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This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where
features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that
are initially activated by experts when running what-if simulations, whereas weights connecting the
neural concepts represent absolute correlation/association patterns between features. In addition, we
introduce a new reasoning mechanism equipped with a normalization-like transfer function that pre-

vents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily
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be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration.
Finally, we study the convergence of our model and derive analytical conditions concerning the existence
and unicity of fixed-point attractors.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Automated or algorithmic decision-making is nowadays used
by organizations worldwide partly because machines seem neutral
and unbiased [40,39]. Such an assumption is rather naive since bias
can be encoded into historical data by capturing the discriminatory
beliefs of people involved in the data generation process [27]. Arti-
ficial Intelligence (Al) algorithms then use the contaminated data
to facilitate life-changing decisions such as accepting loan applica-
tions or suggesting appropriate medical treatments. Therefore,
detecting bias in data used by Machine Learning (ML) systems is
of paramount importance to the welfare of both society and indi-
viduals [17].

Bias in decision-making tasks can be expressed implicitly or
explicitly [27]. Direct discrimination (or explicit bias) occurs when
decisions are influenced by sensitive or protected features like gen-
der, race, or marital status. Indirect discrimination (or implicit
bias) occurs when decisions are influenced by non-sensitive fea-
tures that strongly correlate with sensitive ones, thus resulting in
non-favorable outcomes towards underprivileged groups. Implicit
bias is also referred to in the literature as unconscious bias [21].
It expresses unintentional forms of discrimination that infect
decision-making structurally and systematically and remains hard
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to address during data collection, labeling, or at an algorithmic
level [21].

Available literature dedicated to discovering implicit bias is
scarce compared to respective literature regarding explicit bias
mainly because the former is harder to uncover [39,34]. We iden-
tify three main paradigms to discover and measure indirect dis-
crimination: (i) statistical tests and correlation [39], (ii) causal
models [26], and (iii) classification rules [17]. We sum up the lim-
itations of these approaches that are relevant to our proposed
model. Firstly, several methods require discretization of numeric
features, which might differ per case and/or distort the information
encoded in the data. Secondly, some approaches are still depen-
dent on black-box machine learning models whose outputs are
dependent on data pre-processing or the train-test split. Thirdly,
all approaches consider interactions among features or feature cat-
egory pairs selected by experts. However, experts might misjudge
the impact of feature categories on the decision outcomes [16].
Finally, all approaches do not account for every possible interaction
among the rest of the concepts within the system.

In previous work, we proposed a bias quantification measure
based on granular computing, called fuzzy-rough uncertainty
(FRU), for quantifying explicit bias [24]. FRU relies on fuzzy-
rough sets to measure the extent to which the exclusion of pro-
tected features from a structured dataset changes the boundary
regions. Positive changes mean that the boundary regions
expanded themselves, which can be considered a proxy for explicit
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bias. FRU values measured after removing protected features from
the data are not absolute and need to be interpreted concerning
the respective FRU values of unprotected features. Extending this
concept to detect implicit bias in [31], we hypothesize that a strong
correlation! between a protected feature and unprotected ones cou-
pled with a low FRU value of the protected feature in question can
reveal which unprotected features might be (to some extent) implic-
itly biased.

Table 1 shows the possible scenarios concerning implicit and
explicit bias, as discussed in [31]. A limitation of such a four-
scenario approach is that one would need to analyze all possible
pairwise feature combinations to study the implicit bias patterns
in the data, and their interpretation might be too complex. More-
over, such a pairwise analysis would not suffice when bias is
implicitly encoded by more than two features simultaneously or
arises from feedback loops. To address this limitation, we propose
a solution that considers interactions among all combinations of
variables simultaneously.

In this paper, we introduce a model based on Fuzzy Cognitive
Maps (FCMs) [23] to quantify the amount of bias towards pro-
tected features given initial conditions related to unprotected ones.
In our FCM model, neural concepts denote protected or unpro-
tected problem features, and weights comprise correlation pat-
terns encoding the implicit bias. To run what-if simulations with
this model, we activate neurons denoting (selected) unprotected
features, execute the reasoning mechanism, and measure the
amount of bias collected by neurons denoting protected features.
Other contributions of our research concern theoretical challenges
about FCM’s reasoning and convergence that have remained
unsolved until now. Firstly, we couple the quasi nonlinear reason-
ing rule proposed in [32] with a normalization-like transfer func-
tion that promotes competition among the neurons in each
iteration. Such a quasi nonlinear reasoning rule involves a param-
eter controlling the nonlinearity degree of the model. Secondly, we
analytically study the convergence properties of our model when it
comes to the existence and uniqueness of the fixed point. Overall,
we derive conditions guaranteeing (i) that the fixed point exists
and is unique, or (ii) that the fixed point cannot be unique. The for-
mer is useful when modeling invariant situations that do not
depend on the initial conditions, while the latter is useful when
running what-if simulations. Section 3 further motivates these the-
oretical contributions after having introduced the FCM formalism.

The rest of this paper is organized as follows. Section 2 revisits
the literature devoted to detecting and quantifying indirect (im-
plicit) bias in structured datasets. Section 3 presents the theoretical
background concerning fuzzy cognitive modeling. Section 4 intro-
duces the proposed FCM-based model and the new reasoning
mechanism, while Section 5 elaborates on the convergence proper-
ties of our reasoning mechanism and derives analytical conditions
related to fixed-point attractors. Section 6 presents the simulation
results using a well-known case study, and Section 7 states con-
cluding remarks.

2. Related works on bias detection and quantification

In this section, we briefly introduce the main paradigms used to
discover indirect discrimination (or implicit bias) in the literature
and mention their limitations.

The most popular approach to discover implicit bias comes
from the field of statistics using regression models or correlation
coefficients [39,35]. However, such methods are not easily general-

T For simplicity purposes, the term correlation simultaneously represents three
different measures chosen based on variable type (numeric or nominal) described in
Section 4.2: Pearson correlation, strength of association and R-squared coefficient of
determination.
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Table 1
Scenarios relating correlation and FRU values.

Large FRU value Small FRU value

Strong correlation
Weak correlation

Explicit & Implicit bias
Explicit bias

Implicit bias
Safe scenario

izable [39], and higher-order interactions between many features
and the target are hard to interpret. The authors in [4] also mention
that state-of-the-art methods are mainly correlation-based while
stressing out that correlation could be spurious and does not nec-
essarily imply causation. On the one hand, statistical methods can
be translated to algorithmic discrimination measures and opti-
mization constraints [39]. On the other hand, one might wonder
whether modeling implicit bias must have causal semantics.

