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Abstract Multi-objective optimization of complex engineering systems is a
challenging problem. The design goals can exhibit dynamic and nonlinear be-
haviour with respect to the system’s parameters. Additionally, modern engi-
neering is driven by simulation-based design which can be computationally
expensive due to the complexity of the system under study. Bayesian op-
timization (BO) is a popular technique to tackle this kind of problem. In
multi-objective BO, a data-driven surrogate model is created for each design
objective. However, not all of the objectives may be expensive to compute.
We develop an approach that can deal with a mix of expensive and cheap-to-
evaluate objective functions. As a result, the proposed technique offers lower
complexity than standard multi-objective BO methods and performs signif-
icantly better when the cheap objective function is difficult to approximate.
In particular, we extend the popular hypervolume-based Expected Improve-
ment (EI) and Probability of Improvement (POI) in bi-objective settings. The
proposed methods are validated on multiple benchmark functions and two real-
world engineering design optimization problems, showing that it performs bet-
ter than its non-cheap counterparts. Furthermore, it performs competitively
or better compared to other optimization methods.
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1 Introduction

In real-world problems, the optimization goals mostly consist of multiple con-
flicting objectives. Thus, optimizing all the objectives simultaneously leads
to multiple solutions that are mathematically equal. The solution for such a
problem can be presented in the form of a Pareto set.

One of the techniques to attain the Pareto set is using weighted sum of
the objectives [1–3], which can be optimized by standard single objective opti-
mization algorithms. However, there are many ways to define the weighted sum
function and to determine the proper coefficients, relying on experts opinion
is fundamental [4]. Another alternative is using approaches based on Multi-
objective Evolutionary Algorithms (MOEAs) [5–7], but the number of required
function evaluations often is very high. This represents a clear limitation when
optimizing engineering systems, whose performance are typically analyzed via
computationally expensive and time-consuming simulations.

In this framework, surrogate-based optimization is a popular approach [8]:
the idea is to approximate the desired design objective using a data-driven sur-
rogate model. everal models are commonly used, including but not limited to
Gaussian processes [9–11], Neural networks [12, 13], Polynomial chaos expan-
sion [14, 15], and Tree-structured Parzen estimator [16] . Such model is built
based on a limited number of (expensive) simulations and is cheap-to-evaluate.
Examples include optimization of electronic circuits performance [17–19], the
shape of airplane components [20–22], and the strength of adhesive joints [23].

A popular technique for surrogate-based optimization is Bayesian Opti-
mization (BO) based on a Gaussian Process (GP) as surrogate model. The
technique [24] proposes fast and efficient hypervolume-based BO for multi-
objective problems. However, the technique [24] implicitly assumes that all of
the objectives can be evaluated with the same computational cost.

This condition does not always hold in multi-objective optimization prob-
lems. Typically, some objectives are cheap to compute. For example, the foot-
print of electrical devices [25] and time of gluing in the adhesive bonding case
[26]. Many multi-objective BO techniques [27–29] do not take into account the
objectives with very cheap computational cost. In practice, cheap objectives
are often modeled with the same surrogate model cost as the expensive ones.
This can be an unnecessary burden to the optimization process.

In this work, we extend the standard hypervolume-based acquisition func-
tions to deal with cheap-to-evaluate functions. More specifically, we focus on
the bi-objective case, which can be easily extended later on. Instead of model-
ing the cheap function with a GP, we directly integrate it in the hypervolume-
based acquisition functions. We derive the formula analytically resulting in
two hypervolume-based acquisition functions: Cheap Hypervolume Expected
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Improvement (CHVEI) and Cheap Hypervolume Probability of Improvement
(CHVPOI).

For evaluating its performance, we consider four analytical benchmark
functions [30], and two realistic design problems in microwave engineering.
We show that the proposed method performs better than state-of-the-art ap-
proaches. Since the cheap objective is computed directly, the inaccuracies in-
troduced by modeling are eliminated.

This paper is organized as follows: Section 2 introduces the GP probabilis-
tic model and BO. Section 3 presents the hypervolume-based bi-objective BO.
Our extension to the hypervolume-based acquisition function is described in
Section 4. Then, Section 5 presents relevant experimental results on bench-
mark functions and realistic design problems. Finally, conclusions are drawn
in Section 6.

