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a b s t r a c t 

The need to measure bias encoded in tabular data that are used to solve pattern recognition problems is 

widely recognized by academia, legislators and enterprises alike. In previous work, we proposed a bias 

quantification measure, called fuzzy-rough uncertainty, which relies on the fuzzy-rough set theory. The 

intuition dictates that protected features should not change the fuzzy-rough boundary regions of a de- 

cision class significantly. The extent to which this happens is a proxy for bias expressed as uncertainty 

in a decision-making context. Our measure’s main advantage is that it does not depend on any ma- 

chine learning prediction model but a distance function. In this paper, we extend our study by exploring 

the existence of bias encoded implicitly in non-protected features as defined by the correlation between 

protected and unprotected attributes. This analysis leads to four scenarios that domain experts should 

evaluate before deciding how to tackle bias. In addition, we conduct a sensitivity analysis to determine 

the fuzzy operators and distance function that best capture change in the boundary regions. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Data-driven decision support systems have been accused of be- 

ng a fertile ground to produce biased results, thus leading to 

iscriminatory decisions [1] . As historical data often encode bi- 

ses [2] explicitly or implicitly [3] , pattern recognition algorithms 

nevitably relate their predictions with protected characteristics 

uch as race or gender. The Equality Act 2010 of government of 

he United Kingdom defines protected attributes as personal char- 

cteristics (such as gender or race) that should not put a person at 

 substantial disadvantage compared to people with different per- 

onal characteristics. In the literature, more than 20 definitions of 

airness [4] and respective bias metrics have been proposed. How- 

ver, existing metrics express different and often contradictory no- 

ions of fairness [5–7] depending on local legal and cultural con- 

entions [8] or on the type of decision-support system [1] . Decid- 

ng which metric is most appropriate for the task at hand is diffi- 

ult [9] as several parameters need to be considered such as causal 

nfluences among features, mis-representation of groups and dif- 

erent modalities of data [4] . Therefore, the need for introducing 

eneral-purpose, direct and indirect bias measures is evident [8] . 
∗ Corresponding author. 

E-mail addresses: g.r.napoles@uvt.nl (G. Nápoles), lisa.koutsoviti@uhasselt.be (L. 

outsoviti Koumeri). 
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The literature on this subject relies on two dominating no- 

ions of fairness: group-based and individual-based fairness mea- 

ures [10] . Group-based measures have been criticized for leading 

o inverse discrimination [11] and being oblivious to features other 

han the sensitive feature [6,12] . Moreover, they often require dis- 

retization of numeric sensitive features such as age, which can al- 

er bias measures’ outputs [7] . Individual-based fairness measures 

equire strong assumptions such as the availability of an agreed- 

pon similarity metric, or knowledge of the underlying data gen- 

rating process [13] . These measures act as bias proxies as they do 

ot measure bias directly. For example, they can rely on the con- 

istency in classification or the redundancy in data. Finally, both 

roups of measures are often applied on predictions generated by 

lack-box machine learning models for fairness assessment [14] . 

owever, most successful prediction models are not intuitively ex- 

lainable [15] and tend to be sensitive to variations in the input 

rising from variations in training-test splits [7] . 

Another sensitive issue refers to implicit bias or indirect dis- 

rimination, which occurs when decisions are made based on 

onsensitive features that strongly correlate with biased sensitive 

nes [8] . This means that even if protected features are excluded 

rom the decision making process, a classification algorithm might 

till produce biased results. Existing implicit bias measures are 

ound in [8,16] where background knowledge is used to manu- 

lly set classification rules combined with discriminatory thresh- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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lds. The possible pitfall in such an approach is that human ex- 

erts might misjudge the impact of feature categories on the deci- 

ion outcomes [17] . 

Recently, we proposed a measure called fuzzy-rough uncer- 

ainty (FRU) to quantify explicit bias of protected features in 

attern classification problems [18] . Our measure quantifies the 

hanges in the fuzzy-rough boundary regions after removing a pro- 

ected feature as a proxy for measuring fairness. To that end, we 

se the advantages of rough sets [19] for analyzing inconsistency 

n decision systems. Measuring the distance or the change between 

he regions of fuzzy-rough sets has been examined in the litera- 

ure [20,21] , but not in the context of bias quantification, as far 

s we know. To cope with the issue of defining similarity thresh- 

lds when handling problems involving continuous features, we 

se fuzzy-rough sets as defined by [22] . This mathematical the- 

ry allows computing membership values that express the extent 

o which instances belong to each information granule [23] . The 

ntuition behind FRU is that, in fair decision-making scenarios, re- 

oving a protected feature should not cause big changes in the de- 

ision boundaries. The extent to which that happens can be used 

o quantify the explicit bias attached to a given protected feature. 

