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Abstract10

This paper investigates the mechanisms that can be used to enhance the absorption performance of poro-11

elastic materials in the viscous regime. It is shown that by adding small inclusions in a poro-elastic foam12

layer, a mass-spring effect can be introduced. If the poro-elastic material has relatively high viscous losses13

in the frequency range of interest, the mass-spring effect can enhance the sound absorption of the foam by14

introducing an additional mode in the frame and increasing its out-of-phase movement with respect to the15

fluid part. Moreover, different effects such as the trapped mode effect, the modified-mode effect, and the16

mass-spring effect are differentiated by decomposing the absorption coefficient in terms of the three energy17

dissipation mechanisms (viscous, thermal, and structural losses) in poro-elastic materials. The physical and18

geometrical parameters that can amplify or decrease the mass-spring effect are discussed. Additionally,19

the influence of the incidence angle on the mass-spring effect is evaluated and a discussion on tuning the20

inclusion to different target frequencies is given.21

Keywords: Meta-poro-elastic material, Biot-Allard poroelastic model, Mass-spring effect, Viscous regime22

1. Introduction23

Porous materials are widely used as acoustic absorbers. They are inefficient and bulky solutions at low24

frequencies since they only exhibit perfect or near perfect absorption at the so-called quarter-wavelength25

resonance frequency. Multi-layering is a well-known and traditional approach to improve the efficiency of26

porous materials at low frequencies, which is again limited by the allowable thickness [1]. Researchers27
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have recently addressed this issue using unconventional solutions, such as embedding inclusions in the28

foam to create macroscopically inhomogeneous porous materials. Groby et al. [2] investigated the effect of29

low/high contrast inclusions in terms of both modal behavior and the acoustic response. They showed that,30

by considering a high contrast inclusion, the modified mode of the porous layer can be induced, leading to31

an increase in the absorption. The modified mode of the porous layer is defined as modes with evanescent32

waves in the ambient fluid and propagative waves in the porous layer, hence leading to energy entrapment in33

the porous layer. Moreover, they showed that the modified mode frequency has a positive frequency offset34

with respect to the natural frequency of the homogeneous layer. This frequency offset is dependent on the35

periodicity length and the inclusion dimension. Later on, Groby et al. [3] used periodic rigid inclusions to36

improve the absorption of a rigid-frame foam layer under the quarter-wavelength limit. They demonstrated37

that if the size of the inclusion is comparable to the acoustic wavelength, energy can be trapped between the38

inclusion and the rigid backing, and therefore be dissipated through viscous and thermal effects. Moreover,39

they showed that perfect or near perfect absorption due to this trapped mode can be achieved above the40

decoupling frequency, i.e. in the inertial regime. Their findings led Lagarrigue et al. [4] to create a meta-41

porous layer using a periodic array of rigid split-ring resonators (analyzed in the air by Krynkin et al. [5])42

which, when used as inclusions in a rigid-frame foam, improve the absorption by combining the trapped43

mode phenomena and the resonance of the fixed rigid split-ring resonators. Additionally, in Ref. [6] authors44

extended the idea to a 3D configuration by using Helmholtz resonators to enhance the absorption coefficient45

of a rigid-frame porous material in the inertial regime due to Helmholtz resonances and the trapped mode46

effect. In a more recent work, Weisser et al. [7] investigated the concept of a meta-poro-elastic system below47

the decoupling frequency. They considered two different types of elastic inclusions; a homogeneous and48

relatively stiff inclusion made of steel or plexiglass, and a thin-wall resonant shell inclusion filled with air,49

having a pronounced mode in the lower frequency regime. The stiffer inclusion, made of rubber, resulted in50

similar performance as a rigid inclusion in the rigid-frame foam layer [3]. The more flexible shell inclusion,51

however, led to additional absorption enhancement at low frequencies due to the flexural modes of the shell.52

Zieliński [8] investigated numerically the effect of introducing periodic point-mass inclusions in a poro-53

elastic layer. He showed that the absorption performance of poro-elastic materials can be improved by the54

so-called mass-spring effect, where the foam under the mass inclusions acts as a spring, creating a mass-55

spring system with a certain resonance frequency depending on the mass and location of the inclusion. This56

effect was shown experimentally in Ref. [9] in the context of transmission loss improvement when multiple57
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mass inclusions were added to a foam layer. In view of exploiting frame vibrations, active meta-poro-elastic58

layers with piezoelectric inclusions were proposed by Zieliński in Ref. [10] to actively modify the vibrations59

of the elastic skeleton of the poro-elastic layer in order to increase sound absorption. This idea was further60

studied in Ref. [11], where small passive inclusions were added to enhance the active effect. Recently, the61

use of resonant behavior at the micro-scale to improve the acoustic performance of poro-elastic materials62

has been investigated and discussed in Refs. [12, 13], where micro-scale resonators are embedded in the63

pores of the poro-elastic material. These resonators consist of a cantilever beam with added mass at the tip.64

Lewińska et al. have demonstrated that the visco-thermal dissipation is increased by the local resonant effect65

and this is due to the complex coupling between the solid and fluid phase. Moreover, they have shown that66

the micro-resonators attenuate the fast compressional wave and that the amount of this attenuation depends67

on the pore size, the opening ratio (area fraction of the opening in the pores), and the viscosity of the fluid68

in the pores.69

All the works mentioned above and many others like Refs. [14, 15, 16, 17, 18, 19] show great potential70

in meta-porous and meta-poro-elastic systems as an innovative solution to create narrow or broadband ab-71

sorbers at low frequencies. However, the contributions were mainly focused on improving the absorption72

performance of foams with a low decoupling frequency and thus acting in the inertial regime. The current73

work focuses on improving the absorption performance of poro-elastic materials with a high decoupling fre-74

quency, for which the frame vibration cannot be neglected, by exploiting the resonant behavior induced by75

the mass-spring effect. Therefore, this paper investigates meta-poro-elastic systems with inclusions that are76

modeled under different assumptions, namely rigid and motionless, point-mass, and elastic, to distinguish77

the mechanisms that influence the acoustic response. With this gained knowledge, configurations can be78

designed that achieve absorption enhancement over a broader frequency range by combining these mech-79

anisms. In this work, the Biot theory [20, 21] of poro-elastic materials is used to account for the frame’s80

motion. Additionally, the criteria under which the mass-spring effect can be achieved are discussed in detail.81