2 Bayesian Optimization

2.1 Optimization procedure

In global optimization, the goal is to find an optimizer x∗ of an unknown
objective function f(x), which can be mathematically described as:

x? = arg max
x∈X

f(x) (1)

where X ∈ Rd is the design space. The unknown objective function f(x)
typically does not have gradient information and is very expensive to evaluate,
for example in terms of time or economic cost. Thus, a data-efficient algorithm
to find x∗ is desired.

BO is a global optimization method that aims to minimize the number
of function evaluations needed to estimate the global optimum of a function.
It relies on two elements: a model of the objective function and a sequential
sampling strategy. The idea is to iteratively refine the model until the solution
to the optimization problem can be found. The sampling strategy relies on the
model to estimate which data point should be acquired next. In order to do
so, the sampling strategy relies on a function called acquisition function. The
acquisition function balances the trade-off between exploration and exploita-
tion, based on the surrogate model. Usually, the acquisition function has an
analytical form that can be computed easily [10].

Before running the BO routine, we first need to generate initial points to
train the model. In this paper, the Latin Hypercube Design (LHD) [31] is used.
Then, the acquisition function is optimized based on the trained model. After
a new point is selected, it is evaluated on the true objective function and the
result is used to update the surrogate model. These steps are repeated until a
suitable stopping criterion is met. The flowchart of BO is shown in Fig. 1.
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Fig. 1: General flowchart of Bayesian optimization. The two key components
are the surrogate model and the acquisition function. The query point from
the previous iteration is added to the surrogate model. Thus, the samples in
the dataset are increased sequentially.

2.2 Gaussian Processes

The most common choice for the surrogate model for BO is a GP. It is
analytically tractable and provides a predictive distribution given new in-
put data. In a more formal definition, GP defines a prior over functions
f(x) ∼ GP (m(x), k(x,x′)).

GP is fully specified by its mean function m(x) and positive semi-definite
covariance function k(x,x′). Following previous work [24], we assume a zero
mean function and train the GP on a set of data by maximizing the likelihood
using the L-BFGS algorithm. The predictive distribution with a zero mean
function of new data X? = [x?1, . . . ,x?N ] can be calculated using:

µ (X?) = E (f? | X?,Dn) = K?xK
−1
xx y (2)

σ2 (X?) = Var (f? | X?,Dn) = K?? −K?xK
−1
xx K

T
?x (3)

where Dn is the observed data, µ (X?) is the predictive mean, and σ2 (X?)
is the predictive variance, and Kxx = k(xi,xj), K?x = k(x?i,xj), K?? =
k(x?i,x?j). For the covariance function, the Matérn 5/2 kernel [32] is used
and defined as:
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k (x,x′) = α

(
1 +
√

5r +
5

3
r2
)

exp(−
√

5r), r =

√√√√ d∑
m=1

(xm − x′m)
2

l2m
(4)

This kernel is chosen as it does not put strong smoothness assumptions
on the target function compared to the other kernels [33]. Thus, it is more
suitable for real-world cases such as the engineering design problems.

3 Multi-objective Bayesian Optimization

3.1 Pareto Optimality

In real life optimization problem, typically there are multiple conflicting objec-
tives. This leads to solutions that cannot be improved in any of the objectives
without sacrificing at least one of other objectives. These solutions are called
Pareto optimal solutions, represented as a Pareto set [34].

For minimization problems with m objectives, the notation xb ≺ xa means
that xb dominates xa if, and only if fj (xb) ≤ fj (xa) ,∀j ∈ {1, ..,m} and
∃j ∈ {1, ..,m} such that fj (xb) < fj (xa). In other words, xb is not worse
than xa in all objectives and better in at least one objective. The Pareto set
can then be defined by:

P =
{
x ∈ Rd | @x′ ∈ Rd : x′ ≺ x

}
(5)

where m is the number of the objectives. Mathematically, the points inside the
resulting Pareto set are equal. Also we denotes the Pareto front, the Pareto
optimal solutions in output space as P. In practice, after the optimal Pareto
set is obtained, the decision makers can choose which point to use based on
their preference.