While the FRU measure brings the added value that it does 

ot rely on any prediction model but information granules derived 

rom the data, it cannot capture implicit bias. For example, if a pro- 

ected feature is correlated with an unprotected one, its removal 

ight not cause significant changes to the boundary regions. This 

uggests that we should analyze the FRU values together with ex- 

sting correlation/association patterns between protected and un- 

rotected features. Another issue that cries for further research is 

he impact of fuzzy operators and distance functions on the per- 

ormance of our measure. 

Motivated by these two research gaps, our paper brings three 

ain contributions. Firstly, we illustrate how the FRU is able to 

apture explicit bias while state-of-the-art individual-based mea- 

ures struggle to capture the effect of removing a protected fea- 

ure. For simulation purposes, we use the German Credit data 

et [24] , which classifies loan applicants in terms of creditworthi- 

ess and is widely used in the context of AI Fairness [14] . Sec-

ndly, we conduct a sensitivity analysis to study the impact of 

uzzy operators and distance functions on the FRU results. Such 

 study led to recommended parametric settings that can be 

dopted for other datasets (as reported in the supplementary ma- 

erials). Finally, we discuss four scenarios that relate the changes 

n the boundary regions (after removing a protected feature) with 

he correlation/association between protected and unprotected fea- 

ures [25] as a way to detect implicit bias. 

The remainder of the paper is organized as follows. The next 

ection introduces the mathematical formalism behind the com- 

utation of the fuzzy-rough regions from data. Section 3 describes 

he similarity function we deployed and the proposed bias quan- 

ification measure. Section 4 presents the experimental setup and 

nalyzes the measures’ outputs. Finally, Section 5 discusses possi- 

le implications to the field. 

. Fuzzy-rough set theory 

This section presents the FRS theory as described by [22] . This 

heory is used to transform tabular data into information granules 

haracterizing each decision class. The output of this fuzzy granu- 

ation process is membership values, which will be used to define 

ur bias quantification measure. 

Let us assume that we have a universe of discourse U , a fuzzy 

et X ∈ U and a fuzzy binary relation R ∈ Q(U × U) such that 

X (x ) and μR (y, x ) are their membership functions, respectively. 

he membership function μR : U → [0 , 1] determines the degree to 

hich x ∈ U is a member of X , whereas μ : U × U → [0 , 1] denotes
R 

30 
he degree to which y is considered to be a member of X from the 

act that x is a member of the fuzzy set X . Whenever opportune, 

 (x ) is denoted with its membership function μR (x ) (y ) = μR (y, x ) . 

Firstly, let us build a partition of U according to the deci- 

ion classes. The X k set contains all objects associated with the 

 -th decision class. The membership degree of x ∈ U to a subset 

 k was computed using the following hard membership function: 

X k 
(x ) = 1 for x ∈ X k and μX k 

(x ) = 0 for x �∈ X k , as we assume that

ll problem instances are correctly labeled. 

Secondly, we need to define a fuzzy binary relation μR (y, x ) 

o determine the fuzzy similarity between instances x and y . This 

unction should combine the membership degree μX k 
(x ) with the 

imilarity degree φ(x, y ) between two objects x, y ∈ U . Overall, we 

efine μR (y, x ) = μX k 
(x ) φ(x, y ) . In the next section, we will give

ore details about the similarity function, which is expressed in 

erms of a distance function. 

Aiming at defining the lower approximations, we use the de- 

ree of x being a member of X k under the knowledge R . This can

e measured by the truth value of the statement ’ y ∈ R (x ) implies

 ∈ X k ’ under fuzzy sets R (X ) and X k . We use a necessity mea-

ure in f y ∈ U I(μR (y, x ) , μX k 
(y )) with a fuzzy implication function 

 : [0 , 1] × [0 , 1] → [0 , 1] such that I(0 , 0) = I(0 , 1) = I(1 , 1) = 1

nd I(1 , 0) = 0 . It also holds that I(., a ) decreases and I(a, . ) in-

reases, ∀ a ∈ [0 , 1] . Equation (1) displays the membership function 

or the lower approximation R ∗(X k ) associated with the k -th deci- 

ion class, 

μR ∗(X k ) 
(x ) = min { μX k (x ) , in f y ∈ U I(μR (y, x ) , μX k (y )) } . (1) 