Furthermore, a general guideline is given to tune the mass-spring absorption peak to a targeted frequency.82

This paper is structured as follows. Section 2 explains the modeling technique used for the poro-elastic83

material and the inclusions. Section 3 includes three main parts. The first part discusses different structural84

resonant behaviors in meta-poro-elastic systems, while the second one dives deeper into the concept of the85

mass-spring effect. The third part concludes the section with a qualitative study on the tunability of the86

mass-spring effect.87
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2. Problem formulation88

This section consists of four parts. The first part describes the problem configuration. The model used89

for the poro-elastic material is detailed in the second part. The third part explains the models used for the90

inclusion and the fourth part details the field variables representation in a periodic configuration.91

2.1. Problem configuration92

The cases studied in this paper, depicted in Figure 1, are assumed to be invariant in the z−direction. The93

studied cases include an acoustic domain (Ωa), being the ambient fluid, and a poro-elastic domain (Ωp) with94

a thickness Ly and a rigid backing on the bottom. The poro-elastic and acoustic domains are periodic in95

the x−direction with a unit cell characteristic length of Lx. The x−direction periodicity is accounted for by96

using periodic field variables, as described in Section 2.4. Moreover, meta-poro-elastic cases are considered97

by introducing a rod inclusion of radius r at the location of ( Lx
2 , y). Additionally, the system is constrained98

in the y−direction at the base end and is impinged by a plane wave at the top end with an oblique incidence99

angle θ.100

Figure 1: Schematic view of the cases considered in this paper.

2.2. Poro-elastic material modeling101

The theory of Biot [20, 21, 22] is used to model the poro-elastic material such that the visco-elasticity102

and motion of the frame are taken into account. This is to ensure that viscous effects are correctly accounted103

for when analyzing the absorption behavior below the decoupling frequency.104

The mixed u-p formulation [23, 24] of the Biot poro-elasticity theory [20, 21, 25] is used, in which

the primary field variables are the solid phase displacements u and the fluid pressure in the pores p. This

4



formulation is valid for harmonic motion, and is described by the following set of coupled solid and fluid

phase equations of motion:

∇ · σ(u) + ω2ρ̃u + γ̃∇p = 0, (1)

∇2 p + ω2 ρ̃22

R̃
p − ω2γ̃

ρ̃22

φ2 ∇ · u = 0, (2)

with105

ρ̃ = ρ̃11 −
ρ̃2

12

ρ̃22
, γ̃ = φ

(
ρ̃12

ρ̃22
−

Q̃
R̃

)
. (3)

Here, φ is the porosity, while ρ̃11, ρ̃22, and ρ̃12 are the effective densities which take into account the fact that106

the relative flow through the pores is not uniform and that there is a visco-inertial interaction between the107

solid and fluid phases leading to energy dissipation induced by the relative motion of the two phases [23, 26].108

Furthermore, Q̃ is a coupling coefficient between the dilatation and stress of the two phases, while R̃ is the109

bulk modulus of the fluid phase. The second-order tensor σ(u), which appears in the solid phase equation110

of motion (1), describes the stresses in the elastic frame in vacuum and depends only on the solid phase111

displacement, namely,112

σ = Â (∇ · u) I + Ñ
(
∇u + ∇Tu

)
, (4)

where I is the second-order identity tensor, while Â and Ñ are the Lamé coefficients of the visco-elastic113

frame. When ν, N, and η denote the bulk Poisson ratio, shear modulus, and loss factor of the frame,114

respectively, then: Ñ = N(1 + iη) and Â = 2ν
1−2ν Ñ. Note that both these coefficients are complex-valued115

because of the visco-elastic behaviour of the frame leading to structural energy losses.116

The formulae for the effective densities ρ̃11, ρ̃22, and ρ̃12 can be found, for example, in Refs. [22, 23, 27].117

They depend not only on the (homogenised bulk) densities of solid and fluid phases but also on a frequency-118

dependent viscous damping coefficient [22, 27]:119

b̃ = iωφρa
(
α̃(ω) − α∞

)
, (5)

which accounts for viscous interaction forces. This coefficient is related to the fluid phase density φρa120

(here, ρa is the density of air, i.e. the actual fluid in pores) and to the difference between the frequency-121

dependent viscous dynamic tortuosity α̃(ω) and kinematic tortuosity α∞ of the porous material. Johnson et122
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al. [28] proposed a semi-phenomenological model for α̃(ω) depending on the transport parameters of porous123

material, viz. the viscous permeability (or airflow resistivity σ), porosity φ, kinematic tortuosity α∞, and124

viscous characteristic length Λ. The effective moduli Q̃ and R̃ can be computed from formulae provided125

in [25, 22, 23, 24]. In particular, they depend on the dynamic (i.e. frequency-dependent) effective bulk126

modulus of air-saturated rigid porous medium for which a semi-phenomenological model was proposed by127

Champoux and Allard [29]. In that way, the Biot-Allard model [22, 27, 28, 29] for sound propagation and128

absorption in poro-elastic materials is applied in this work for all analyses assuming a visco-elastic frame,129

while the Johnson-Champoux-Allard (JCA) equivalent-fluid model [22, 28, 27] is occasionally used for130

comparison when the frame is assumed rigid.131

2.3. Inclusion modeling132

In this paper, three different ways are used to model the inclusion in order to isolate different effects, i.e.133

the mass-spring effect, the trapped mode effect, and the effect of the modified mode of the frame, leading to134

an increase in the absorption coefficient in dedicated frequency ranges.135

2.3.1. Point- mass inclusion136

The first and the most simple approach is to consider the inclusion as a concentrated mass (m0), dis-137

tinguishing the mass-spring effect from the others. Therefore, an inertial weak contribution is added to the138

variational formulation of the poro-elastic material [8]:139

WF p +

∫
Ωp

ω2m0 δ(x − x0) u · w dΩp = 0. (6)

WF p is the weak form for a poro-elastic material in the domain Ωp, m0 is the point-mass of the inclusion140

concentrated at the point x0, δ is the Dirac delta function, and w is the test function for u.141