3.2 Multi-objective hypervolume-based acquisition function

In multi-objective optimization problems, instead of calculating the improve-
ment towards a single maximum, we want to get the improvement over the
Pareto set P . For the hypervolume-based acquisition function, this improve-
ment can be calculated using the hypervolume indicator H(P). This indicator
denotes the volume of the dominated region, bounded by a reference point
r which needs to be dominated by all points in P [35]. The contribution of
new points y to P can be estimated by using the exclusive hypervolume (also
called hypervolume contribution) Hexc as:

Hexc(y,P) = H(P ∪ {y})−H(P) (6)
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Using Hexc, we can define the improvement function for the hypervolume-
based multi-objective case as:

I(y,P) =

{
Hexc(y,P) if y is not dominated by P
0 otherwise

(7)

Next, we will build the acquisition function for multi-objective settings
upon this improvement function. In order to make the formula simpler, given
the predictive distribution defined in equations (2) and (3), the probability
density function φj and cumulative density function Φj are compactly defined
as:

φj [yj ] := φj [yj ;µj(x), σj(x)] (8)

Φj [yj ] := Φj [yj ;µj(x), σj(x)] (9)

Then, the hypervolume-based multi-objective POI (HVPOI) [24] is defined
as follows:

HV POI[I] = I(µ(x),P)

∫
y∈A

m∏
j=1

φj [yj ] dyj (10)

where µ(x) is a GP prediction at x and A is the non-dominated region, see
Fig. 2. m is the number of objectives, y is the objective vector inside region
A.

Furthermore, we can define the hypervolume-based EI (HVEI) [24] as:

HV EI[I] =

∫
y∈A

I(y,P)

m∏
j=1

φj [yj ] dyj (11)

Note that these acquisition functions are intractable. To mitigate this prob-
lem, Couckuyt et al. [24] suggests calculating the hypervolume from the set
of disjoint cells built from the lower and upper bound of the Pareto front.
This approach is more computationally efficient compared to the uniform grid
search [36].

However, these multi-objective acquisition functions implicitly assume that
the models of all objectives must be computed, regardless of the computational
cost of evaluating each objective. A problem might arise using this assumption:
If we have a cheap but complex objective function, the GP might introduce
inaccuracies as well as a waste of computational resources.

4 Cheap-expensive hypervolume-based acquisition function

Without loss of generality, let us consider problems where two objective func-
tions can be defined, where one is expensive f1 and the other is cheap f2. Our
extended approach models f1 into a GP and uses it to predict new data x∗
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and estimate the corresponding mean µ1 and variance σ2
1 in the acquisition

function calculation. Next, y := (y1, y2) is used to compute the improvement
function I(y,P), where y1 and y2 are potential observation and observation
of f1 and f2, respectively. Here, P = {(p11, p12), (p21, p

2
2), . . . , (pM1 , p

M
2 )}, where

pm1 denotes the expensive dimension sorted in ascending order. Then it follows
that pm2 , the cheap dimension, is sorted in descending order. Next, the Cheap
Hypervolume EI (CHVEI) is defined as follows:

CHV EI(x) =

∫
(y)∈A

I(y,P)φ(y1)dy1 (12)

Fig. 2: Illustration of the non-dominated region and the way the cheap ob-
jective function evaluation y2 is incorporated into the hypervolume-based ac-
quisition function. Pi are the points in the Pareto set. The blue dotted curve
illustrates the prediction of the expensive objective y1. The orange dot is the
reference point, used as the bound to calculate the hypervolume.

Using P we define horizontal and vertical cells as shown in Fig. 2. Based
on these cells, we can derive the closed form of the CHVEI as follows:

CHV EI(x) =
∑
m

∑
k

(
uk2 − y2

)+ ∫ um
1

lm1

(
uk1 −max

(
lk1 , l

m
1

))
φ(y1)dy1 (13)
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where m is the cell of interest, k is the cell improvement relative to m, l is
lower bound, u is upper bound and z+ = max(z, 0). Then, we can calculate
the closed form solution of CHVEI. For cells of interest (m = k), the integrals
on equation 13 are the definition of the single-objective EI [37] defined as:

(
uk1 − µ1(x)

)
(Φ[um1 ]− Φ[lm1 ]) + σ2

1(x) (φ[um1 ]− φ[lm1 ]) (14)

while the integral for cells on the right of the cells of interest (lk1 ≥ um1 ) are
calculated by: (

uk1 − lk1
)

(Φ [um1 ]− Φ [lm1 ]) (15)

and 0 for cells in the left (uk1 < lm1 ).
It is important to mention that the cheap objective is directly incorporated

in the acquisition function, thus avoiding the inaccuracies due to modeling the
cheap objective with a surrogate model. This is favorable especially when the
cheap objective function has a complex dynamic behaviour in the design space.
Additionally, it leads to a reduced computational complexity of the overall
algorithm. The proposed BO approach based on CHVEI is summarized in
Algorithm 1.