To derive the upper approximations, we measure the truth 

alue of the statement ’ ∃ y ∈ U such that x ∈ R (y ) ’ under fuzzy sets

 (x ) and X k . The true value of this statement can be obtained by a

ossibility measure sup y ∈ U T (μR (x, y ) , μX k 
(y )) with a conjunction 

unction T : [0 , 1] × [0 , 1] → [0 , 1] such that T (0 , 0) = T (0 , 1) =
 (1 , 0) = 0 and T (1 , 1) = 1 , where both T (., a ) and T (a, . ) in-

rease, ∀ a ∈ [0 , 1] . Equation (2) displays the membership function 

or the upper approximation R ∗(X k ) associated with the k -th deci- 

ion class, 

μR ∗(X k ) 
(x ) = max { μX k (x ) , sup y ∈ U T (μR (x, y ) , μX k (y )) } . (2) 

This model takes the minimum between μX k 
(x ) and in f y ∈ U 

(μR (y, x ) , μX k 
(y )) when calculating μR ∗(X k ) 

(x ) , and the maximum 

etween μX k 
(x ) and sup y ∈ U T (μR (x, y ) , μX k 

(y )) when calculating

R ∗(X k ) 
(x ) to preserve the inclusiveness of R ∗(X k ) in X k and the in-

lusiveness of X k in R ∗(X k ) . 

Finally, we define the fuzzy-rough regions using the up- 

er and lower approximations. The membership functions for 

he fuzzy-rough positive, negative and boundary regions can 

e defined as μPOS(X k ) 
(x ) = μR ∗(X k ) 

(x ) , μNEG (X k ) 
(x ) = 1 − μR ∗(X k ) 

(x )

nd μBND (X k ) 
(x ) = μR ∗(X k ) 

(x ) − μR ∗(X k ) 
(x ) , respectively. Member- 

hip values to positive regions indicate the extent to which the in- 

tances belong to a decision class, membership values to negative 

egions indicate the extent to which the instances do not belong 

o a decision class, whereas membership values to boundary re- 

ions indicate the extent to which the instances are uncertain to 

he problem at hand. 

. Fuzzy-rough uncertainty measure 

This section introduces our measure to quantify bias in tabu- 

ar datasets used for pattern classification. This measure assumes 

hat experts can determine the set of protected features (i.e., those 

ikely related to bias) beforehand. The intuition of our measure is 

hat a protected feature should not have a leading role on the de- 

ision process. For example, let us assume that we have a problem 

escribed by several features where Gender is deemed a protected 

eature. If we remove that feature and there is an increase in the 
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Fig. 1. Membership values to the negative, boundary and positive regions using the 

complete feature set. The x axis represents the instances and the y axis their re- 

spective membership values. 

Fig. 2. Difference between membership values to the boundary regions after re- 

moving Age ( � f 1 ) and after removing Gender ( � f 13 ) per instance. 

o

c

s

i

f

t

m

t

b

c

r

u

4

p  

c

t

s

t

t

u

o

s

i

e

u

T

F

r

isclassifications, then one could conclude that Gender is relevant 

o separate the decision classes. The extent to which the decision 

oundaries become less separate can be understood as a bias indi- 

ator. 

Before presenting our measure, let us describe the similar- 

ty function [26] used to compare the instances. Such a function 

ill be derived from a normalized heterogeneous distance func- 

ion. In particular, we will employ two distance functions: the 

eterogeneous Manhattan-Overlap Metric (HMOM) [27] and the 

eterogeneous Euclidean-Overlap Metric (HEOM) [27] because of 

heir ability to deal with instances having mixed-type features. 

quation (3) portrays the similarity function, which produces val- 

es in the (0,1) interval, 

φ(x, y ) = e 
−λ

(
d(x,y ) 

)
(3) 

here λ > 0 is a user-specified smoothing parameter to avoid sat- 

ration problems in which similarity values have low variability 

ven for quite dissimilar instances. 

The fuzzy-rough uncertainty (FRU) measure [18] quantifies how 

uch the absence of the protected feature f i modifies the fuzzy- 

ough boundary regions. If the difference is positive, we can con- 

lude that the boundary regions became bigger after removing the 

rotected feature, so there is more uncertainty (i.e., the feature was 

mportant for the classification). If the difference is negative, we 

an conclude that the boundary regions became smaller after re- 

oving the protected feature, so there is less uncertainty (i.e., the 

eature was causing uncertainty and its removal might be conve- 

ient). 