2.3.2. Rigid and motionless inclusion142

In the second approach, to exclude the effect due to the motion of the inclusion (resonance behaviour),143

and therefore, to identify the effect induced by the inclusion size and geometry (trapped mode effect and144

modified mode of the frame), the inclusion of finite size is simply considered rigid and motionless. To145

model this, boundary conditions for a rigid and impervious wall are applied on the inclusion surface Γp-r,146

which means that the solid phase displacements and normal displacements of the fluid phase are zero147

on Γp-r [30, 24]. Since the second condition (which describes the fact that there is no relative mass flux148
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across the impervious boundary) is naturally handled in the enhanced u-p formulation [24] (i.e. the corre-149

sponding surface integral in the weak formulation is zero), only the kinematic condition for the solid phase150

displacements [24], i.e. u = 0 on Γp-r, needs to be included.151

2.3.3. Elastic inclusion152

In the third approach, the coupling between different effects (inertial, trapped mode effect, and modified153

mode of the frame) is taken into account by modeling the inclusion as an isotropic elastic domain and as-154

suming that the poro-elastic layer is glued to the surface of this domain. Therefore, coupling conditions are155

applied on the interface Γp-e between the poro-elastic and elastic domains, namely [30, 24]: the continuity156

of the total normal stresses at the interface, no relative mass flux across the impervious interface, and the157

continuity of the solid phase displacement vector of poro-elastic medium u and the elastic displacement158

vector ue of the inclusion. However, since in the u-p formulation the coupling between the poro-elastic159

and elastic media is natural, only the kinematic coupling condition, i.e. u = ue on Γp-e, has to be explicitly160

imposed [24].161

2.4. Field representations162

As the problem is periodic in space and is excited by a plane wave, the field variables are considered to163

be periodic (in the x-direction) in the poro-elastic domain Ωp, acoustic domain Ωa, and elastic domain Ωe.164

Therefore, each field variable W satisfies the Floquet-Bloch relation [31]:165

W(x + d) = W(x) exp
(
ik̃ · d

)
, (7)

where d is the spatial periodicity and k̃ = {k̃1, k̃2, 0} is the in-plane component of the incident wave number.166

In our case d = {d1, 0, 0}, where d1 = Lx. Then, the periodicity in solid, acoustic, and poro-elastic domains167

can be taken into account by substituting the field variables W in the governing equations of each domain168

by their periodic generalisations [32] Ŵ(x) = W(x, k̃) exp
(
ik̃ ·x

)
. The corresponding weak forms associated169

with the dynamic equations of each domain are given in Appendix A. Moreover, the mutual interaction170

between the acoustic and poro-elastic domains is ensured in two steps [30]. In the first step, the continuity171

of the pressure at the interface of the two domains is applied. In the second step, the pressure in the acoustic172

domain at the interface is considered as a surface traction force on the solid phase of the poro-elastic domain,173

while the structural acceleration due to the solid phase of the poro-elastic domain is applied on the acoustic174

domain pressure. Readers are referred to [33] for the mathematical expression of the acoustic-poro-elastic175
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coupling condition. Furthermore, the radiating boundary condition is applied by using the Floquet mode176

decomposition, as explained in [31].177

3. Results and discussion178

This section is divided into three main parts. In the first part, the discussion focuses on the resonant179

behaviors, namely the mass-spring resonance and the frame resonance in meta-poro-elastic materials, by in-180

vestigating three cases. The differences between the modified mode and the mass-spring effects are pointed181

out by analyzing the decomposed absorption coefficients in terms of three energy dissipation mechanisms,182

i.e. viscous, thermal, and structural losses [27]. In the second part, the mass-spring effect is studied in de-183

tail. The investigation is mainly focused on the conditions under which the mass-spring effect is amplified184

or disappears. These limits are evaluated, taking into account the inclusion mass and size, as well as the185

poro-elastic material properties. In the third part, an optimization routine is used to derive optimum values186

for geometrical parameters of the inclusion such that the mass-spring effect is obtained at a specified fre-187

quency. The evolution of these parameters over frequency is then analyzed to derive a qualitative guideline188

to design a meta-poro-elastic material for a targeted frequency.189

3.1. Resonant behavior in poro-elastic materials190

This section investigates the induced resonant behaviors in the poro-elastic skeleton due to the added191

inclusions and how they improve the absorption performance. Two resonant behaviors are studied: the192

modified mode of the frame and the mass-spring effect. The former refers to the first mode of the frame193

and how the vibration pattern and occurring frequency are influenced by the periodicity introduced in the194

system and the added stiffness/mass by the inclusion. The latter is a new mode of the system due to the195

mass of the inclusion which is resonating on the stiffness of the poro-elastic frame, hence constituting a196

mass-spring system.197

The resonant behavior in the poro-elastic material is studied by considering three cases. The first case198

is the reference case (case 0) and is composed of a homogeneous (i.e. without inclusions) foam layer with a199

thickness of Ly = 24 mm set on a rigid backing. In the second and third cases, a steel rod inclusion with a200

radius of r = 0.4 mm is introduced at yA = 4 mm (case A) and yB = 20 mm (case B) from the rigid backing201

respectively. In both of these cases, the width of the periodic cell is Lx = 8 mm, which is the distance along202

the x-axis between the periodically embedded inclusions. In all analyses, Biot’s poro-elasticity theory is203

used to model the poro-elastic foam, where the Johnson-Champoux-Allard (JCA) [22, 28, 29] model is204
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used to determine the effective density and bulk modulus for the air saturating the pores. The required205

Biot-JCA parameters used in all analyses are those for a polyurethane foam given in Table 1, where N, η206

are the shear modulus and loss factor of the frame, ν is the bulk Poisson ratio, ρ1 is the bulk density, φ is the207

porosity, α∞ is the tortuosity, Λ, Λ′ are the viscous and thermal characteristic lengths, and σ is the airflow208

resistivity. These parameters are taken from Ref. [23]. Note also that the transport parameters φ, α∞, Λ,209

Λ′, and σ are used by the JCA model of equivalent fluid when (for comparison) the foam is modeled as a210

rigid-frame porous material.211

N (kPa) η ν ρ1 (kg/m3) φ α∞ Λ (µm) Λ′ (µm) σ (Pa·s/m4)
55 0.055 0.3 31 0.97 2.52 37 119 87000