A second approach to discover implicit bias relies on generating
classification rules learned from the data as reported in [17]. In
such a work, the authors use predetermined discriminatory items
(feature category pairs) and the concepts of support and confi-
dence of classification rules to quantify and correct implicit and
explicit bias. Their measure computes the correlation between pre-
defined and non-discriminatory items to identify redlining or
biased rules. This approach has two potential limitations. First,
the decision variable and protected features must be binary or
nominal, requiring numeric features to be discretized. Second,
manually predetermining the sensitive feature categories might
be risky as human experts might misjudge their impact on the
decision outcomes [16].

The authors in [1] introduce a method to quantify indirect influ-
ence using black-box prediction models. First, they estimate the
information content of a feature by predicting it from the remain-
ing features. Then, they modify or obscure the feature so that it can
no longer be predicted from the data and, finally, analyze the dif-
ference between the original feature and the modified one. Possible
limitations of this approach are their measure’s dependency on the
data distribution, the need to discretize numeric attributes, and the
black-box manner in which predictions are made. The authors
applied their suggested method to the German Credit dataset
[12] and concluded that implicit bias is evident in the features
credit amount, checking status and existing credits.

A third approach to discover implicit bias is based on causal
networks [26]. Causal models assume that implicit bias is trans-
mitted as causal effects along paths that pass through proxy attri-
butes [38]. Zhang et al. [38] attempt to discover implicit bias in
historical data by coupling causal networks and probabilistic infer-
ence. They use the path-specific effects as a proxy to model bias.
The authors in [4] also use probabilistic causal theory to detect
implicit bias using the German Credit dataset. They examine the
existence of implicit bias between three protected features (gender,
age and foreign worker) and five unprotected features (employed
since being the only one that is also considered in our approach),
but report that discrimination patterns are less palpable partly
because this dataset contains less proper causal relations. Their
conclusion states that automatically exploring the whole space of
possible discrimination patterns is an ongoing research challenge.

Causal paths are also explored by Chiappa in [6] combined with
the notion of counterfactual fairness in order to compute indirect
causal effects. In order to eliminate unfair information, the authors
apply a correction that is suitable to complex nonlinear models,
and its main limitation is that the data-generation process needs
to be provided. In their numerical simulations using the German
Credit dataset, they conclude that there is evidence of implicit bias
between the features housing and gender which aligns with our
findings.

In conclusion, the causal approach considers one-way interac-
tions among a limited number of features or feature categories,
whereas an FCM-based approach using a square correlation matrix
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as weights accounts for interactions among all features simultane-
ously. This is also the case with the classification rule-based
approach. Moreover, both approaches use the target variable dur-
ing the process of measuring indirect bias in contrast to our
FCM-based approach, where information flow among variables is
modeled without being affected by the possibly partial decision
feature.

3. Fuzzy cognitive maps

FCMs were introduced in [23] as a knowledge-based method for
modeling complex systems and running what-if simulations. Such
interpretable recurrent neural networks consist of neural concepts
and weighted connections. Neural concepts represent variables,
entities, or states related to the physical system under investiga-
tion. The signed weight associated with each connection denotes
the strength of the causality (or simply correlation) between the
corresponding variables. Weights are quantified in the [-1,1]
interval, while the neurons’ activation values can take values in
either [0, 1] or [-1, 1] depending on the nonlinear transfer function
attached to each neural unit.

In each iteration, FCM-based models update the activation val-
ues of neural concepts based on the neurons’ states in the previous
iteration and the weight matrix. Overall, the recurrent reasoning
process allows several times to propagate a given initial condition
across the whole network, which might be necessary to model sce-
narios with feedback loops.

Eq. (1) shows the reasoning rule to compute the activation
value of the i-th neural concept in the (t + 1)-th iteration for a
given initial condition provided by the domain expert when run-
ning what-if simulations:

M
(t+1) _ G
a; _f<§ q; w,]),
=1

where M is the number of neurons and wj is the weight connecting
the C; and C; neurons, while f(-) is the transfer function used to keep
the neurons’ activation values within the allowed activation inter-
val. The sigmoid function below is often used as a transfer function
in neural systems:

fx) =" 2)

“Tien
such that 4 > 0 is the inclination parameter to control the function
steepness. Larger values of / cause the sigmoid function to resemble
a binary activator. It is worth mentioning that we can use other
bounded, continuous transfer functions such as the hyperbolic tan-
gent function, but we need to re-evaluate how to interpret the sim-
ulation results.

The reasoning rule stops when either (i) the model converges to
a fixed point or (ii) a maximal number of iterations T is reached.
Overall, we have three possible states:

(1)

« Fixed point (m e{1,...(T-1)}:a"" =a" Vi vt > ta>: the
the same state vector after t,, thus
a™ = q* = g = —a. If the fixed point is unique,
the FCM model will produce the same state vector regardless
of the initial conditions. The unique fixed-point attractor allows
modeling invariant situations rather than performing what-if
simulations.
Limit cycle (Hta,P,j e{l,...,(T=1)}:a®" =a ViVt > t“>:
the FCM produces the same state vector periodically after the
period P, thus a/ =da“" =qa""" = . =g, where
t, +jP < T.

FCM produces

(tz) (ta+1)

35

Neurocomputing 481 (2022) 33-45

e Chaos: the FCM produces different state vectors for successive
iterations with no clear pattern.

The convergence of FCM-based models is of paramount importance
when running what-if simulations. However, we have noticed that
most published papers using FCMs to model complex systems
rarely touch upon the practical implications of having multiple or
unique fixed points, or cyclic patterns. There could be several rea-
sons for such a gap. Firstly, the nonlinearity of FCM-based models
operating as closed systems makes them difficult to control. Sec-
ondly, the most prominent theoretical results reported in the liter-
ature [5,20,22] are primarily devoted to deriving sufficient
conditions ensuring the existence and uniqueness of the fixed point.
These conditions might be quite strict and difficult to fulfill in real-
ity. Moreover, they have limited usability if we want to perform
what-if simulations where the outputs should not remain static.

