are shown in Figure 13 for both cases A and B.

Considering case A it is apparent that by increasing the diameter of the inclusion, and consequently
the added mass, the mass-spring resonance (the blue line) is shifted down in frequency (from 1920 Hz to
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Figure 13: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing a steel rod inclusion of different radii.

320 Hz), while the resonance frequency of the frame (the red line) is shifted up in frequency (from 890 Hz
to 1210 Hz). The value of the peak in structural losses due to the mass-spring resonance decreases since
the larger inclusion rigidifies the foam and also in lower frequencies the energy dissipation decreases due to
fewer cycles per second. It should be noted that the shift in resonance frequency of the mass-spring system
is due to the increase in added mass, which is more dominant than the increase in the effective area and
decrease in the effective length of the spring acting underneath the inclusion. The shift in the resonance
frequency of the frame follows the same trend as in the previous study. For very small inclusions (i.e.
r = 0.2 mm and r = 0.4 mm) the resonance frequency of the frame is lower than that of the inclusion
(therefore, the red and blue curves intersect).

All remarks explained above can be observed more clearly in case B (Figure 13(right)) since the reso-
nance frequency of the mass-spring system and frame are located further apart. In this case, the mass-spring
resonance frequency lowers from 2100 H