Table 1: The Biot parameters of the foam [23]

COMSOL Multiphysics is used to discretize and solve the Finite Element (FE) analyses for each case.212

These problems have been implemented using the weak formulations given in Appendix A. Mesh conver-213

gence studies have been performed for all cases resulting in FE meshes consisting of 893, 1006, and 1275214

quadratic elements, yielding 6126, 10197, and 14751 DOFs, for the meta-poro-elastic system with the rigid215

inclusion model, point-mass inclusion model, and elastic inclusion model, respectively.216

3.1.1. Sound absorption of the homogeneous poro-elastic layer217

The total sound absorption and the corresponding decomposed absorption coefficients for case 0, with218

normal angle of incidence, are shown in Figure 2. It can be seen that simultaneously a dip in total absorption219

and viscous losses, as well as a peak in the structural losses, appear at approximately 820 Hz. This frequency220

corresponds to the resonance frequency of the frame with rigid backing [22], which is calculated as follows:221

fr =
1

4Ly

√
Kc

ρ1
, (8)

where Kc =
2(1−ν)N
(1−2ν) . Since the structural losses directly correspond to the amount of strain in the solid phase222

of poro-elastic material, the structural loss at the resonance frequency of the frame is increased. However,223

viscous losses depend on the viscous coupling coefficient, which is dependent on foam properties, and the224

out-of-phase movement of the fluid and solid phase. The latter explains the dip at fr (in-phase movement of225

the fluid in the pores and the frame), and also the peak above fr (anti-phase displacement of the frame and226

the fluid).227
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Figure 2: Partial absorption coefficient for different dissipation mechanisms for the poro-elastic foam without inclusions.

Another important characteristic of poro-elastic materials is the decoupling frequency fc, at which the228

transition from viscous to inertial regime occurs. The harmonic motion of the fluid phase does not excite229

the frame above this frequency [22], i.e. the two phases are decoupled and the energy is dissipated mainly230

due to the inertial effect as opposed to the viscous drag between the two phases. The decoupling frequency231

is commonly defined as follows [21]:232

fc =
φσ

2πρa
, (9)

where ρa is the density of air. It should be noted that above this frequency, the rigid frame assumption233

is valid and therefore the equivalent fluid model predicts the behavior of the poro-elastic layer with good234

accuracy. Even below fc, for poro-elastic materials with sufficiently stiff (rigid) skeleton, no significant235

vibrations will be induced in the skeleton by airborne acoustic waves.236

It is worth mentioning that other criteria can be used to identify the decoupling frequency such as the237

inverse quality factor [34] in the case of foams with very low viscous characteristic length. The decoupling238

frequency for the type of foam we are targeting (foams with a high value of flow resistivity) is at high239

frequencies, more specifically for the foam used in this work the decoupling frequency is at 11.2 kHz.240

Therefore, there is a significant deviation of the equivalent fluid model with respect to the theory of Biot in241

the studied frequency range, see Figure 3.242
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Figure 3: Absorption coefficients calculated for the homogeneous poro-elastic layer using the Biot-JCA (i.e. Biot-Allard) model
and for the corresponding rigid-frame porous layer calculated using the JCA model of equivalent fluid.

3.1.2. Sound absorption of meta-poro-elastic systems in case of normal incidence angle243

In this part, the (partial) absorption coefficients of case A and case B are calculated considering the three244

different modeling techniques detailed in Section 2.3 to distinguish different resonant behaviors, i.e. the245

mass-spring and modified mode effects. Below, the results corresponding to the different ways to model the246

inclusion are discussed, i.e. first for case A and then for case B. Afterward, the resonant behaviors induced247

in case A and case B due to the mass-spring system are compared to each other. These results are depicted248

in Figure 4. Moreover, the absorption coefficient of case 0 is recalled for comparison to have a view on the249

effect of inclusion on the acoustic response.250

I. Different inclusion modeling techniques: Case A251

The results are discussed in two steps. The first step considers the absorption coefficient corresponding to252

the model that assumes a motionless inclusion. The second step explains the results that take into account253

the inclusion motion.254

• Rigid and motionless inclusion model It can be seen that the absorption coefficient obtained using255

the rigid and motionless inclusion model is almost identical to the one obtained for case 0 (cf. Figure 4256

(a)) with a slight shift of the resonance frequency of the frame to a higher frequency (i.e. from 820 Hz257

to 910 Hz). This indicates that the rigid and motionless inclusion stiffens the skeleton, causing the258

first mode of the frame to be shifted upwards in frequency. The stiffening of the foam is due to the259
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Figure 4: Total and partial absorption coefficients for case A (a,b,c) and case B (d,e,f), related to different dissipation mechanisms
in the poro-elastic layer with the inclusion modeled as rigid (a,d), point mass (b,e) or elastic (c,f).
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fact that the inclusion is modeled only by constraining the foam, and since the fixed rigid inclusion is260

located very close to the rigid backing, it results in an extended area of rigid-like boundary condition.261

• Point-mass and elastic model The same observation does not hold for the point-mass inclusion262

(see Figure 4(b)) or the elastic inclusion (see Figure 4(c)), as there is clearly an additional peak in263

the absorption coefficient. This peak is lower in frequency and is more localised in the point-mass264

model as compared to the elastic inclusion model since in the point-mass model only the inertial265

effect is considered while the elastic model also accounts for the size effect. Additionally, we would266

like to draw the reader’s attention to the two peaks in structural losses (see Figure 4(b),(c)), which267

indicate two resonance frequencies in the system. These peaks are at 770 Hz and 980 Hz for the268

point-mass inclusion, and they are at 840 Hz and 1250 Hz for the elastic inclusion. To identify the269

mass-spring resonance and the modified mode, the real part of the vertical component of the fluid and270

solid displacements (v and v f ) of case A with point-mass inclusion are evaluated at the frequencies271

of the total absorption peaks induced by the out-of-phase motion excited after the two structural loss272

peaks, see Figure 5. The vibration pattern of the frame at 820 Hz clearly presents a localized motion273

around the inclusion, while at 1250 Hz a modeshape of the skeleton modified due to the presence of274

the inclusion addition is noticeable. This indicates that the first structural loss peak is induced by the275

mass-spring resonance.