Another issue that emerges when using bounded transfer func-
tions and large, densely connected FCM-based models is that the
neuron’s activation values often locate either in the lower or upper
boundary of the activation interval. Hence, the neurons tend to sat-
urate when receiving a large negative or positive information flow.
One way to address this drawback is to modify the reasoning rule
to promote competition among the neurons in each iteration.
Finally, some transfer functions such as the sigmoid function can
distort the simulation results by activating neurons that are not
supposed to be active given the information flow they receive.

In the following subsection, we overcome these drawbacks and
propose a sound FCM-based model to perform simulations con-
cerning the impact of the implicit bias over protected features in
pattern classification problems.

4. Modeling implicit bias using cognitive modeling

This section presents our FCM-based simulation model to quan-
tify the amount of implicit bias towards protected features given
initial conditions imposed by (selected) unprotected features.
Firstly, we further discuss the problem of quantifying implicit bias
and introduce the intuition of our model. Secondly, we describe
how to build the FCM structure using the correlation/association
patterns between problem features. Thirdly, we introduce a re-
scaled transfer function coupled with a parametric quasi nonlinear
reasoning rule to prevent saturation and convergence issues from
happening.

4.1. Motivating our FCM-based model

One of the difficulties in quantifying implicit bias is that pro-
tected features can be affected by seemingly unrelated features
through hidden patterns. For example, the postal code might influ-
ence whether or not an applicant gets a loan because people living
in more expensive neighborhoods might be more likely to receive
the loan. Such hidden patterns result from complex dependencies,
correlations, associations, causalities, and feedback loops that are
difficult to detect by inspecting the data. This suggests that implicit
bias should be modeled as a complex system involving feedback
loops and non-trivial dependencies. Note that having feedback
loops justifies using recurrent neural networks even when the tar-
get problem does not involve sequences or an explicit time
component.

In our paper, modeling implicit bias means building an FCM-
based model to quantify the bias amount for protected features
given initial conditions associated with unprotected ones. The
model will enable performing what-if simulations with the form:
“What is the amount of bias attached to the protected feature

yeYifx isa® x, isa, ..., and x, is ay, such that Y is the set
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of protected features and X is the set of unprotected ones. The ini-

tial conditions a\”,ay”,...,a should be determined by domain
experts when running the simulations. To perform such simula-
tions, we need to ensure that the fixed point is not unique. At
the same time, we might want to quantify the amount of bias
towards a protected feature regardless of these initial conditions,
just relying on the weight matrix. By doing so, we need to ensure
that the fixed point is unique to prevent that the FCM-based model

converges to a different fixed point as the initial conditions change.

4.2. Building the correlation network

The first step towards modeling implicit bias using cognitive
mapping is to determine the network structure (that is to say,
the concepts and the weight matrix). Each problem feature is
denoted with a neural concept in our neural reasoning system
regardless of whether the feature is nominal or continuous. The
initial activation values of these neurons represent the extent to
which the corresponding feature is active in the model. Initial acti-
vation values are defined by the experts when running what-if
simulations. In contrast, the neurons’ activation values resulting
from the recurrent reasoning process (see the following subsec-
tion) represent the amount of implicit bias given the initial condi-
tion provided by the domain expert.

The weights connecting the neurons represent correlation pat-
terns to be derived from the dataset being analyzed. The intuition
behind these weights is that if a protected feature correlates with
an unprotected one, then part of the bias will be encoded in the
unprotected feature. Hence, capturing the information that arrives
at a neuron representing a protected feature given an initial condi-
tion is reliable for detecting implicit bias. More importantly, our
approach detects implicit bias considering non-trivial relationships
since the interaction among variables is modeled as a complex
system.

The weight matrix is obtained using three measures that are
conceptually similar (i.e. based on Pearson’s correlation coefficient)
in an effort to preserve consistency. Let C; and C; be two neural
concepts in the network. If both C; and C; represent numeric fea-
tures, then wy will be given by the Pearson correlation coefficient
[33] (even though features in German Credit dataset do not meet
the assumptions of normality, linearity or homoscedasticity). If
both C; and C; represent nominal features, then w; will denote
the association strength between these variables as computed by
the Cramér’s V [10] which is based on Pearson'’s chi-squared statis-
tic [3]. If C; represents a nominal feature and C; represents a
numeric feature, then w; is the R-squared coefficient of determina-
tion [29] which is the square of the Pearson’s correlation. This mea-
sure quantifies the percentage of variation in the numeric feature
that is explained by the nominal one coupled with an F-test of joint
significance [25]. Notice that the weight matrix is symmetric such
that w; = wj;. Finally, we compute the absolute values of these
weights since we are not interested in the correlation signs but
their intensity. It is important to state that in this paper, the term
correlation simultaneously represents all the three measures
described above for simplicity.

4.3. Quasi nonlinear reasoning rule

As mentioned earlier, the reasoning rule in Eq. (1) often con-
verges to unique fixed-point attractors or suffers from saturation
problems. The former could be useful when modeling invariant sit-
uations, but it is less attractive when performing what-if simula-
tions with some generalization. For example, if we want to
design an FCM-based model to solve a regression-like problem
and the model converges to a unique fixed-point attractor, the pre-
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dicted value will be the same regardless of the inputs. Moreover,
when having dense FCM-based models, neurons often produce sat-
urated activation values even when their inputs are significantly
different. In this paper, we couple the quasi nonlinear reasoning
rule recently proposed in [32] with a re-scaled transfer function
that performs a normalization operation. The resulting reasoning
model solves the issues mentioned above while producing relative
activation values, thus making the model more intuitive and easy
to control.

Let AY = (aﬁ”,...,
duced by an FCM such that al@ is the activation value of the i-th

) (D)
Nk ,...,aM)

be the raw activation vector where a” is the raw activation value
of the i-th neuron in the current iteration. In other words, the vec-
tor A® is the argument of the transfer function and can be calcu-
lated as A® = AYW where W, is the weight matrix defining
the interaction among the neurons. The quasi nonlinear reasoning
rule using the re-scaled transfer function can be computed as
follows:

M
0 = gf (S ) +
—_—

a§[>,...7a,<v’,)> be the activation vector pro-

neuron at the iteration t. Similarly, let A® = (ag”, .

