
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Joint kinematics alone can distinguish hip or knee osteoarthritis patients

from asymptomatic controls with high accuracy

Peer-reviewed author version

EMMERZAAL, Jill; Van Rossom, Sam; VAN DER STRAATEN, Rob; De Brabandere,

Arne; CORTEN, Kristoff; DE BAETS, Liesbet; Davis, Jesse; Jonkers, Ilse;

TIMMERMANS, Annick & Vanwanseele, Benedicte (2022) Joint kinematics alone

can distinguish hip or knee osteoarthritis patients from asymptomatic controls with

high accuracy. In: JOURNAL OF ORTHOPAEDIC RESEARCH, 40 (10) , p. 2229-2239.

DOI: 10.1002/jor.25269

Handle: http://hdl.handle.net/1942/36622



1 
 

Joint kinematics alone can distinguish hip or knee osteoarthritis 1 

patients from asymptomatic controls with high accuracy 2 

Authors 3 

Jill S. Emmerzaal1,2, Sam van Rossom1, Rob van der Straaten2, Arne De Brabandere3, Kristoff 4 

Corten4, Liesbet De Baets5, Jesse Davis3, Ilse Jonkers1, Annick Timmermans2, Benedicte 5 

Vanwanseele1 6 

Affiliations 7 

1. Human Movement Biomechanics Research Group, Department of movement sciences, 8 

KU Leuven, Belgium 9 

2. REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt 10 

University, Belgium 11 

3. Declarative Languages and Artificial Intelligence Group, Department of Computer 12 

Science, KU Leuven, Belgium 13 

4. Department of Orthopaedics, Ziekenhuis Oost Limburg, Belgium 14 

5. Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human 15 

Physiology and Anatomy, Vrije Universiteit Brussel, Belgium  16 

Corresponding author: 17 

Jill S. Emmerzaal: 18 

 Tervuursevest 101 – box 1501, 3001 Leuven, Belgium 19 

 jill.emmerzaal@kuleuven.be 20 

 +3216373738 21 

Running title 22 

Classifying osteoarthritis patients and controls 23 



2 
 

Author contribution:  24 

Study concept and design: Jill Emmerzaal, Rob van der Straaten, Liesbet De Baets, Kristoff Corten, 25 

Jesse Davis, Ilse Jonkers, Annick Timmermans, Benedicte Vanwanseele 26 

Data collection and analysis: Jill Emmerzaal, Rob van der Straaten, Sam Van Rossom, Arne De 27 

Brabandere 28 

Results interpretation: Jill Emmerzaal, Sam Van Rossom, Arne De Brabandere, Jesse Davis, 29 

Annick Timmermans, Ilse Jonkers, Benedicte Vanwanseele 30 

Manuscript draft: Jill Emmerzaal  31 

Critical review, edit and approval of manuscript: All authors 32 

  33 



3 
 

Abstract: 34 

Osteoarthritis is one of the leading musculoskeletal disabilities worldwide, and several 35 

interventions intend to change the gait pattern in osteoarthritis patients to more healthy patterns. 36 

However, an accessible way to follow up the biomechanical changes in a clinical setting is still 37 

missing. Therefore, this study aims to evaluate whether we can use biomechanical data collected 38 

from a specific activity of daily living to help distinguish hip osteoarthritis patients from controls 39 

and knee osteoarthritis patients from controls using features that potentially could be measured in 40 

a clinical setting. To achieve this goal, we considered three different classes of statistical models 41 

with different levels of data complexity. Class 1 is kinematics based only (clinically applicable), 42 

class 2 includes joint kinetics (semi applicable under the condition of access to a force plate or 43 

prediction models), and class 3 uses data from advanced musculoskeletal modelling (not 44 

clinically applicable). We used a machine learning pipeline to determine which classification 45 

model was best. We found 100% classification accuracy for KneeOsteoarthritis-vs-46 

Asymptomatic and 93.9% for HipOsteoarthritis -vs-Asymptomatic using seven features derived 47 

from the lumbar spine and hip kinematics collected during ascending stairs. These results indicate 48 

that kinematical data alone can distinguish hip or knee osteoarthritis patients from asymptomatic 49 

controls. However, to enable clinical use, we need to validate if the classifier also works with 50 

sensor-based kinematical data and whether the probabilistic outcome of the logistic regression 51 

model can be used in the follow-up of patients with OA. 52 

osteoarthritis –– biomechanics – daily activities- classification model – machine learning  53 
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Introduction  54 