Figure 5: The displacement field (with v referring to the solid displacement along y−axis and v f referring to the fluid displacement
in the same direction) of case A with point-mass inclusion at f = 820 Hz (left), and f = 1250 Hz (right). These frequencies refer
to the peaks in the total absorption coefficient after the mass-spring and frame resonances, respectively.

276

II. Different inclusion modeling techniques: Case B277

The acoustic response related to different inclusion models is discussed for case B in the same manner as278

for case A.279
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• Rigid and motionless inclusion model As it is observable from Figure 4, the results obtained using280

the model with fixed (i.e. motionless) rigid inclusion differ significantly from those of case 0 because281

the longer distance between the inclusion and the rigid backing (as compared to case A) leads to a282

shift in the frame resonance frequency to higher frequencies. Therefore, the peak appearing in the283

total absorption and the partial structural absorption for the case with fixed rigid inclusion is simply284

due to the modification of the mode of the frame.285

• Point-mass and elastic model For these models, a similar behavior (as in case A) is observed in case286

B. Specifically, the point-mass and elastic inclusion models both exhibit two peaks in structural losses287

resulting from the mass-spring system and the modified mode of the frame, respectively. Again, this288

can be confirmed by visualizing the displacement fields at the total absorption peaks induced by these289

effects and comparing them to each other, see Figure 6.

Figure 6: The displacement (with v referring to the solid displacement along y−axis and v f referring to the fluid displacement in
the same direction) of case B with point mass inclusion at f = 1010 Hz (left), and f = 1620 Hz (right). These frequencies refer to
the peak in the total absorption coefficient after the mass-spring and frame resonance.

290

On the one hand, the absorption enhancement for case B is achieved over a broader frequency band291

as compared to case A for both the embedded elastic and point-mass inclusions due to the combined292

mass-spring and modified mode effects. On the other hand, the resonance frequency of the frame is293

shifted to higher frequencies as compared to case A and case 0 and the system reaches a perfect or294

almost perfect absorption at higher frequencies. As a result, the absorption coefficient is reduced at295

some higher frequencies in the meta-poro-elastic system as compared to case 0. For example, the296

maximum absorption for case 0 is 0.95 at 1140 Hz and is reduced at this frequency to 0.78 when an297

elastic inclusion is added, cf. Figure4(f).298
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III. Comparison of mass-spring resonance in case A and case B299

When comparing the resonance frequency of the point-mass or elastic inclusion of case A to case B, it300

can be seen that by increasing the distance between the inclusion and the rigid backing that the peak is301

shifted down in frequency. This behavior can be explained by considering the foam under the inclusion as a302

spring. Therefore, increasing its length leads to a decrease in its stiffness, which results in a lower resonance303

frequency of the mass-spring system.304

3.1.3. Sound absorption of meta-poro-elastic systems under oblique incidence angle305

To assess the utility of the meta-poro-elastic system in real applications, the performance of the con-306

sidered meta-poro-elastic configurations under oblique incidence angle is evaluated. Figure 7 shows the307

(partial) absorption coefficients calculated for case A and case B under different angles of incidence (θ)308

varying from 0◦, i.e. normal incidence, to 78◦, i.e. close to grazing incidence.

Case A Case B

Figure 7: The total absorption coefficient (solid lines) and the partial structural absorption coefficient (dotted lines) of case A and
case B with elastic inclusions under oblique incidence angle (θ).

309

As compared to normal incidence (Figure 4), the absorption curves under oblique incidence (Figure 7)310

show three additional peaks in the structural losses (labeled as c, d, and e in Figure 7) when the incidence311

angle deviates from θ = 0◦. Recall that the peaks marked with letters a and b correspond to the mass-spring312

effect and the modified mode effect along the y−axis, respectively. The additional peaks are related to the313

modes excited along the x−axis by the in-plane component of the incident plane wave. Two of which, i.e. c314

and d, are the modified first- and second-order shear modes due to inclusion, while the other one, i.e. e, is an315

additional mode excited by the inclusion resonating along the x−axis. The latter has a resonance frequency316
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around 2400 Hz, which is double of the vertical mass-spring resonance for case A around 1250 Hz. This is317

because the horizontal distance of the inclusion (Lx = 8 mm) is double the vertical distance of the inclusion318

from the rigid wall for case A (yA = 4 mm).319

To assess the performance of case A and case B (with elastic inclusions) with respect to case 0 in a320

more general setting, the diffuse-field absorption of the two cases are compared to case 0 in Figure 8. This321

evaluation confirms that the mass-spring effect is preserved under the assumption of diffuse-field.

0 500 1000 1500 2000 2500 3000

f [Hz]

0

0.2

0.4

0.6
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Case 0 - diffuse

Case A - diffuse

Case B - diffuse

Figure 8: Diffuse-field absorption coefficient of case 0, case A, and case B.

322

3.2. Mass-spring effect323

The previous part demonstrated that resonant behavior in a meta-poro-elastic system can lead to an324

absorption peak, whether it is by alternating the frame vibration pattern at its first natural frequency or325

by inducing an additional mode in the system, such as the mass-spring effect. This part investigates the326

conditions under which this mass-spring resonance leads to absorption improvement.327

3.2.1. Dependency on viscous transport parameters328

The mass-spring effect leads to an increase in the absorption coefficient by forcing the poro-elastic329

skeleton to move out-of-phase with respect to the fluid part due to the resonating inclusion. A larger phase330

difference results in an increase in viscous losses. Therefore, intuitively it is understood that the absorption331

coefficient enhancement due to the mass-spring effect strongly depends on the values of flow resistivity332