To quantify these differences, we use the membership values of 

nstances in U to the boundary regions using (i) the full set of fea- 

ures, and (ii) the set of features without including the protected 

eature f i (denoted by ¬ f i ). Equation (4) shows how to compute 

he FRU value associated with the k -th decision class and the i -th 

rotected feature, 

�k ( f i ) = 

√ 

�x ∈ U (�+ 
B k ¬ f i (x )) 2 √ 

�x ∈ U (μB k (x )) 2 
(4) 

uch that �+ 
B k ¬ f i 

(x ) = μB k 
(x ) − μB k ¬ f i (x ) when the removal of the

 -th feature increases the uncertainty. Otherwise, we will assume 

hat �+ 
B k ¬ f i 

(x ) = 0 . To lighten the notation, we denote the k -th

oundary region μBND (X k ) 
(x ) with μB k 

(x ) . Notice that the FRU 

easure is normalized by dividing by the fuzzy cardinality of the 

uzzy-rough boundary region, thus leading to relative values that 

re not likely to be affected by class imbalance. Overall, the pro- 

osed granular measure is similar to computing the relevance of 

he protected feature to preserving the decision boundaries at- 

ached to the problem. Recall that in multiclass classification prob- 

ems, the final FRU measure is the average FRU value of all decision 

lasses. 

. Numerical simulations and discussion 

The case study used in our experiments is the German Credit 

ataset, which is used for classifying loan applicants at a bank as 

redit worthy or the opposite. Based on the literature, protected 

eatures are Age and Gender [14] . 

Data preprocessing included (1) normalizing numeric features 

uch that their minimum and maximum values are 0.0 and 1.0, re- 

pectively, (2) encoding target classes as integer identifiers start- 

ng at zero, and (3) re-coding the nominal protected feature 

ex&marital status to include only gender-related information. 

Our experiments consist of four parts. The first part involves 

alculating the FRU values for protected features and comparing 

hem to individual state-of-the-art measures as in [18] . Although 
31 
ur paper studies the bias towards protected features, we also cal- 

ulate the FRU values of unprotected features for reference. The 

econd part is a sensitivity analysis where we examine variations 

n the FRU values when changing the parametric settings. In an ef- 

ort to further explore the behavior of our measure, we test it on 

hree additional datasets. The results are included in the supple- 

entary material due to space limitations. The third part attempts 

o discover whether bias encoded in protected features might also 

e encoded in unprotected features implicitly. Finally, the last part 

ompares our FRU measure with group-fairness measures. A sepa- 

ate section for such a comparison is deemed necessary as individ- 

al and group fairness measures should not be directly compared. 

.1. Individual fairness metrics and FRU values 

The first part starts with the calculation of the FRU values for 

rotected features as in [18] . To do that, we follow a two-step pro-

ess as mentioned in Section 3 . First, the membership values to 

he positive, negative and boundary fuzzy-rough regions per deci- 

ion class are computed using the full set of features. Fig. 1 shows 

hese membership values. 

The graphs show that the fuzzy-rough regions are relatively dis- 

inct from one another while involving dissimilar membership val- 

es. Second, the membership values to the regions are computed 

nce again excluding one protected feature from the dataset. In all 

imulations in this sub-section, we used λ = 0 . 5 , the Łukasiewics 

mplicator and an arbitrary t-norm. Recall that we are only inter- 

sted in the positive changes that occur in the membership val- 

es to the boundary regions after suppressing a protected feature. 

hese are used to compute the FRU values as in Equation (4) . 

ig. 2 shows the changes in the membership values the boundary 

egions per instance. 



G. Nápoles and L. Koutsoviti Koumeri Pattern Recognition Letters 154 (2022) 29–36 

Table 1 

Results of proposed and state-of-the-art 

measures. The ideal value of CON is one, 

while for the remaining ones is zero. 

Individual fairness metrics 

Feature set CON GEI FRU 

F 0.746 0.093 n/a 

F/ { f 1 } 0.746 0.095 0.107 

F/ { f 13 } 0.743 0.093 0.224 
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Fig. 3. Effect of the smoothing parameter ( x axis), fuzzy conjunction and fuzzy im- 

plicator on the FRU values. In these simulations, we use the HMOM distance func- 

tion. The y axis represents the problem features. 