Osteoarthritis (OA) is one of the most common musculoskeletal disorders worldwide. 55 

Approximately 18% of women and 9.6% of men over 60 years suffer from symptomatic OA1, 56 

which is characterised by pain, physical disability, and difficulties performing activities of daily 57 

life1. Both non-mechanical (e.g., age, inflammation, genetics) and mechanical factors (abnormal 58 

joint anatomy, abnormal joint loading, body mass index (BMI)) might contribute to the onset and 59 

progression of OA2. 60 

People with osteoarthritis show a range of biomechanical adaptations in their gait patterns 61 

compared to asymptomatic individuals3,4. Those observed differences in kinetics and contact forces 62 

make OA patients possibly more susceptible to OA progression5. In knee OA patients, the baseline 63 

knee adduction moment has been associated with cartilage loss after five years5. Similarly, in hip 64 

OA patients, an increase in cumulative hip loading was related to increased cartilage loss6. 65 

Moreover, hip OA patients have adjusted their gait pattern to reduce the loading on the cartilage7 66 

regardless of muscle co-contraction8. Therefore biomechanical analysis has been suggested to 67 

provide insight into the person’s progress and the effectiveness of an intervention (e.g. gait 68 

retraining9,10).  However, conventional lab-based methods to capture joint kinematics, joint 69 

kinetics, and joint contact forces are time-consuming and require specialised equipment and 70 

specialised expertise, which makes them infeasible in a clinical context. 71 

Alternatively, we can use advanced statistical models (i.e. machine learning or deep learning) to 72 

find distinctive patterns in the biomechanical data to help classify gait patterns or patients 73 

accordingly11,12. Accurate classification models based on motion data could be used for multiple 74 

purposes. First, they could possibly identify undiagnosed individuals when hip or knee OA is 75 

suspected as a fist screening tool by identifying osteoarthritis specific movement patterns. 76 
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Secondly, they could be used to evaluate a person’s progress towards a normalised movement 77 

pattern after a surgical intervention or a rehabilitation program12. Suppose the classification of a 78 

person changes from OA to asymptomatic; one might conclude with some degree of certainty that 79 

the intervention was successful with regards to changing the biomechanical pattern to resemble 80 

that of an asymptomatic individual. However, first, an accurate model needs to be created that 81 

could be used in a clinical setting. Previous research used gait kinematics and kinetics to classify 82 

OA patients from asymptomatic controls and found classification accuracies ranging from 45% to 83 

97.62% using various methodologies13–19. Until now, Jones et al. (2008) developed the most 84 

accurate classification method with an in- and out-sample classification accuracy of 97.62%17 to 85 

classify knee OA patients. They used 12 principal components derived from kinematics and ground 86 

reaction force waveforms, as well as spatiotemporal and anthropometric data as input in their 87 

classification process. However, the need for force plate data complicates translating this approach 88 

to a clinical setting. To classify hip OA subjects, Laroche et al. (2014) found accuracies between 89 

93% and 97% using Support Vector Machines (SVM)14. However, one of the drawbacks to SVM 90 

is that it does not show uncertainty, which might make it harder to monitor changes. 91 

There exists an opportunity to develop alternative approaches for classifying patients that are 92 

suitable in clinical practice, e.g., using mobile sensors, or methods that report some degree of 93 

certainty. Therefore, instead of using a hard classifier like SVM, a soft, simple classifier like a 94 

logistic regression model (LR) might be more relevant. Compared to the SVM, an LR model is 95 

easier to interpret and also indicates the probability of a subject belonging to that class, which might 96 

be relevant in the evaluation of a person’s progress. Contrarily, an LR model usually has lower 97 

predictive power, which might cause a risk when only including less challenging movement tasks 98 

such as gait to discriminate subjects with (hip or knee) OA from asymptomatic controls, therefore 99 
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we included more challenging tasks. Moreover, Komnik et al. (2015) highlighted the importance 100 

of investigating more challenging tasks of daily living to detect potential (mal)adaptive movement 101 

patterns in patients with OA20. Due to the differences in biomechanical adaptation for hip or knee 102 

OA patients, other activities that produce a higher load on the affected joint might be more useful 103 

for classification purposes. Therefore, it is of interest to investigate challenging exercises alongside 104 

gait, such as stair climbing, to determine which exercise is most effective in differentiating 105 

asymptomatic controls from subjects suffering from either hip or knee OA.       106 