(σ) and viscous characteristic length (Λ). This statement is validated by considering case A and varying σ333

and Λ while keeping all the other parameters constant, and then plotting the absorption peak values due to334

the mass-spring effect (the local maxima in the absorption curve between the frequencies at which the two335
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structural-loss peaks appear), see Figure 9(a). It is apparent in Figure 9(a) that the increase of absorption336

peak value is more sensitive to changes in the viscous characteristic length as compared to changes in337

the flow resistivity. Additionally, normalised values of the real part of the viscous coupling coefficient,338

i.e. Re
(
b̃/

(
ωρa

))
see equation (5), are also calculated at those frequencies, and presented in Figure 6(b) for339

various values of σ and Λ. Recall that the viscous coupling coefficient (5) depends on the dynamic viscous340

tortuosity α̃, which depends on σ and Λ according to the Johnson et al. [28, 22] model, and this coefficient341

corresponds to the amount of viscous losses. Note that Re
(
b̃
)

is used for the plot in Figure 9(b) because342

the real part is associated with the dissipative part of the viscous forces, while the imaginary part Im
(
b̃
)

is343

associated with the modification of tortuosity due to the added mass effect related to the viscous behaviour344

of the fluid in the pores [27]. From the graphs in Figure 9, it can be seen that the mass-spring effect can345

occur in all types of poro-elastic foams, but that pronounced improvements in absorption only occur in346

foams with high flow resistivity and/or low viscous characteristic length (cf. white and light-gray areas in347

Figure 9).348

(a) (b)

Figure 9: The value of the absorption coefficient peak due to the mass-spring effect (a) and the value of normalised viscous coupling
coefficient at the absorption peak frequencies (b) for different combinations of viscous characteristic length and flow resistivity.

3.2.2. Dependency on inclusion properties349

The size and mass of the inclusion impact both the total absorption coefficient and the mass-spring350

effect. To verify their effect, an investigation is carried out in three steps. In the first step, the effect of the351

inclusion mass is investigated by keeping the size of the inclusion constant (r = 0.4 mm) and increasing352

its mass density. In the second step, in order isolate the effect of inclusion size the inclusion mass is kept353

constant and equal to that of a steel rod of radius r = 0.4 mm, while the inclusion size is increased. In the354

third step, the combined effect of size and mass is evaluated by increasing the elastic inclusion size.355
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I. The effect of inclusion mass356

In the first step, the effect of the inclusion mass is investigated by considering the elastic inclusion of case357

A and case B and increasing its mass density such that the inclusion mass (m) is equal to the mass (mr) of358

a steel rod with radius req = 0.2, 0.4, 0.8, 1.2, . . . , 3.6 mm, while keeping the inclusion size constant and359

equal to r = 0.4 mm. The total absorption coefficients, as well as the partial absorption coefficients due to360

structural losses, are compared in Figure 10 for the considered values of the inclusion mass. Additionally,361

the blue line in Figure 10 is the projection of the first structural losses peak on the f − req plane. Similarly,362

the red line is the projection of the second absorption peak on the f − req plane. Moreover, the red and blue363

dots are the values of total absorption at these structural peaks.364

Case A Case B

Figure 10: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing an elastic rod inclusion with the same radius r = 0.4 mm and various masses (m)
equivalent to the mass (mr) of an inclusion with a radius of r = req in millimeter.

Considering both cases, it is clear that both the mass-spring resonance frequency (the blue line) and365

the resonance frequency of the frame (the red line) are shifted down in frequency when the inclusion mass366

is increased. For both cases, above a certain amount of mass addition (i.e. m1.6), the observed behavior367

converges asymptotically as the mass increases. This means that the mass-spring resonance frequency368

converges to zero for heavy inclusions, and the inclusion only modifies the mode of frame. Moreover, the369

value of the peak in structural losses due to inclusion resonance decreases as it is shifted down in frequency370

since at lower frequencies fewer cycles per second occur and hence less energy is dissipated.371
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II. The effect of inclusion size372

The influence of different inclusions sizes, while keeping mass fixed, is shown in Figure 11. It can be seen373

that the resonance frequency of the inclusion (the blue curve), increases for larger inclusion sizes, and hence374

follows the opposite trend as for the previous study illustrated in Figure 10. This is explained by the fact375

that increasing the size of inclusion leads to an increase in the effective area of the spring and a decrease376

in the effective length of the spring [35]; thus, the spring stiffness is increased while the mass remains the377

same which increases the mass-spring resonance frequency. Similarly, the resonance frequency of the frame378

(the red curve) is also shifted up in frequency. The shift in resonance frequency of the frame is due to the379

added stiffness to the frame in combination with a decrease in the distance between the inclusion and the380

rigid backing as the inclusion dimension increases, which leads to an extended area of rigid-like boundary381

condition on the foam and thus increasing the frame resonance frequency.382

It should be noted that in case B the total absorption coefficient drops significantly for larger inclusions.383

This occurs because the inclusion size becomes comparable to or larger than the two longitudinal wave-384

lengths, i.e. λr ≈ 2 for r = 2.4 mm at f = 1500 Hz, and it is located very close to the surface. Consequently,385

most of the wave is reflected. Additionally, the spacing between the inclusions decreases with the increase386

in the inclusion size (because the width of the periodic cell remains the same), leading to a decrease in the387

material that the sound wave can propagate through and be dissipated.388

It can be seen that the peaks due to the mass-spring resonance are more pronounced for larger inclusions.389

This is related to the fact that when the size of the inclusion is increased, the added mass is distributed over390

a larger area, therefore it affects a wider area of the foam around it, i.e. increase in the frame displacement391

which corresponds to a higher peak in the structural loss. Additionally, the resonance frequency of the392

inclusion is shifted higher in frequency, where more cycles per second occur and hence more energy can be393

dissipated.394

To demonstrate the former, the field variables (i.e. the solid phase displacements, the fluid phase dis-395

placements, and the pressure) at the inclusion resonance frequency (800 Hz) are shown for the smallest and396

the largest inclusions in Figure 12, where the real part of the solid displacement along the x−axis and along397

the y−axis, and the real part of the pore pressure are denoted by u, v, and p, respectively. The real part398

of the fluid displacement along the x−axis and along the y−axis are indicated with u f and v f , respectively.399

Figure 12 shows that at f = 800 Hz for both cases the frame is excited by the resonating inclusion to move400

out-of-phase with the fluid phase and it is clear that the area of the poro-elastic layer affected by the large401
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Case A Case B

Figure 11: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing an elastic inclusion with various radii r, but constant mass equal to that of a steel
rod with a radius 0.4 mm.

inclusion is larger than the area affected by the small inclusion.402

Figure 12: The field variables at f = 800 Hz in the poro-elastic layer with elastic inclusion with a radius of r = 0.2 mm (graphs on
the left) or 3.6 mm (graphs on the right).