Algorithm 1: Cheap Hypervolume Expected Improvement

Input: Predefined evaluation budget tmax ∈ Z;

Output: Xnd, Y nd;

Generate k initial points Xk = [x1, . . . , xk];

Evaluate it on expensive function Y k
1 = [f1(x1), . . . , f1(xk)];

Set t = 0;
while t < tmax do

Update GP with Xt, Y t
1 ;

Evaluate Xt on cheap function Y t
2 = [f2(x1), . . . , f2(xt)];

Y t ←− Concat(Y t
1 , Y

t
2 ) ;

Get the non dominated set Xnd, Y nd among Xt, Y t;
t←− t+ 1;

P ←− Y nd;
xt = argmaxx⊂X CHVEI(x);
y1t = f1(xt);

Xt = X(t−1) ◦ xt;Y t
1 = Y

(t−1)
1 ◦ y1t

end

return Xnd, Y nd among Xt, Y t

A similar approach can be used to define the cheap version of bi-objective
POI as follows:

CHV POI(x) =

M−1∑
m=1

(pm2 − y2)+(pm1 − µ1(x))+(Φ1

[
p
(m+1)
1

]
− Φ1 [pm1 ]) (16)
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Now, a BO routine based on CHVPOI can be defined as for the CHVEI:
the only difference with the approach described in Algorithm 1 is that equa-
tion (16) is used instead of CHVEI(x).
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5 Result and discussion

The proposed BO approach is implemented using the GPFlowOpt library [38]
in python. For the initial data, 21 points are arranged using a Latin-Hypercube
Design [31]. The acquisition function is optimized using the best solution of
Monte Carlo sampling, further fine-tuned by a gradient-based optimizer. We
consider four variants of the well known DTLZ benchmark functions [30] and
two real-life electrical device design optimization problems to validate the pro-
posed method.

In all experiments, the CHVEI and CHVPOI acquisition functions are
compared with the standard HVEI and HVPOI, as well as random sampling.
Additionally, we also compare against the MOEA algorithms SMS-EMOA [39]
and NSGA-II [40]. We used hypervolume indicator metrics to assess the quality
of the Pareto set per iteration, where the computational budget is fixed to 100
function evaluations for all methods except the MOEA, that uses a budget
of 250 function evaluations instead. This choice guarantees a fair comparison,
since MOEA needs more evaluations compared to approaches based on BO.
Finally, when optimizing electrical devices we inspect the quality of the Pareto
set by checking the design layout and its corresponding responses visually.

5.1 DTLZ benchmark functions

We consider four variants of the DTLZ functions: DTLZ1, DTLZ2, DTLZ5,
and DTLZ7, as indicated in Table 1. DTLZ2 and DTLZ5 have a smooth set
of Pareto solution, while DTLZ1 and DTLZ7 have a disjoint Pareto set.

Table 1: We configure the DTLZ benchmark functions for 5 dimensional inputs,
2 outputs, and a fixed reference point r.

Function input dimension Reference point r

DTLZ1 5 (350, 350)
DTLZ2 5 (2.5, 2.5)
DTLZ5 5 (2.5, 2.5)
DTLZ7 5 (20, 20)

The final hypervolume indicator is shown in Table 2. Overall results show
that CHVPOI always performs better than the other methods, even compared
to the MOEAs with 250 function evaluations budget.

Figure 3 shows the hypervolume indicator evolution with respect to the
function evaluations number: the CHVEI and CHVPOI achieve a better hyper-
volume indicator in less iterations compared with their standard counterpart
HVEI and HVPOI, respectively. Additionally, CHVEI and CHVPOI offer the
best performance compared with all other methods for DTLZ1 and DTLZ7,
while standard HVPOI is better than CHVEI in iteration 100 for the functions
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DTLZ2 and DTLZ5, that have a smooth Pareto solution. This is because EI
based methods are less exploitative compared to the POI based methods.

Table 2: Hypervolume with 95% confidence interval of the DTLZ benchmark
experiments. Best results for each problem are highlighted in bold.