Fig. 4. Effect of the smoothing parameter ( x axis), fuzzy conjunction and fuzzy im- 

plicator on the FRU values. In these simulations, we use the HEOM distance func- 

tion. The y axis represents the problem features. 
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Next, we compute two individual state-of-the-art measures us- 

ng the aif360.sklearn package [14] and our preprocessed dataset. 

he first individual fairness metric is the consistency score (CON) 

oupled with a logistic regression model as the underlying predic- 

or. The second individual metric is the generalized entropy index 

GEI) that relies on a k -nearest neighbors algorithm. Let F denote 

he set of protected and unprotected features. We are interested in 

xploring three settings when calculating these metrics: (i) using 

ll features in F , (ii) excluding Gender ( f 13 ) and (iii) excluding Age

 f 1 ). Table 1 shows the outputs of all measures for these settings. 

It can be noticed that both CON and GEI measures report 

oughly the same values in all three settings. The fact that the out- 

uts of the individual fairness measures report very small changes 

hen protected features are removed would suggest that they 

ailed to quantify the bias issue in this problem. In contrast, our 

RU measure reports larger changes in the boundary regions when 

he protected feature Gender is excluded compared to Age . In other 

ords, greater uncertainty in classification is reported when Gen- 

er is suppressed. This indicates that Gender encodes more bias 

han Age . 

We continue with calculating the FRU values for all features to 

tudy the protected ones in a wider perspective. We designate this 

tep as level-1 analysis since one feature is suppressed at a time 

nd denote it as �( f i ) where f i is either protected or unprotected. 

bserve that these values should not be interpreted as the abso- 

ute relevance of each feature in the classification process since 

e do not analyse the relationships for all possible feature com- 

inations as needed in a feature selection context. Instead, we aim 

o investigate the extent to which protected features behave sim- 

larly to the unprotected ones. This is made possible by dividing 

ach FRU value by the greatest FRU value among all problem fea- 

ures and is defined mathematically in Section 4.2 . Table 2 portrays 

hese results. Moreover, we report a correlation measure between 

ach protected feature and the unprotected ones and whether or 

ot the correlation is significant. Further details about the correla- 

ion measure will be disclosed in the last sub-section since it will 

e the tool we will use to detect implicit bias in the dataset. 

The results reveal that the feature having the largest FRU value 

s Checking account , which will serve as a reference feature. We 

otice that Age ’s FRU value is among the five smallest FRU val- 

es and at least three times lower than Checking account ’s FRU 

alue. Gender ’s FRU value is among the medium-ranked FRU val- 

es and about half of Checking account ’s FRU value. In this research, 

he change occurring in the boundary regions (as quantified by the 

RU measure) after removing a protected feature is defined as ex- 

licit bias . 

.2. Sensitivity analysis 

Next, we conduct a sensitivity analysis to measure the effect of 

ariations in the following parameters on the measure’s outputs: 

1) fuzzy operators (the fuzzy implicator and the t-norm) taken 

rom [28,37] , (2) the smoothing parameter in the similarity func- 

ion and (3) the distance function. Tables 3 and 4 list the different 

ombinations to be explored. 
32 
The simulation results displayed in Figs. 3 and 4 show that 

he choice of the fuzzy implicator has a significant impact on the 

easure’s behavior. However, the FRU measure seems to be invari- 

nt to the choice of the fuzzy conjunction operator. Moreover, us- 

ng Łukasiewics and Fodor as the fuzzy implicator produces the 

ame FRU values, while the rest of the implicators are unable to 

easure any FRU change at all (as illustrated in the last two rows 

f Figs. 3 and 4 ). The same patterns emerge if we use the HEOM

istance function, but the changes in the FRU values reported by 

ukasiewics and Fodor implicators are much more subtle ranging 

etween 0.0 to 0.03. This confirms our finding that HMOM bet- 

er captures changes in boundary regions. Łukasiewics is therefore 

hosen as the fuzzy implicator for the next round of simulations. 
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Table 2 

Correlation/association coefficients between protected and unprotected features, FRU values, 

ratio between FRU and FRU of reference. 