0
(1-¢)a”
—_——
linear component

3)

]

nonlinear component

where

=(t+1)

e+ _ G
£(a") = ey

4)
such that || - ||, stands for the Euclidean norm, and 0 < ¢ < 1 con-
trols the nonlinearity of the reasoning rule. When ¢ = 1, the model
performs as a closed system where the activation value of a neuron
depends on the activation values of connected neurons in the previ-
ous iteration. When 0 < ¢ < 1, we add a linear component to the
reasoning rule devoted to preserving the initial activation values
of neurons when updating their activation values in the current
iteration. When ¢ = 0, the model narrows down to a linear regres-
sion where the initial activation values of neurons act as regressors.
It should be mentioned that, when the denominator of the nonlin-
ear component is zero and ¢ # 0, then the neuron’s activation value

will be given by (1 — ¢)a”’. Two reasons move this rule: (i) we need
to avoid indetermination issues in the denominator, and (ii) we
want to prevent situations in which the neurons receiving no infor-
mation flow at all get arbitrarily activated by the transfer function.
For example, the sigmoid transfer function produces 0.5 when its
argument is zero, leading to misleading simulation results.

Let us simulate to illustrate the behavior of the sigmoid func-
tion, the hyperbolic tangent function, and the new re-scaled trans-
fer function. In this experiment, we couple these transfer functions
with the quasi nonlinear reasoning rule introduced in Eq. (3).
Moreover, we use an FCM model comprised of two neurons with
weights wy; = 0.8,w,; = 0.5, and zeros in the main diagonal.
Fig. 1 illustrates the activation values of the first neuron when acti-
vating it with random numbers in the [0, 1] interval and without
activating the second one. The simulation results show that the
sigmoid neuron is activated when its input is zero, while the
hyperbolic tangent and the re-scaled transfer functions keep the
neuron inactive. It can also be noticed that the surface generated
with the re-scaled function is smoother than the hyperbolic
tangent.

Another attractive property of the quasi nonlinear reasoning
rule using the re-scaled transfer function is that activation values
are not absolute but relative. In the model, the neurons’ activation
values depend not on the neurons’ activation values in the previous
iteration, the weights, and the initial conditions but the neurons’
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(a) Sigmoid activation function

(b) Hyperbolic activation function

(c) Re-scaled activation function

Fig. 1. Final activation value (after performing T = 30 iterations) of a single neuron using the quasi nonlinear reasoning rule with different transfer functions. In this
simulation, we vary the nonlinearity degree and the raw activation value of the first neuron without activating the second one.

activation values in the current iteration. Overall, dividing each
raw activation value by the Euclidean norm of the activation vector
ensures that activation values are in the [0, 1] interval while pro-
moting competition among the neurons. In the following section,
we will mathematically study the convergence properties of the
quasi nonlinear reasoning rule and the proposed re-scaled transfer
function.

5. Convergence analysis

As mentioned in Section 3, FCM-based models can reach three
possible states when it comes to their dynamic behavior: (i)
fixed-point, (ii) limit cycle, or (iii) chaos. Likewise, these states
apply to our model. In this section, we aim for convergence to
diverse fixed-point attractors and to elude cycles, chaos, and
unique fixed-point attractors.

A few FCM-based models have been mathematically studied in
the literature with regard to their convergence properties. The
existence and uniqueness of fixed points of sigmoid FCMs was
firstly discussed by Boutalis et al. [5] when the transfer function
is given by f(x) = 1/(1 + e™™) . Other theoretical results about this
topic are the ones reported in Knight et al. [22], and Harmati
et al. [19]. As a generalization of the stability and instability prop-
erties of FCM-based models, in [30] we introduced the definitions
of E-stability and E-instability, and four sufficient conditions to ful-
fill these properties.

In [7], the authors analyzed the behavior of FCMs from the per-
spective of their state spaces. More specifically, the research esti-
mate bounds for the activation values of each neuron. Moreover,
it was analyzed the coverage (i.e., the proportion of the induced
activation space that is achievable by the neurons’ activation val-
ues) and the proximity (i.e., the mean relative distance of the neu-
rons’ activation values at the borders of the feasible activation
space) of neural concepts. The main theoretical result shows that
the state space of any FCM equipped with an F-transfer function
[7] shrinks infinitely with no guarantees of reaching a fixed point,
but it does converge to the limit state space. Finally, in [8] it was
proven that in an FCM-based model, a sigmoid neuron with self-
feedback and no other incoming connection will always converge
to a unique fixed-point regardless of its initial stimulus.

As a further addition to this research line, we will study the con-
vergence features of the proposed reasoning mechanism. First, we
establish the requirements for the appearance of cycles while
examining some special situations. Then, we analyze the model
conditions to avoid unique fixed-point attractors and the condi-
tions to reach them.

37

5.1. Basic notions and definitions

Before presenting the main theoretical results devoted to the
convergence of our model, let us re-write Eqs. (3) and (4) using
the following matrix-like notation:

AT = gf (AOW) + (1 - $)A” 5)
such that f(.) : RM — RMis defined as follows:
X_ i Nt
F%) = {x_z X0 G
0  otherwise.

In our FCM-based model, we need to ensure that activation values

lie in the [0, 1] interval. Next, we will prove that A“™" € [0,1]" by
mathematical induction.

Proof. The fact that A ¢ [0,1)" can be considered a restriction of
the proposed neural reasoning model. Let us assume that

A" ¢ [0,1]™ and prove that A"V ¢ [0, 1]M.

Let us define that AW =V such that
V = (v1,v,,...,vy) € RM. Having said that A® € [0,1]¥ and that
the elements of W are in [0, 1], the vector-matrix product produces
non-negative components. Then, we will demonstrate that

f(V) €[0,1]™ and that there are two cases. On the one hand,
having V = 0 implies that f(V) = 0. On the other hand, having
that V» 0, we will demonstrate that ﬁ € [0,1]™. Since we are
using the Euclidean norm, we have that:

V —
(V]

(v1,02,...,Un)

2 2 2
v+ vi+. 40

wi; €10, M. Hence,

A — of (W) + (1 - ¢)AY,  with  f(V),A? €[0,1M.  Since
0 < ¢ < 1, the right-hand side yields a non-negative vector that
reaches its maximum (component-wise) when
foV)y =A% =(1,1,...,1). Such a value for ¢f(V)+ (1 —$)A? is
equal to ¢(1,1,...,1)+(1—¢)(1,1,...,1)=(1,1,...,1). Finally,
we obtain that A" € [0, 1] and this concludes our proof. O

holds

and we have that
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5.2. Cyclic behavior analysis

As we mentioned earlier, the evasion of cycles is desired and we
need to know when our system falls into them. Generally speaking,
a cycle is reached when:

A =AY forany ve N : v > 0.