Test Problem Budget Method Hypervolume

DTLZ1 100 Random 1.1854e5 ± 4.8133e2
100 HVPOI 1.1972e5 ± 4.1228e2
100 HVEI 1.1921e5 ± 5.4444e2
100 CHVPOI 1.2239e5 ± 4.1724e1
100 CHVEI 1.2208e5 ± 1.1495e2
250 SMSEMOA 1.2155e5 ± 6.9861e1
250 NSGA2b 1.2152e5 ± 4.6356e1

DTLZ2 100 Random 5.2191 ± 0.0192
100 HVPOI 5.4211 ± 0.0025
100 HVEI 5.3278 ± 0.0094
100 CHVPOI 5.4472 ± 0.0014
100 CHVEI 5.3912 ± 0.0057
250 SMSEMOA 5.3702 ± 0.0126
250 NSGA2b 5.3652 ± 0.0226

DTLZ5 100 Random 5.2178 ± 0.0214
100 HVPOI 5.4188 ± 0.0010
100 HVEI 5.3207 ± 0.0172
100 CHVPOI 5.4478 ± 0.0007
100 CHVEI 5.3725 ± 0.0240
250 SMSEMOA 5.3698 ± 0.0140
250 NSGA2b 5.3831 ± 0.0135

DTLZ7 100 Random 2.8146e2 ± 6.7193
100 HVPOI 3.2672e2 ± 3.3173
100 HVEI 3.1370e2 ± 8.0552
100 CHVPOI 3.5191e2 ± 0.1175
100 CHVEI 3.3798e2 ± 7.2954
250 SMSEMOA 3.5087e2 ± 2.3901
250 NSGA2b 3.4867e2 ± 4.8165

Furthermore, we randomly sample 1 million points for all the benchmark
functions to approximate the true Pareto set of the functions. Next, we calcu-
late the distance of the sampled-based Pareto set and the Pareto set obtained
via BO-based approaches and MOEAs. This metric is used to measure the
convergence of the results with respect to approximate ”true” Pareto set: the
lower the value, the more accurate the approximation. It is defined as:

CM(P, P̂ ) =
1

n

n∑
j

min
i
||Pi − P̂j ||2 (17)

P̂ is a vector of Pareto front obtained by the algorithm, P is an approximation
of true Pareto front obtained, for instance, by random sampling.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ5 (d) DTLZ7

Fig. 3: Evolution of hypervolume indicator for the DTLZ benchmark functions

The convergence measure in Table 3 shows that CHVPOI is better in most
cases except on DTLZ7. As we see in Fig. 3d, the hypervolume indicator does
not improve much after iteration 10, indicating that the method is finding the
extrema faster, which results in a less uniform Pareto set. This is prevalent
in hypervolume-based improvement functions: since hypervolume is a prod-
uct, it samples less in regions where at least one objective has a very small
improvement.
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Table 3: The convergence measure with 95% confidence interval of the DTLZ
benchmark experiments. The distance between the true Pareto front and the
Pareto set as generated by the algorithm. Best results for each problem are
highlighted in bold.

Test Problem Method Convergence Measure

DTLZ1 Random 21.3342 ± 1.4618
HVPOI 19.1453 ± 1.3509
HVEI 20.9401 ± 1.5363
CHVPOI 13.2936 ± 1.1313
CHVEI 16.9271 ± 1.0657
SMSEMOA 18.7077 ± 0.9536
NSGA2b 18.8002 ± 0.6227

DTLZ2 Random 0.1163 ± 0.0085
HVPOI 0.0227 ± 0.0011
HVEI 0.1150 ± 0.0104
CHVPOI 0.0203 ± 0.0008
CHVEI 0.0811 ± 0.0058
SMSEMOA 0.0698 ± 0.0183
NSGA2b 0.0607 ± 0.0138

DTLZ5 Random 0.1195 ± 0.0108
HVPOI 0.0252 ± 0.0011
HVEI 0.1264 ± 0.0175
CHVPOI 0.0202 ± 0.0005
CHVEI 0.0915 ± 0.0146
SMSEMOA 0.0617 ± 0.0084
NSGA2b 0.0551 ± 0.0098

DTLZ7 Random 1.7510 ± 0.1888
HVPOI 0.6931 ± 0.0396
HVEI 0.9274 ± 0.1595
CHVPOI 1.2566 ± 0.0321
CHVEI 1.3335 ± 0.0045
SMSEMOA 1.8680 ± 0.0127
NSGA2b 1.8729 ± 0.0297

5.2 Microstrip low-pass filter

Our first engineering problem is the design of a two-port low-pass stepped
impedance microstrip filter device [41]. The simulator for the device is imple-
mented in the MATLAB RF Toolbox (Mathworks Inc., Natick, MA, USA).
The corresponding layout is presented in Fig. 4.

The filter is a cascade of 6 microstrip lines, each specified by width and
length, where by design w1 = w3 = w5 and w2 = w4 = w6. The cross-section
view of each microstrip is depicted in Fig. 5.