Idx Features Corr. with Gender a Corr. with Age a FRU FRU ratio b 

f1 Age 0.03 ∗ 1.0 ∗ 0.11 0.28 

f2 Credit amount 0.01 ∗ 0.03 0.07 0.18 

f3 Credit history 0.12 ∗ 0.03 ∗ 0.26 0.67 

f4 Months 0.01 –0.04 0.11 0.28 

f5 Foreign worker 0.04 0.0 0.09 0.23 

f6 Housing 0.23 ∗ 0.09 ∗ 0.17 0.44 

f7 Installment rate 0.01 0.06 0.2 0.51 

f8 Job 0.09 ∗ 0.03 ∗ 0.23 0.59 

f9 Existing credits 0.01 ∗ 0.15 ∗ 0.09 0.23 

f10 People liable 0.2 ∗ 0.01 ∗ 0.14 0.36 

f11 Other debtors 0.01 0.0 0.15 0.38 

f12 Other installment 0.05 0.0 0.23 0.59 

f13 Gender 1.0 ∗ 0.03 ∗ 0.22 0.56 

f14 Employment since 0.22 ∗ 0.17 ∗ 0.36 0.92 

f15 Residence since 0.0 0.27 ∗ 0.19 0.49 

f16 Property 0.09 ∗ 0.05 ∗ 0.34 0.87 

f17 Purpose 0.15 ∗ 0.03 ∗ 0.37 0.95 

f18 Savings account 0.07 0.01 0.32 0.82 

f19 Checking account c 0.03 0.01 0.39 1.00 

f20 Telephone 0.07 ∗ 0.02 ∗ 0.22 0.56 

a Asterisks indicate significant p-value ( p < . 05 ) or F-statistic (larger than the critical value). 
b Divide FR-Uncertainty value with FR-Uncertainty value of the reference feature. 
c Reference feature. 

Table 3 

Fuzzy implicators explored in this paper. 

Implicator Formulation 

Fodor I FD (x, y ) = 

{
1 , x ≤ y 

max (1 − x, y ) , x > y 

Gödel I GD (x, y ) = 

{
1 , x ≤ y 

y , x > y 

Goguen I GG (x, y ) = 

{
1 , x ≤ y 

y/x , x > y 

Łukasiewicz I LK (x, y ) = min { 1 − x + y, 1 } 

Table 4 

T-norms explored in this paper. 

T-norm Formulation 

Standard intersection T SI (x, y ) = min { x, y } 
Algebraic product T AP (x, y ) = xy 

Łukasiewicz T LK (x, y ) = max { 0 , x + y − 1 } 

Drastic product T DP (x, y ) = 

⎧ ⎨ 

⎩ 

x , y = 1 

y , x = 1 

0 , otherwise 
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Fig. 5. Effect of the smoothing parameter and distance function on the FRU val- 

ues. The measure produces larger values when using the HMOM distance function, 

which aligns well with the expected behavior of these distance functions. More- 

over, the larger the smoothing parameter value, the larger the values produced by 

our measure. I LK and T LK are used here. 
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Fig. 5 offers a three-dimensional view of the FRU values at dif- 

erent smoothing parameter levels (from 0 to 1 with a step of 0.1) 

er similarity function, using Łukasiewicz both as implication and 

onjunction operator. 

Overall, we observe that the FRU values increase when in- 

reasing the smoothing parameters. This means that increasing the 

moothing parameter better separates the boundary regions. One 

hould be careful not to confuse those variations with the abso- 

ute amount of bias measured. Therefore, we recommend comput- 

ng FRU values that are relative to the size of the boundary regions 

nstead of using the absolute ones. These relative FRU values can 

e computed as ˆ �k ( f i ) = �k ( f i ) / �k ( f j ) with f j being a reference

eature provided that �k ( f j ) > �k ( f i ) . This ratio is reported in the

ast column of Table 2 . If no reference feature is available, we can

ompute the relative FRU values as ˆ �k ( f i ) = �k ( f i ) / 
∑ 

j �k ( f j ) . 
33 
.3. Recommendations to detect implicit bias 

In this subsection, we explore whether the bias encoded in 

he protected features explicitly, might also be implicitly en- 

oded in unprotected features. The intuition is that implicit bias 

emonstrates itself when pairing two seemingly unrelated con- 

epts [8,29] , one of them being a protected feature. Overall, we de- 

ne implicit bias as the maximal absolute correlation between the 

rotected feature being processed and an unprotected one. Hence, 

e need to compute the correlation/association between each un- 

rotected and protected feature. For the sake of simplicity, we will 

efer to both correlation and association as correlation unless spec- 

fied otherwise. 

The correlation patterns are quantified using three different but 

onceptually sound statistical tools [30,31] . In our study, the Pear- 

on correlation coefficient [32] is used to measure correlation be- 

ween the numeric protected feature Age and the rest of the nu- 

eric unprotected features. To do that, we adopt the SciPy Python 

ackage [33] . The Cramér’s V [34] is used to capture the associ- 

tion strength between the nominal protected feature Gender and 

he unprotected nominal features. Finally, we use the R-squared co- 

fficient of determination [31] to measure the percentage of varia- 

ion in the numeric unprotected features that is explained by the 
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Table 5 

Scenarios relating correlation and FRU values. 