It should be noticed that when » = 1, we fall into a special kind
of cycle: convergence. If we expand this definition using the pro-
posed reasoning rule, we have:

of (A W) + (1 - 9)A” = gf (AIW) + (1 - )A”,
such that
cbf(A“*”’”W) _ gbf(A“’”W).

At this point, we can put aside the case when ¢ = 0, since it implies
that A“Y = A® vt, so convergence is attained. Simplifying on ¢
leads to the following:

f(A(HV—l)W) :f(A(H)W). (7)

Firstly, let us analyze the cases when A““"W=10 and
A“YW=10. In general, it holds that, if A“""W =0, then
AP = (1 - ¢)A? and AV = A Such a cycle is found by simplify-
ing the following expression:

AT = 9f (1 - )AOW) + (1 - 9)A”.

In contrast, if AW = 0 and ¢ < 1 (otherwise, the cycle would
have appeared earlier), then we have:

(1- AW

A — o
(1 - $)AOW]|,

+(1-$A.

Since the norm of a vector multiplied by a scalar is equal to the sca-
lar multiplied by the norm, we have that

A
Ay A=A
(1-¢)||IA”W][|,
and
AW
AED — +(1-— A — AD
? oW, t=9

Next, we can use the nonzero branch of Eq. (6) to develop Eq. (7) as
follows:

ANy B At-Dyy
AW, (AW,

Finally, we obtain that:

Altre-D) At
< AW, AT W W=0.
I 1l Il2

The satisfaction of this equality is difficult but still possible. This sit-
uation may occur: the vector resulting as the difference of the frac-
tions is perpendicular to every column of W or such a difference is

equal to 0. The former is less likely to happen, while the latter has a
slightly higher probability of occurrence. This more probable case

turns out when
Altre-1) AD

tro—1 = 1 )
AT, AW

and
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t+v-1
AW )

A(t+v—1) —
t-1
1AW,

The above means that A“*”~" is equal to A*"" multiplied by a scalar
factor, which is the quotient of the Euclidean norms. Beyond the
mathematical meaning, it implies that if an activation vector is mul-
tiple of another for the same initial stimulus, then the cyclic behav-
ior appears.

5.3. Unique fixed-points analysis

When performing what-if simulations, it is desirable not to con-
verge to unique fixed-point attractors. In these situations, reaching
the same output regardless of the initial conditions must be
avoided. Next, we analyze how the model parameters influence
the system stability properties. To do that, we split the task into
twocases: 0 < ¢p<1and ¢ =1.

Case 1: 0 < ¢ < 1. Our goal is to prove that there is no unique
fixed-point attractor for all initial stimuli. Furthermore, in the pro-
cess we found other interesting results.

Aiming at obtaining a more general result, let us define
g(.):RM — RM as a continuous transfer function for our model.
Also, the model’s intrinsic restrictions for W (symmetry and
weights in [0,1]) and A® (activation values in [0,1]) are not
required for our demonstration. This means that we will use real
matrices and activation vectors whose only requirement is that
the product AW must be defined. Thus, the generic reasoning
rule can be rewritten once again as follows:

AT = gg(AW) + (1 - )A” 8)

Theorem 1. (Injective convergence). In an FCM model using Eq. (8),
when 0 < ¢ < 1, there are not two different initial stimuli leading to
the same fixed-point attractor.

Proof. Let A" A” € R denote two unequal initial activation vec-

tors and also assume that both lead to the same fixed-point attrac-
tor V. Leaning on the mathematical analysis, we define that

V = lim, A = lim;_.,A®.
The activation vectors A,(O) and A](.O) can be inserted in the Eq. (8),
producing the following formulas:

AT = gg(ATW) + (1 - 9)AL,
and
A" = gg(ATW) + (1 - 9)A”.

Also, after applying the limit when t — oo, we have that:

limA*") = glimg (A"W) + (1 - $)A”,
and

; (t+1) _ 14 (t) (0)
i = s (A7) < 1~ A"

Given the continuity of g(.) and using the basic properties of limit
operations, it yields:

limA{*" = ¢g(gimA§“w) +(1-$)A?,
and



G. Ndpoles, I. Grau, L. Concepcion et al.

limA*Y

t—oo 1

_ ¢g<}immA;t)W> +(1 - ¢)AL.

Now, substituting all limits by its value and solving on A and A\”
respectively, we obtain:

AQ — V — ¢g(VW) 7

i 1_¢
and

o _V—¢g(VW)
A ===

Note that the formulas above are not undefined since ¢ # 1. At this
point, the assumption A\ # Al leads us to A{” = A\’. Therefore,
we reach a contradiction and the proof by reductio ad absurdum is
completed. O

Theorem 1 brings a straightforward consequence, which is por-
trayed in the following corollary.

Corollary 1.1. (Relaxed injective convergence). In an FCM model
using Eq. (8), when 0 < ¢ < 1, there is no unique fixed-point attractor
for all initial stimuli.

Theorem 1 and Corollary 1.1 are valid when using the Eq. (8),
but such a general equation differs from Eq. (5). Hence, we need
to analyze the continuity of f(.).

On the one hand, the first branch concerning ﬁ
since it is a elementary function that never gets undefined when

X # 0.0n the other hand, f (6) — 0, and for this branch the con-
tinuity also requires that:

is continuous

lim f(X) = 0.

x-0

Next, we will prove that the previous expression does not hold by
using the limit on 2= {(u,u,...,u) e R®:u =0}, such that
2 c Domf(.) and Domf(.) is the domain of f(.). Then, if X € 2 we
have that the following:

B (u,u,...,u) _(wu,...,u)
f(x)_\/u2+u2+...+u2_ uvM

Now, the limit on & is calculated as follows:

—

(uvuv"'vu) ;éo

uvM

= lim
u—0

1 1 1
lim f(X =l—=,—,...,—
JmJ (v vm)
which implies that f(.) is not continuous at 0.
As we know from the cyclic behavior analysis in Section 5.2, if

after some initial stimulus we get AW = 0 for some t, then our
model will exhibit cyclic behavior. Similarly, if f(.) is evaluated

on the discontinuity point 0 during the inference process, a cycle
will be reached. Since the Theorem 1 and the Corollary 1.1 con-
clude on the nonexistence of stimuli (more than one) leading to
a fixed-point attractor, then the cyclic behavior is consistent with
such a conclusion.