Our target design is a filter with a 3 dB cut-off frequency at 2.55 GHz. To
achieve this, we define the design goals as follows:

|S21| ≥ −3 dB for 0 GHz ≤ freq ≤ 2.55 GHz (18)

|S21| ≤ −3 dB for 2.55 GHz ≤ freq (19)
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l1 l3 l5

l6l4l2

w2 w4 w6

w3w1 w5

Input Output

Fig. 4: Top-view of microstrip low-pass filter. We use 1 widths w1 = w3 = w5

and 3 different lengths l1, l3, l5 as design parameters.

wn

1.58 mm

0.1 mm

ǫ = 4.2

Fig. 5: The cross-section view of each microstrip. For wn = w1 = w3 = w5, the
values changes within the optimization iterations, while for wn = w2 = w4 =
w6 the values are fixed at 0.428 mm.

where |S21| is the magnitude of the element S21 of the scattering matrix, and
freq is the frequency. Visually, the target response is illustrated in Fig. 6.
We also want to optimize the cost to produce the device, by minimizing the
footprint of the filter. Hence, the target design and the area of the filter are
used as our expensive and cheap objective, respectively.

Fig. 6: Example of the desired response for the microstrip low-pass filter.
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In the optimization problem formulation, the chosen design parameters are
the length and the width of the first, third and fifth microstrips, indicated as l1,
l3, l5, w1, w3, w5, (see Fig. 4). Note that, these microstrips have the same width
by design [41]: the width of all three microstrips is one single design parameter
indicated as w1,3,5. The other geometrical and electrical characteristics of the
filter are chosen according to Table 4.

Table 4: Microstrip low-pass filter design parameters.

Parameter Description Range/Value

w1,3,5 Width of microstrip 1, 3, and 5 [5.6, 16.9] mm
w2,4,6 Width of microstrip 2, 4, and 6 0.428 mm
l1 Length of microstrip 1 [1.05, 3.05] mm
l2 Length of microstrip 2 6.63 mm
l3 Length of microstrip 3 [6.69, 8.69] mm
l4 Length of microstrip 4 9.04 mm
l5 Length of microstrip 5 [4.63, 6.63] mm
l6 Length of microstrip 6 2.41 mm
ε Relative permittivity 4.2
h Thickness 1.58 mm

To achieve our optimization goals, we formulate our objectives as follows:

f1 = − min
freq∈[1,fpass]

S21(freq) + max
freq∈[fstop,5]

S21(freq) (20)

f2 = log(

3∑
n=1

w1,3,5 l2n−1) (21)

In the first objective defined in equation (20), we want a response that
assumes values as high as possible until fpass, and as low as possible for fre-
quencies above fstop. This ensures that our device has a low-pass filter be-
havior, as shown in Fig. 6. The second cheap objective expressed in equation
(21) represents the log of sum of the three microstrips’s area, this means that
the goal is to minimize the footprint of the filter. The log term is to ensure
numerical stability of the second objective. We solve this problem with our
proposed methods. The hypervolume per iteration of all methods is shown in
Fig. 7.

Comparison of the hypervolume indicator of all methods for a predefined
computational budget is presented in Table 5. CHVPOI performs better com-
pared to the other benchmark methods, while CHVEI performs worse in terms
of hypervolume indicator compared to HVEI. To check this unexpected behav-
ior, we evaluate the quality of the pareto set by using the same convergence
measure adopted for the DTLZ functions. In particular, the Pareto set is ap-
proximated via 50000 evaluations on random points in the design space and the
distance metric defined in equation (17) is computed for CHVEI and HVEI.
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Fig. 7: Hypervolume indicator evolution for low-pass filter case. The hypervol-
ume is calculated using (1, 0) as the reference point.

The result show that CHVEI gives a better convergence measure (0.0127 ±
0.0009) than the HVEI (0.0468 ± 0.0027). This means that the CHVEI yields
a Pareto front that is spread more evenly along the approximated true front
than the HVEI. The full convergence measure results are described in Table
5.

Table 5: Hypervolume and Convergence Measure with 95% confidence interval
of the low-pass filter example experiments.