Large FRU value Small FRU value 

Strong correlation Explicit & Implicit bias Implicit bias 

Weak correlation Explicit bias Safe scenario 
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Fig. 6. FRU values when (i) suppressing each feature, (ii) suppressing each feature 

and Age ( f 1 ), and (iii) suppressing each feature and Gender ( f 13 ). 
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rotected nominal feature Gender coupled with an F-test of joint 

ignificance [35] . This measure is computed using the ordinary 

east squares method from the statsmodels Python package [36] . 

he selected measures of association are chosen to preserve consis- 

ency since they are related to the Pearson’s correlation coefficient 

even though features do not meet the assumptions of normality, 

inear dependence or homoscedasticity) [30] . The resulting values 

re reported in Table 2 . The asterisk accompanying each value rep- 

esents either a p-value lower than 0.05 or an F-statistic larger 

han the critical value. In short, it refers to the confidence to which 

he presence or absence of correlation is observed. For example, a 

orrelation coefficient of 0.03 ∗ should be understood as no corre- 

ation with high confidence. 

Table 5 depicts four scenarios that can be derived from the 

nalysis of FRU and correlation values. 

The scenario “weak correlation and large FRU value ” means that 

uppressing the feature causes alterations in the boundary regions. 

his behavior is defined as explicit bias. The scenario “strong corre- 

ation ” and “small FRU value ” would indicate implicit bias. In other 

ords, the removal of the protected feature did not change the re- 

ions significantly, but the strong correlation suggests that at least 

n unprotected feature encodes the protected one. The scenario 

strong correlation and large FRU value ” might imply both types of 

ias. Removing a protected feature that is strongly correlated with 

nother might still cause changes in the fuzzy-rough boundary re- 

ions. It has not escaped our notice that these scenarios involve 

ather subjective linguistic terms such as “strong ” or “weak ” that 

hould ideally be defined by domain experts. 

Let us analyze a potential situation encoding implicit bias. A 

lose inspection at the results in Table 5 reveals that the un- 

rotected features Residence since and Employment since show the 

trongest correlation with Age . While the correlation values might 

ot be categorized as strong, it is concerning that the largest ones 

ppear associated with unprotected features from which we can 

oughly infer Age . Moreover, we notice that the feature Employment 

ince has the second-largest FRU value. When coupling all pieces, 

e can conclude that Age moderately correlates with unprotected 

eatures whose removal causes alterations in the boundary regions. 

In order to complement the analysis above, we measure the 

hanges in the fuzzy-rough boundary regions after pairs of pro- 

ected and unprotected features are excluded simultaneously. We 

esignate this step as level-2 analysis and denote it as �( f i , f j )

uch that f i is a protected feature and f j is a unprotected one. As

he level-1 analysis might not be enough to discover the role of a 

rotected feature for the problem, we should investigate whether 

hat same feature might become important when combined with 

n unprotected one. Fig. 6 shows that changes in boundary regions 

hen a single feature is excluded are relatively proportional to the 

hanges occurring when excluded together with a protected fea- 

ure. 

This simulation shows that changes caused by combinations in- 

olving Gender are larger than those involving Age . That confirms 

he main finding that the results are more biased toward the for- 

er than the latter. The results also indicate that the correlation 

etween the excluded features is not strong enough for the bound- 

ry regions to remain unchanged. However, the main conclusion 

rom this analysis is that the binary categorization of explicit and 

mplicit bias is too narrow: a protected feature can be important 
34 
o some extent by itself when it comes to the boundary regions 

hile also being partially encoded into unprotected features. Such 

 conclusion paves the road for a new research direction in which 

xplicit and implicit biases are quantified within the fuzzy logic 

ormalism. 

Next, we compute the individual baseline measures in same the 

ay as in the previous simulation. Let CON( F ) and GEI (F ) denote

he values of the CON and GEI measures using the whole set of 

eatures F describing the problem. Similarly, let CON (F / { f i } ) and

EI (F / { f i } ) denote the values of these measures after suppress-

ng the protected feature f i from F . Finally, let CON (F / { f i , f j } ) and

EI (F / { f i , f j } ) be the values of these measures after removing the

rotected feature f i and the unprotected feature f j from F . The val- 

es for the level-1 analysis are computed as �CON ( f i ) = | CON (F )

 CON (F / { f i } ) | and �GEI( f i ) = | GEI (F ) - GEI (F / { f i } ) | . The values

or the level-2 analysis are computed as �CON( f i , f j ) = | CON( F )

 CON (F / { f i , f j } ) | and �GEI( f i , f j ) = | GEI( F ) - GEI (F / { f i , f j } ) | . We

uantify the absolute difference because (i) they better illustrate 

he different scenarios and (ii) our FRU measure itself is the dif- 

erence between the fuzzy-rough boundary regions. Figs. 7 and 8 

ompare the �CON and �GEI values respectively for both level-1 

nd level-2 analyses. 