III. The combined effect of the inclusion mass and size403

To conclude this study on the influence of geometry, the radius of, and accordingly the mass of, the steel404

inclusion is varied. The total absorption, as well as the partial absorption coefficients due to structural405

losses, are shown in Figure 13 for both cases A and B.406

Considering case A it is apparent that by increasing the diameter of the inclusion, and consequently407

the added mass, the mass-spring resonance (the blue line) is shifted down in frequency (from 1920 Hz to408
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Case A Case B

Figure 13: The total absorption (black and gray continuous curves) and partial absorption due to structural losses (black and gray
dotted curves) for poro-elastic cells containing a steel rod inclusion of different radii.

320 Hz), while the resonance frequency of the frame (the red line) is shifted up in frequency (from 890 Hz409

to 1210 Hz). The value of the peak in structural losses due to the mass-spring resonance decreases since410

the larger inclusion rigidifies the foam and also in lower frequencies the energy dissipation decreases due to411

fewer cycles per second. It should be noted that the shift in resonance frequency of the mass-spring system412

is due to the increase in added mass, which is more dominant than the increase in the effective area and413

decrease in the effective length of the spring acting underneath the inclusion. The shift in the resonance414

frequency of the frame follows the same trend as in the previous study. For very small inclusions (i.e.415

r = 0.2 mm and r = 0.4 mm) the resonance frequency of the frame is lower than that of the inclusion416

(therefore, the red and blue curves intersect).417

All remarks explained above can be observed more clearly in case B (Figure 13(right)) since the reso-418

nance frequency of the mass-spring system and frame are located further apart. In this case, the mass-spring419

resonance frequency lowers from 2100 Hz to 80 Hz, and at the same time the frame resonance frequency420

shifts up from 770 Hz to 2160 Hz.421

3.3. Tunablity of the mass-spring effect422

As a final study the combined effect of the inclusions size and location is investigated in order to find423

the optimal absorption that can be achieved at various frequencies. To do so, an optimization problem is424

defined with a design space consisting of the inclusion radius (r) and the vertical position of the inclusion425

(y). These parameters are optimized at each frequency such that a curve indicating the maximal achievable426
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absorption is obtained. The following objective function is used:427

fp = |1 − α|2. (10)

The presented optimization problem is solved using the patternsearch function in Matlab [36, 37]. It should428

be mentioned that the elastic inclusion model is used in the optimization problem.429

Figure 14 summarizes the results of this optimization routine. The optimized parameter values at the430

targeted frequencies between 100 Hz and 3000 Hz are shown in Figure 14(b), while the best feasible ab-431

sorption coefficient values, by using the optimized parameters at each frequency, are marked with red circles432

in Figure 14(a).433

Two different trends in the design parameters progression over two frequency ranges are observed and434

marked in white in Figure 14(b). The first frequency range, from 500 Hz to 900 Hz, is the mass-spring dom-435

inated region, while the second one, from 1700 Hz to 3000 Hz, is dominated by the modified mode effect.436

In the first frequency range, the absorption enhancement is due to the mass-spring effect and the resonance437

frequency has a negative relation with the inclusion size and its (absolute) position from the rigid backing.438

Moreover, Figure 14(b) shows that (in this region) the size of the inclusion should be deep-subwavelength439

since there is a drop in inclusion size from sub-wavelength scale (λr ≈ 40) to deep-subwavelength (λr ≈ 200)440

at 500 Hz, where the mass-spring effect dominated region begins.441

(a) (b)

Figure 14: The absorption coefficient at the targeted frequencies of the optimization (a), and the converged values of the design
space parameters (b). The red circles in the left plot refer to the best absorption coefficient value that can be obtained at each
targeted frequency using the parameters shown in the right plot at that specific frequency.

In the second region, i.e. the modified mode dominated region, the frequency has a positive relation442
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with the inclusion size. The reason for this is that the larger inclusion stiffens the foam and shifts the mode443

of the frame to a higher frequency. However, the optimal inclusion position does not seem to be strongly444

dependent on the frequency at which it is optimised and it seems that the optimal position of the inclusion445

is approximately in the middle of the foam layer for all the frequencies in the modified mode dominated446

region.447

There is a transition zone between the two regions (the gray area from 900 Hz to 1600 Hz), where the448

choice of the design parameters seems to be more random. This zone starts around the natural mode of the449

frame in case 0, i.e. at fr ≈ 820 Hz. Inside this zone, the design parameters cannot be optimized because:450

(i) the inclusion is already at the lowest vertical position and lowest dimension possible, therefore the mass-451

spring effect has reached its limit; (ii) the modified mode is always higher in frequency as compared to452

the natural mode of the frame and there will be always a minimum frequency offset between them. This453

minimum frequency offset corresponds to unit cell characteristic length which is fixed in this case. All this454

results in a transition zone that is neither dominated by the mass-spring effect nor by the modified mode455

effect.456

4. Conclusions457

In this paper the absorption of poro-elastic material is enhanced in the viscous regime using a mass-458

spring effect. It is shown that by embedding a deep-subwavelength inclusion in a poro-elastic layer a mass-459

spring system can be induced, where the foam under the inclusion acts as a spring. Therefore, by tweaking460

the added mass and its distance from the rigid backing the resonance frequency of the system can be tuned.461

More specifically, the resonance frequency of the mass-spring system has an inverse relation with both462

of these parameters. Moreover, it is shown that the resonating inclusion excites the out-of-phase motion463

between the fluid and solid phase of the porous material leading to an increase in the energy dissipation464

due to viscous effects. This phenomenon is apparent for the poro-elastic material under the decoupling465

frequency and when the inclusion is fully coupled to the poro-elastic domain or at least modeled as a point-466

mass inclusion. The mass-spring effect is identified by decomposing the absorption coefficient in three467

energy dissipation mechanisms, viz. viscous, thermal, and structural, for three different cases of poro-elastic468

layers, namely, without inclusion and with inclusion at two different locations (i.e. close to the rigid backing469

or layer surface). It is shown that the peaks in the absorption curve correspond to the increase in out-of-470

phase movement of the two phases, which happens at the resonance frequency of the mass-spring system471
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and the resonance frequency of the frame. This explains that the mass-spring effect increases the viscous472