Method Budget Hypervolume Convergence Measure

Random 100 13.7372 ± 0.0629 0.0341 ± 0.0023
HVPOI 100 13.9156 ± 0.0203 0.0105 ± 0.0011
HVEI 100 14.0585 ± 0.0173 0.0468 ± 0.0027
CHVPOI 100 14.1413 ± 0.0203 0.0095 ± 0.0003
CHVEI 100 14.0279 ± 0.0381 0.0127 ± 0.0009
SMSEMOA 250 14.0988 ± 0.0257 0.0561 ± 0.0014
NSGA2b 250 14.0889 ± 0.0188 0.0550 ± 0.0013

5.3 Tapped-line filter

The second engineering example is a tapped-line filter [42, 43], implemented
in the Advanced Design System simulator (Keysight EEsof EDA). The full
layout of this device is shown in Fig. 8.

The design requirements for this filter are described in equation (22) and
(23), as:
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L1

g

In/Out

In/Out

1 mm

10 mm

3 mm

Fig. 8: Top-view of Tapped-line Filter. The two conductors (in gray) are placed
on a dielectric substrate [19, 20].

|S21| ≥ −3 dB for 4.75 GHz ≤ freq ≤ 5.25 GHz (22)

|S21| ≤ −20 dB for 3.0 GHz ≤ freq ≤ 4.0 GHz

and 6.0 GHz ≤ freq ≤ 7.0 GHz (23)

where |S21| is the magnitude of the element S21 of the scattering matrix, and
freq is the frequency. The requirements in equations (22) and (23) lead to the
to response depicted in Fig. 9: the desired filter response is lower than −20 dB
in the low and high frequency parts (called stopbands) and higher than −3 dB
in the mid part (passband of the filter).

Fig. 9: The target response of the tapped-line filter. The red horizontal lines
indicate the values −3dB and −20dB in equations (22) and (23).
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The design requirements shown above are used as the first optimization
goal. For the second cheap objective, the footprint of the device is used. We
formulate these objectives as follows:

f1 = max
freq∈[3,fs1]

S21(freq)− min
freq∈[fp1,fp2]

S21(freq)× 10 (24)

+ max
freq∈[fs2,7]

S21(freq)

f2 =(L1 + 10)× (4× 2 + g) (25)

where fs1 = 4 GHz, fp1 = 4.75 GHz, fp2 = 2.25 GHz and fs2 = 6 GHz.
Equation (24) ensures that the filter’s response follows the design requirements.
To balance the value, we put a higher weight for the response in the passband.
Equation (25) represents the footprint of the device.

The variables for the optimization are the displacement L1 (mm) and the
spacing g (mm) between the two conductors. Additionally, the dielectric con-
stant ε (mil), and height h (mm) of the substrate are also considered as design
parameters. The corresponding design space is shown in Table 6.

Table 6: Tapped line filter design parameters.

Parameter Description Range/Value

L1 Displacement between two geometries [4, 10] mm
g Space between two geometries [0.02, 0.1] mm
ε Dielectric constant [8, 11] mil
h Height of the device [0.2, 0.4] mm

Fig. 10: Evolution of hypervolume for tapped-line filter case. (20, 20) is used
as the reference point to calculate the hypervolume.
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Using these settings, we run the optimization with our proposed methods
and other benchmark methods. The results in Fig. 10 show that CHVEI and
CHVPOI get a higher hypervolume indicator faster than the other methods.
Additionally, in Table 7 we can see that our methods have higher hypervolume
indicator compared to the MOEAs: SMSEMOA and NSGA2b, even with a
lower function evaluation budget.

Table 7: Hypervolume with 95% confidence interval of the tapped-line filter
example experiments.

Method Budget Hypervolume

Random 100 8.8870e4 ± 2.3087e2
HVPOI 100 8.9102e4 ± 2.3402e2
HVEI 100 8.8898e4 ± 2.6408e2
CHVPOI 100 9.0369e4 ± 2.0433e2
CHVEI 100 9.0184e4 ± 3.4530e2
SMSEMOA 250 8.9854e4 ± 2.8950e2
NSGA2b 250 8.9928e4 ± 3.1912e2

6 Conclusion

We proposed the Cheap Hypervolume Expected Improvement (CHVEI) and
Cheap Hypervolume Probability of Improvement (CHVPOI) which can di-
rectly exploit cheap-to-evaluate objective functions. The direct evaluation can
speed up the optimization process and removes possible inaccuracies intro-
duced by surrogate modeling. To evaluate the performance of the proposed
method, we apply our algorithm to multiple benchmark functions and two
engineering design problems. We evaluate the performance of the CHVEI and
CHVPOI by measuring the hypervolume indicator and convergence measure
at each iteration. It is shown that in the engineering design problems our pro-
posed methods outperform the standard hypervolume-based methods, random
sampling, and Genetic algorithm-based methods. In future works we will ex-
tend the algorithm for n > 2 objectives, and consider the case of noisy objective
functions.
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housboe Andreasen. Aerodynamic shape optimization of aircraft wings us-
ing panel methods. AIAA Journal, 58(9):3765–3776, 2020. ISSN 00011452.
doi: 10.2514/1.J058979.