The state-of-the-art individual fairness measures report in- 

nitesimal changes as problem features are suppressed, while the 

hanges captured by our FRU measure vary between 0.1 and 0.6. 

verall, these figures support our conclusion that literature mea- 

ures do not capture bias in the same manner as our fuzzy-rough 

ranulation approach. 

.4. Comparison with group-based measures 

In an effort to examine bias from different perspectives, we also 

alculate the state-of-the-art group fairness measures using the 

if360.sklearn package [14] and our preprocessed dataset. Prereq- 

isite for computing these measures is discretizing Age into people 

ounger and older than 25 years old [14] . Table 6 summarizes the 

utputs for the state-of-the-art measures along with the results of 

he FRU measure. 

Group fairness measures report slightly larger bias towards Age 

han Gender . On the contrary, our FRU measure captures the ex- 

ct opposite trend which means that it is fundamentally different 

rom existing group fairness metrics. This apparent contradiction 
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Table 6 

Results of proposed and state-of-the-art measures. The ideal value of Disparate Impact is one, while for the 

remaining ones is zero. 

Group fairness metrics 

Protected group Statistical parity Disparate Impact Equal Opportunity Average odds FRU 

Gender/Female –0.135 0.834 –0.056 –0.132 0.224 

Age/Young –0.202 0.752 –0.124 –0.149 0.107 

Fig. 7. �CON values when (i) suppressing each feature, (ii) suppressing each fea- 

ture and Age ( f 1 ), and (iii) suppressing each feature and Gender ( f 13 ). 

Fig. 8. �GEI values when (i) suppressing each feature, (ii) suppressing each feature 

and Age ( f 1 ), and (iii) suppressing each feature and Gender ( f 13 ). 
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nly tells us that results might be impacted by the granularity of 

he bias analysis. Therefore, broader studies are often needed when 

nalyzing bias. 

. Concluding remarks 

This paper builds upon our recent work [18] where we pro- 

ose a measure termed fuzzy-rough uncertainty that quantifies bias 
35 
ncoded in protected features. Applicable in pattern classification 

ettings, our FRU measure quantifies the change occurring in the 

uzzy-rough boundary regions after removing a protected feature. 

n other words, we use the change in the decision boundaries as 

 proxy for explicit bias. Advantages of our measure are that (i) it 

akes into account all features and feature categories at once, (ii) 

t can handle both numeric and nominal data, so no discretization 

s needed, (iii) it does not depend on any machine learning model 

o compute its outcomes but on a solid mathematical foundation, 

nd (iv) it is less likely to be influenced by class imbalance. 

The simulation results, using the German Credit dataset, allow 

s to draw interesting conclusions. First, our measure suggests that 

he dataset is more biased toward Gender than Age when it comes 

o explicit bias. When contrasting our finding against the state-of- 

he-art measures, we observe that individual fairness measures re- 

ort a barely noticeable change under the same setting. In con- 

rast, group fairness measures show the exact opposite trend. This 

uggests that focusing on a particular feature-category pair instead 

f analyzing the protected feature as a whole might give rise to 

isleading results. Second, even though FRU values depend on the 

hoice of parameters, all configurations in our sensitivity analy- 

is consistently report greater bias against Gender . Third, we rec- 

mmend normalizing the FRU values of protected features using 

 relevant unprotected feature as reference. Moreover, we suggest 

sing either Łukasiewicz or Fodor as implicators and the HMOM 

istance function since they report the largest changes. Finally, we 

ound evidence of implicit bias in protected features (such as Age ) 

ncoded via the unprotected features. 

There are several directions to be explored in future research 

ndeavours. Firstly, reducing the computational complexity of our 

lgorithm is vital as it is rooted in a lazy approach that can hardly 

e applied if instances exceed thirty thousand. Secondly, we sug- 

est framing the concepts of explicit bias and implicit bias into a 

ulti-valued logic approach such as the fuzzy set theory. Finally, 

t would be convenient to analyze implicit bias taking into consid- 

ration all associations/correlations between protected and unpro- 

ected features. 
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