Finally, the theorem and the corollary are also valid using the
Eq. (5) instead of Eq. (8). The following theorem and corollary sum-
marize the results exposed.

Theorem 2. In an FCM model using the Eq. (5), when 0 < ¢ < 1 there
is no couple of different initial stimuli leading to the same fixed-point
attractor.
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Corollary 2.1. In the model described by the reasoning rule in the Eq.
(5), when 0 < ¢ < 1 there is no unique fixed-point attractor for all ini-
tial stimuli.

Summarizing, the obtained results for the case 0 < ¢ < 1 allow
performing what-if simulations without the concerns of converg-
ing to a unique fixed point.

Case 2: ¢ = 1. We establish the equivalence between our rea-
soning rule and the power iteration method [28] by using matrix
properties. This leads us to interesting conclusions about the con-
vergence of our model. For the case in point, the reasoning rule is
reduced to the following expression:

A :f(A“)W). 9)

We could exclude the case when AYW = 0 for some t, for it causes

the model to converge to 0. Therefore, we rewrite the previous for-
mula as follows:

oy AW (10)
1AW ||,

Note that the dimensions of A” and W are 1xM and MxM, respec-
tively. By transposing the elements in Eq. (10), we change the order
of the vectors, not the results. After applying the property of the
transpose of a matrix product and the fact that the Euclidean norm
of a matrix does not change after transposition, we obtain the
following:

WTA(f)T
- vA
| WTAY [,

A(m)T _ (11)

Given that the weight matrix W derived from the correlation pat-
terns is symmetric, it yields that:

T

WA(f)
=
| WA |,

AT _ (12)

Eq. (12) matches with the power iteration method [28]. Given a
diagonalizable matrix W, the algorithm will produce a number /,
which is the greatest (in absolute value) eigenvalue of W, and a
nonzero vector v, which is the corresponding eigenvector of 1, that
is, Wv = Jv. The algorithm is also known as the power method or
the Von Mises iteration [28] and starts with a vector by, which
may be an approximation to the dominant eigenvector or just a ran-
dom vector. In every iteration, the vector b, is multiplied by W and
normalized. The algorithm is described by the recurrence relation:

Wb[

b =——.
T Wb |]

(13)
If we assume that W has an eigenvalue that is strictly greater in
magnitude than its other eigenvalues and that the starting vector
b, has a nonzero component in the direction of an eigenvector asso-
ciated with the dominant eigenvalue, then the subsequence (b;)
converges to an eigenvector associated with the dominant eigen-
value. Such an eigenvector always exists and it is unique provided
that these two assumptions are fulfilled; otherwise, the sequence
might not converge.

In order to match the terminology used in the recurrence rela-
tion of the power iteration with our terms, we establish that

b, = A", Moreover, the symmetry of Wimplies that it is diagonal-
izable and there are M real eigenvalues. Summarizing, the case
¢ =1 allows modeling invariant situations in which the model
needs to converge to the same fixed-point attractor regardless of
the initial conditions.
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6. Numerical simulations

In this section, we conduct numerical simulations using three
scenarios involving protected features reported in the literature.
Also, we provide experimental evidence further supporting the
main theoretical results of this research.

6.1. German credit dataset

Aiming at testing our FCM-based model, we use the German
Credit dataset [12] that is widely used in the context of fairness
in machine learning and classifies loan applicants as good or bad
credit risks. Features are treated either as numeric or nominal fol-
lowing the data description at the UCI Machine Learning Reposi-
tory [12]. Ordinal variables are treated as nominal as it is not
clear how to order the categories within some variables. Treatment
of ordinal variables should be decided by domain experts who are
familiar with the data-generating procedure and the decision mak-
ing rationale. It is worth mentioning that features age, foreign
worker and gender are considered to be protected following similar
practices in the literature gender, foreign worker and age
[2,4,11,36,37,15].

During pre-processing steps, (i) the nominal features sex & mar-
ital status are re-coded to include information only related to gen-
der following [2]'s analysis and (ii) numeric features are
normalized in the [0, 1] interval. The FCM’s weight matrix is com-
puted as described in Section 4.2 where each entry represents
the absolute correlation between every pair of variables.

Table 2 shows the features associated with the German Credit
dataset, the absolute correlation values between the problem fea-
tures and each protected feature (highlighted in gray) and the
FRU values as reported in [31], which provide insight into the
explicit bias patterns (i.e., how the boundary regions change when
suppressing a given feature). The star symbol is used to denote sig-
nificant correlation results.

Fig. 2a provides an overview of the correlation patterns in an
attempt to visualize all possible pathways through which implicit
bias related to the sensitive features can be propagated within the
system. In this chord chart, we highlighted the correlation between
each unprotected feature and the protected ones. However, our
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Fig. 2. Pairwise correlations between features in the German Credit dataset. The
colored chords show the direct interactions between protected and unprotected
features, while gray chords denote the interaction among unprotected features.
Overall, this graph shows the complex interactions among the features when
modeling implicit bias.

FCM model takes into account all interactions when quantifying
implicit bias.

6.2. Results and discussion

Leveraging the simulation capability of the proposed FCM-
based model, we perform a what-if analysis in three different sce-
narios. Moreover, we will illustrate how the nonlinear parameter
in Eq. (3) impacts the results and discuss how it can be used as a
powerful tool to perform richer what-if simulations that can be
useful for decision makers.

Table 2
Correlation' values between protected and unprotected features, and FRU values that provide information about the explicit bias.
ID Features Correlation with FRU
Age Foreign worker Gender

f1 Age 1.0* 0 0.03* 0.11
f2 Credit amount 0.03 0 0.01* 0.07
f3 Credit history 0.03* 0.07 0.12* 0.26
f4 Months 0.04 0.02* 0.01 0.11
5 Foreign worker 0.0 1.0* 0.04 0.09
f6 Housing 0.09* 0.07 0.23* 0.17
7 Installment rate 0.06 0.01* 0.01 0.2

8 Job 0.03* 0.1* 0.09* 0.23
fo Existing credits 0.15* 0.0 0.01* 0.23
f10 People liable 0.01* 0.07* 0.2* 0.14
f11 Other debtors 0.0 0.12* 0.01 0.15
f12 Other installment 0.0 0.04 0.05 0.23
f13 Gender 0.03* 0.04 1.0* 0.22
f14 Employment since 0.17* 0.08 0.22* 0.36
f15 Residence since 0.27* 0.0 0.0 0.19
f16 Property 0.05* 0.14* 0.09* 0.34
f17 Purpose 0.03* 0.17* 0.15* 0.37
f18 Savings account 0.01 0.04 0.07 0.32
f19 Checking account 0.01 0.08 0.03 0.39
f20 Telephone 0.02* 0.1* 0.07* 0.22