21. Lavi Rizki Zuhal, Pramudita Satria Palar, and Koji Shimoyama. A
comparative study of multi-objective expected improvement for aero-
dynamic design. Aerospace Science and Technology, 91(May):548–
560, 2019. ISSN 12709638. doi: 10.1016/j.ast.2019.05.044. URL
https://doi.org/10.1016/j.ast.2019.05.044.

22. Timothy Man Shui Jim, Ghifari Adam Faza, Pramudita Satria Palar,
and Koji Shimoyama. Bayesian methods for multi-objective optimiza-



22 Nasrulloh Loka et al.

tion of a supersonic wing planform. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference Companion, GECCO ’20,
page 1641–1643, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450371278. doi: 10.1145/3377929.3398122. URL
https://doi.org/10.1145/3377929.3398122.

23. Lucas F.M. da Silva and Maria João C.Q. Lopes. Joint strength op-
timization by the mixed-adhesive technique. International Journal of
Adhesion and Adhesives, 29(5):509–514, 2009. ISSN 01437496. doi:
10.1016/j.ijadhadh.2008.09.009.

24. Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast calculation of
multiobjective probability of improvement and expected improvement cri-
teria for Pareto optimization. Journal of Global Optimization, 60(3):
575–594, 2014. ISSN 1573-2916. doi: 10.1007/s10898-013-0118-2. URL
https://doi.org/10.1007/s10898-013-0118-2.

25. Angada B. Sachid, P. Paliwal, S. Joshi, M. Shojaei, D. Sharma, and
V. Rao. Circuit optimization at 22nm technology node. Proceedings of
the IEEE International Conference on VLSI Design, 25(February 2016):
322–327, 2012. ISSN 10639667. doi: 10.1109/VLSID.2012.91.

26. A. Sánchez Cebrián, R. Basler, M. Zogg, and Paolo Ermanni. Multistep
heating to optimizethe curing process of a paste adhesive. In ECCM 2012
- Composites at Venice, Proceedings of the 15th European Conference on
Composite Materials, 2012. ISBN 9788888785332.

27. Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Towards efficient mul-
tiobjective optimization: Multiobjective statistical criterions. 2012 IEEE
Congress on Evolutionary Computation, CEC 2012, pages 10–15, 2012.
doi: 10.1109/CEC.2012.6256586.

28. Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-
value entropy search for multi-objective Bayesian optimization. Advances
in Neural Information Processing Systems, 32(NeurIPS), 2019. ISSN
10495258.

29. Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable
expected hypervolume improvement for parallel multi-objective bayesian
optimization. arXiv, pages 1–30, 2020. ISSN 23318422.

30. Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler.
Scalable Test Problems for Evolutionary Multiobjective Optimization. Wi-
ley, 2005. doi: 10.1007/1-84628-137-7 6.

31. Felipe A.C. Viana, Gerhard Venter, and Vladimir Balabanov. An algo-
rithm for fast optimal latin hypercube design of experiments. Interna-
tional Journal for Numerical Methods in Engineering, 82(2), 2010. ISSN
00295981. doi: 10.1002/nme.2750.

32. Budiman Minasny and Alex B. McBratney. The Matérn function as a
general model for soil variograms. Geoderma, 128(3-4 SPEC. ISS.):192–
207, 2005. ISSN 00167061. doi: 10.1016/j.geoderma.2005.04.003.

33. Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian
optimization of machine learning algorithms. Advances in Neural Infor-
mation Processing Systems, 4:2951–2959, 2012. ISSN 10495258.



Bi-objective BO with Cheap and Expensive Cost Functions 23

34. Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and
Viviane Grunert Da Fonseca. Performance assessment of multiobjective
optimizers: An analysis and review, apr 2003. ISSN 1089778X.

35. Qingfu Zhang, Wudong Liu, Edward Tsang, and Botond Virginas. Ex-
pensive multiobjective optimization by MOEA/D with gaussian process
model. IEEE Transactions on Evolutionary Computation, 14(3):456–474,
2010. ISSN 1089778X. doi: 10.1109/TEVC.2009.2033671.
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