energy dissipation by forcing the frame to move out-of-phase with the fluid part. After elaboration on473

the resonant behaviors in the proposed meta-poro-elastic systems, the physical and geometrical parameters474

that intensify or degrade the mass-spring effect were discussed. It was demonstrated that, since the mass-475

spring effect enhances the absorption coefficient through viscous losses, the poro-elastic layer should have476

a relatively high viscous energy dissipation at low frequencies. This translates into a high value of the477

flow resistivity and/or a low value of the viscous characteristic length. Additionally, it was shown that the478

size of the inclusion plays an important role in the effectiveness of the meta-poro-elastic system: when the479

inclusion size becomes comparable to the wavelength in the medium, the inclusion stiffens the foam around480

it leading to either extension of the rigid backing or reflection of the incidence wave from the surface by481

the large inclusion depending on its location. Finally, it is shown that the mass-spring effect increases the482

absorption coefficient in the viscous regime, even for an oblique angle of incidence. Therefore, this work483

presents the potential of this effect as an absorption enhancement strategy in poro-elastic materials with a484

high decoupling frequency.485
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Appendix A. Weak forms493

The weak integral formulation of the Helmholz equation for the acoustic pressure p inside the acoustic494

domain Ωa reads:495

−

∫
Ωa

1
ω2ρa

∇q̄ · ∇p dΩa +

∫
Ωa

1
Ka

q̄p dΩa +

∫
Γa

1
ω2ρa

q̄∇p · n dΓa = 0, (A.1)

where ρa and Ka are the density and bulk modulus of air, Γa is the Neumann-type boundary, n is the the496

outward unit vector to normal to it, while q and q̄ are the test function for p and its complex conjugate. Con-497
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sidering a periodic solution to the problem of equation (A.1), the problem description can be reformulated498

as follows:499

WF a = −

∫
Ωa

1
ω2ρa

¯̂
∇ ¯̂q · ∇̂ p̂ dΩa +

∫
Ωa

1
Ka

¯̂qp̂ dΩa +

∫
Γa

1
ω2ρa

¯̂q ∇̂ p̂ · n dΓa = 0, (A.2)

where p̂ = p exp(ik̃ · x) and ¯̂q = q̄ exp(−ik̃ · x) are the periodic pressure field and the corresponding test500

function. Here and below, ¯̂
∇ = ∇− ik̃ and ∇̄ = ∇+ ik̃ are the shifted gradient operators for the test functions501

and field variables, respectively.502

The weak formulation for the poro-elastic domain Ωp can be reformulated in the same manner as for503

the acoustic domain by considering periodic representations p̂ and û = u exp(ik̃ · x) of the pore pressure p504

and solid phase displacements u, respectively, namely:505

WF p =

∫
Ωp

ω2ρ̃ û · ¯̂w dΩp −

∫
Ωp

σ̂(û) • ¯̂
∇ ¯̂w dΩp +

∫
Ωp

(
γ̃ + ξ̃

)
∇̄p̂ · ¯̂w dΩp +

∫
Ωp

ξ̃ p̂ ¯̂
∇ · ¯̂w dΩp

−

∫
Ωp

φ2

ω2ρ̃22
∇̄ p̂ · ¯̂

∇ ¯̂q dΩp +

∫
Ωp

φ2

R̃
p̂ ¯̂q dΩp +

∫
Ωp

(
γ̃ + ξ̃

)
û · ¯̂
∇ ¯̂q dΩp +

∫
Ωp

ξ̃ ∇̄ · û ¯̂q dΩp = 0,

(A.3)

where • denotes the scalar product of second order tensors, ξ̃ = φ(1 + Q̃/R̃), and ¯̂w = w̄ exp(−ik̃ · x) is the506

periodic test function for û. Moreover, the stress tensor depends only on the periodic displacement field of507

solid phase, namely,508

σ̂ = Â
(
∇̄ · û

)
I + Ñ

(
∇̄û + ∇̄Tû

)
. (A.4)

Similarly, the weak formulation for the periodic field representation of the elastic domain Ωe can be509

written as:510

WF e =

∫
Ωe

ω2ρe û · ¯̂w dΩe −

∫
Ωe

σ̂e(û) • ¯̂
∇ ¯̂w dΩe = 0, (A.5)

where ρe is the mass density od elastic material, while the periodic field of elastic stress tensor σ̂e depends511

on û and the Lamé coefficients λe and µe of the isotropic material of inclusions as follows512

σ̂e = λe
(
∇̄ · û

)
I + µe

(
∇̄û + ∇̄Tû

)
. (A.6)

It should be noted that we have skipped surface integrals in the weak formulation of poro-elasticty (A.3)513

and elasticity (A.5), because they are irrelevant for the configuration analysed in this work. Moreover, in514

this formulation the coupling on the interface between the poro-elastic and elastic media is natural, and515
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since the elastic inclusion is embedded in the poro-elastic domain and has no direct contact with air the only516

non-zero coupling integral appears on the interface between the acoustic and poro-elastic domains:517

ICp-a =

∫
Γp-a

û · n ¯̂q dΓp-a +

∫
Γp-a

p̂ n · ¯̂w dΓp-a, (A.7)

Thus, the weak formulation for the whole coupled system is: WF a +WF p +WF e + ICp-a = 0.518
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[14] B. Nennig, Y. Renou, J.-P. Groby, Y. Aurégan, A mode matching approach for modeling two dimensional porous grating with557

infinitely rigid or soft inclusions, The Journal of the Acoustical Society of America 131 (5) (2012) 3841–3852.558

[15] C. Lagarrigue, J. P. Groby, O. Dazel, V. Tournat, Design of metaporous supercells by genetic algorithm for absorption559

optimization on a wide frequency band, Appl. Acoust. 102 (2016) 49–54. doi:10.1016/j.apacoust.2015.09.011.560

URL http://dx.doi.org/10.1016/j.apacoust.2015.09.011561

[16] L. Feng, Enhancement of low frequency sound absorption by placing thin plates on surface or between layers of porous562

materials, The Journal of the Acoustical Society of America 146 (2) (2019) EL141–EL144.563

[17] C. Boutin, Acoustics of porous media with inner resonators, J. Acoust. Soc. Am. 134 (6) (2013) 4717–4729.564
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