! Pearson correlation is used between numeric features and Cramér’s V is used between nominal features such that the star indicates significant p-value (p < 0.05). The R-
squared coefficient of determination is used between numeric and nominal features with the star indicating a significant F-statistic (larger than the critical value).
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As mentioned, these what-if simulations can be performed by
(i) assigning initial values to selected concepts denoting unpro-
tected features, (ii) executing the inference mechanism of the
FCM model, and (iii) observing the resulting activation values of
concepts denoting protected features as a way to quantify implicit
bias. The scenarios to be investigated and the structure of initial
activation vectors are detailed below. We generate 20 activation
vectors for each scenario where concepts denoting selected unpro-
tected features are randomly initialized, whereas the remaining
ones are set to zero.

e Scenario 1. We activate three neural concepts representing
unprotected features having large absolute correlation with
the protected feature age. These unprotected features are exist-
ing credits (f9), employment since (f14) and residence since (f15),
which encode the set of initial activation vectors of the form:
A® =(0,0,0,0,0,0,0,0,f9,0,0,0,0,f14,f15,0,0,0,0,0) where
f9, f14 and f15 are uniform random values in (0, 1].

Scenario 2. We activate three neural concepts representing
unprotected features having large absolute correlation with
the protected feature foreign worker. These unprotected features
are other debtors (f11), property (f16) and purpose (f17), which
encode the set of initial activation vectors of the form:
A = (0,0,0,0,0,0,0,0,0,0,f11,0,0,0,0,16,f17,0,0,0)
where f11, f16 and f17 are uniform random values in (0, 1].
Scenario 3. We activate four concepts representing unprotected
features having large absolute correlation with the protected
feature gender. These unprotected features are housing (f6), peo-
ple liable (f10), employment since (f14) and purpose (f17), which
encode the set of initial activation vectors of the form:
A = (0,0,0,0,0,(6,0,0,0,f10,0,0,0,f14,0,0,f17,0,0,0)
where f6, f10, f14 and f17 are uniform random values in (0, 1].

— Age
Foreign worker
—— Gender

VAN

(t)

a;

(@) ¢=0.6

= S\a—e—0—0—0—0—0—s—s—0—s—s—0s—0—s—
_egr

(b)¢ =08
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According to our definition of implicit bias, one would expect each
scenario to be more biased towards the protected feature that cor-
relates with the unprotected ones that were activated. Let us ana-
lyze the simulation results. Figs. 3-5 show the activation values of
neurons representing protected features for T = 20 and different ¢
values for the three scenarios, respectively. As expected, in the third
scenario, the activation values of the neuron denoting gender are
consistently larger than the ones for age or foreign worker, when
varying the ¢ parameter. In the first and second scenarios, however,
we see that the model reports more bias towards gender than age or
foreign worker, as ¢ approaches one. In other words, the bias against
gender increases as the neurons’ activation values are determined
by the interaction among the neurons and the correlation patterns
encoded in the weight matrix.

The reader can notice that the final state of our FCM-based
model matches in all scenarios when ¢ = 1. This means that the
map will produce the same output regardless of the initial activa-
tion vector, thus indicating the presence of a unique fixed-point
attractor with larger bias towards gender. This result is consistent
with our previous research devoted to quantifying explicit bias
using fuzzy-rough sets [24]. Moreover, these simulations provide
experimental evidence about the uniqueness of the fixed-point
attractor when the nonlinear component in Eq. (3) is entirely
suppressed.

Now, let us suppose that we want to build a decision-making
model concerning the first scenario in which the bias towards gen-
der must be reduced at least 50% compared to the implicit bias
encoded in the original data. Using the quasi nonlinear reasoning
rule, we can conclude that we can rely on up to 60% of the correla-
tion patterns in the data (¢ = 0.6) when activating the unprotected
features existing credits, employment since and residence since. More
explicitly, we can see in Fig. 3 (c) that the amount of bias concern-
ing gender is about 0.22 when using ¢ = 1. Such an amount goes
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Fig. 3. Activation values of neurons denoting protected features for the first scenario. The unprotected features existing credits, employment since and residence since, which
have the largest correlation with the protected feature age, are randomly initialized when running the simulations.
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Fig. 4. Activation values of neurons denoting protected features for the second scenario. The unprotected features other debtors, property and purpose, which have the largest
correlation with the protected feature foreign worker, are randomly initialized when running the simulations.
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Fig. 5. Activation values of neurons denoting protected features for the third scenario. The unprotected features housing, people liable, employment since and purpose, which
have the largest correlation with the protected feature gender, are randomly initialized when running the simulations.

down to 0.11 (50%) as shown in Fig. 3 (a) when using ¢ = 0.6,
which means that the model is based on 60% of the correlation pat-
terns and 40% on the initial conditions. This suggests that our pro-
posal allows making fairer decisions and reusing the historical data
that might contain relevant pieces of knowledge.

Finally, we compare the differences in the fixed points produced
by the FCM model when suppressing the linear component in Eq.
(3) and using different transfer functions. Fig. 6 shows the results
for the second scenario. We selected a single scenario to keep the
simulation simple but the same idea can be extrapolated to the
remaining scenarios.

Observe that the neurons’ activation values are more similar
among them (and closer to one) when using either the sigmoid
or hyperbolic tangent function, which would suggest that neurons
are in risk of saturation. This situation will worsen if we increase
the slope of these transfer functions. Overall, saturated neurons
do not allow making reliable decisions since their activation values
offer little possibilities to discriminate among the options. In con-
trast, the activation values produced by our re-scaled transfer func-
tion allow for better separation between the decisions while being
far from one. The latter indicates that there are other active neu-
rons in that iteration, otherwise their activation values would be
closer to one.

6.3. Comparison with state-of-the-art methods

Before diving into the comparison with other state-of-the-art
techniques for detecting (implicit) bias, it is important to remark
that our model is originally intended to work at the feature level.
Similarly to the FRU measure [24,31], our proposal quantifies the
bias towards interesting protected features. However, the majority
of the approaches in the fairness literature [4,2,37,14] do this anal-
ysis at a group level, i.e., defining groups for the protected features.

These methods usually discretize protected numerical features in
two or more groups, where at least one is considered unprivileged.
Although, the choice of thresholds for these groups can influence
the results, even leading to masking the discrimination [9].

To make our model comparable with these methods, we replace
the FCM’s concepts denoting protected features by concepts sym-
bolizing protected groups. For the protected features age and gen-
der, we use the codification in [4] involving four possible values
each. The groups for age are as follows: people younger than
30 years of age (age_le_30), people from 30 to 41 years old (age_-
from_30_le_41), people from 41 to 52 years old (age_-
from_41_le_52), and people older than 52 years of age
(age_gt_52). The groups for gender have extra information on the
civil status and categorize females independently of their civil sta-
tus (gender_female), single males (gender_male_single), married or
widowed males (gender_male_mar_or_wid), and divorced or sepa-
rated males (gender_male_div_or_sep). For the protected feature
foreign worker, we will have two groups representing the binary
options. Numerical unprotected features will not be discretized
to avoid losing information, therefore, the new FCM contains 27
concepts.

As for the nonlinearity degree, we choose ¢ = 1 to guarantee
the convergence to a unique fixed-point attractor. Nevertheless,
we generate 20 initial activation vectors where randomly selected
concepts denoting unprotected features are randomly initialized,
whereas the remaining ones are set to zero. Fig. 7 shows the results
of the simulation.

According to our FCM model, the concept with the highest acti-
vation value concerns young individuals (age_le_30). This result
agrees with traditional statistical bias detection measures such as
statistical parity difference [13], equal opportunity difference
[18], average odds difference [18], and disparate impact [14],
which signal high bias towards young individuals. Interestingly,
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Fig. 6. Activation values of neurons denoting protected features for the first scenario, using different activation functions. Although the activation of gender is greater than the
activation of age or foreign worker for all functions, the sigmoid and the hyperbolic tangent functions seem to be less sensitive to this difference. Meanwhile the proposed re-
scaled activation function is able to capture the difference without saturating the neurons.
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Fig. 7. Activation values for the neural concepts denoting protected groups. The
proposed FCM model signals a higher bias against people under 30 years old and
single males than the remaining groups.

when using the codification for gender that includes information on
the civil status, we obtain that the single males (gender_male_sin-
gle) is one of the most discriminated groups, as also concluded
by [4]. Moreover, our model keeps indicating a strong bias against
females and moderate bias towards middle age people. Less bias is
detected towards foreign workers, older people, or males other
than single.

It is worth further discussing the divergence between the
results reported in [4] and the ones obtained with our model for
the protected feature age. The mentioned study attributes more
bias against people older than 52 years and less discrimination
against young people. However, when looking at the distribution
of good and bad credits for each of the groups associated with
age (see Table 3), it is evident that younger applicants are less
favored than older ones. More explicitly, the percentage of people
younger than 30 years with respect to the total of bad credits (45%)
is significantly larger that the same demographic for the good
credit (33%). In contrast, the distribution of elderly people is very
similar for obtaining a bad or a good credit, with 10% and 11%,
respectively.

Before concluding the paper, let us summarize the main fea-
tures of our proposal. First, the FCM model determines implicit bias
in situations where pairwise analysis might lead to misleading
results. Second, FCMs are able to handle both numeric and nominal
features which minimizes data pre-processing and preserves infor-
mation in its original state. Third, we suggest an interpretable way
to rely on the data to a certain extent when taking decisions
regarding to a sensitive feature. In practice, this feature allows
decision makers to complement their data-driven decision making
approach with alternative practices. Finally, the introduction of the
nonlinear component expressed by the ¢ value and the re-scaled
transfer function paves the way to perform richer what-if
simulations.

Table 3
Distribution of good and bad credits per age group for the German credit dataset.
Age Groups Bad Credit Good Credit
le_30 137 (45%) 234 (33%)
from_30_le_41 91 (30%) 264 (38%)
from_41_le_52 42 (15%) 127 (18%)
gt_52 30 (10%) 75 (11%)
Total 300 700
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7. Concluding remarks

This paper introduced an FCM-based model to quantify implicit
bias in structured classification datasets where features are charac-
terized as protected and unprotected ones. Our model uses corre-
lation patterns as weights connecting the neural concepts since
the intuition dictates that implicit bias can be quantified from
the correlation between unprotected and protected features. At
the same time, we solved relevant theoretical challenges concern-
ing the controllability and convergence of FCM-based simulation
models that had remained unsolved. Firstly, we employed a quasi
nonlinear neural reasoning mechanism involving a parameter to
control nonlinearity in the predictions. Secondly, we proposed a
re-scaled transfer function that promotes competition among neu-
rons in each iteration. Finally, we derived analytical conditions
ensuring either that the model converges to a unique fixed point
or that the unique fixed point does not exist. This means that we
obtained an easily-controllable simulation model to either repre-
sent invariant situations or perform what-if simulations.

In our numerical simulations, an FCM-based model is built
using absolute correlation values computed in a pairwise manner
between all features of the German Credit dataset. Since this data-
set has been widely examined on the basis of possibly being biased
towards the features age, foreign worker and gender, we chose to
investigate the flow of information from selected unprotected fea-
tures to these three sensitive concepts. We built three scenarios:
we used unprotected features that strongly correlate with each
sensitive feature as activation neurons. The resulting activation
values of neurons denoting a protected feature are conceptually
equivalent to its relevance inside the system and are used to esti-
mate the implicit bias flowing from the activated features towards
them. In all scenarios, results show that activation values of the
neuron representing gender are larger than the ones for age or for-
eign worker when ¢ = 1 regardless of the initial activation vector,
indicating that the system converged to a unique fixed point
attractor. This denotes that the dataset is more biased against gen-
der than age or foreign worker, a results consistent with our previ-
ous models using entirely different approaches [24,31]. A second
finding arises when modeling bias that is implicitly reflected on
age from highly correlated unprotected features: age’s activation
values gradually become smaller than those of gender as we
increasingly allow the neurons to interact without any constraints.
This implies that one needs to examine different ¢ levels in order
to select the optimal level.

Actually, we can formulate a constrained optimization problem
to find out the maximal nonlinearity amount and activation values
for given protected features such that we minimize the bias
towards the protected features. The constraints can be used to
ensure that the relevance of interesting features does not fall
below a given threshold or that a desired order relationship among
features is preserved. Such a research line will be the target of our
future research efforts.
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