To classify hip and knee OA patients in a clinical setting, one needs features that could be derived 107 

from inexpensive mobile sensors (e.g. kinematical data using inertial measurement units (IMUs)). 108 

However, to date, most classification models still require force plate data to classify OA patients 109 

from controls. Therefore, we want to explore the minimum number of movement features derived 110 

from activities of daily living that enable classification of (either hip or knee) OA patient groups 111 

from asymptomatic controls, indicating which parameters are of interest to measure and thereby 112 

proving the generalisability of the approach. We consider three different classes of statistical 113 

models with different levels of data collection and processing complexity. Class 1 is kinematics 114 

based only (clinical applicable), class 2 includes joint kinetics (which would still rely on access to 115 

a force plate or use of machine learning-based prediction models21), and class 3 uses data from 116 

advanced musculoskeletal modelling (not clinically applicable). Moreover, as the gait pattern 117 

might not be sensitive enough, we will create these three statistical models using different exercises 118 

with varying difficulty levels. Accordingly, this study aims to evaluate whether we can use 119 

biomechanical data collected from a specific activity of daily living to help distinguish either hip 120 

or knee OA patients from asymptomatic controls. Thus, exploring the use of a general workflow 121 

for both patient groups that could potentially be used in a clinical setting. 122 
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 Methods 123 

Participants  124 

This is a controlled laboratory study in which 51 people participated: 12 asymptomatic controls, 125 

20 unilateral end-stage hip OA patients and 19 unilateral end-stage knee OA patients (see Table 1 126 

for participant characteristics). This is an explorative study based on a secondary analysis of a more 127 

extensive prospective follow-up (S59857) that evaluated hip and knee joint contact forces in people 128 

with hip or knee osteoarthritis and following total knee arthroplasty.  The sample size for that study 129 

was based on joint contact forces measured in people with an instrumented knee prosthesis (1.61 130 

+/- 0.305 bodyweight during gait)22. Assuming that a difference of one standard deviation is 131 

significant and to achieve a power of 0.8, a sample size of 14 subjects per group is needed. Taking 132 

a possible loss to follow-up of 15-20% into account, we recruited 18-20 participants per group. 133 

Because for the larger study both legs of the asymptomatic controls were considered as 134 

independent, only 12 asymptomatic control subjects were recruited.  135 

Patients awaiting a joint replacement surgery (Kellgren-Lawrence grade III (N=1)-IV (N=38)) 136 

were recruited from two local hospitals (Ziekenhuis Oost Limburg, Genk and Jessa Hospital, 137 

Hasselt, Belgium). Inclusion criteria for the patients were: age between 50 and 75 years; unilateral 138 

hip or knee OA; BMI<30kg/m2; able to walk 10 meters; able to navigate stairs; no corticosteroid 139 

injection at least three months prior to inclusion; no joint replacement in other lower limb joints; 140 

no neurological or musculoskeletal disorders that could affect the movement pattern and no history 141 

of pathological osteoporotic fractures. Asymptomatic controls were included aged between 50 and 142 

75 years old; they had a BMI < 30kg/m2, no neurological or musculoskeletal disorders that could 143 

affect their movement pattern and were recruited from a local senior’s network in Leuven, Belgium. 144 

Table 1 summarises the participant demographics and the patient-reported outcome of the 145 
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Hip/Knee Disability and Osteoarthritis Outcome Score (HOOS or KOOS). Separate analysis for 146 

the group differences between the patient reported outcome scores were calculated using an 147 

independent samples t-test, significance level was set at 0.05. The local ethics committee of the 148 

academic hospital Leuven approved the study protocol (s-59857), and the participants provided 149 

written informed consent before the start of the study.  150 

Study protocol 151 

All participants performed five repetitions of nine exercises in the Movement and posture Analysis 152 

Laboratory Leuven: level walking; forward lunge; sideward lunge; single-leg stance; single-leg 153 

squat; standing up from a chair; sitting down; ascending stairs; descending stairs. These tasks were 154 

selected based on their relevance for clinical practice. They resemble physiotherapy exercises 155 

(lunges) and parts of movements that are relevant for daily life functioning (single-leg-squat and 156 

single-leg-stance) or are repeatedly performed during everyday life (walking, sit/stand transitions 157 

and stair climbing). Further details about task specifications and standardisation can be found in 158 

supplementary materials A. 159 

Reflective markers were attached to each participant conforming to the full-body Plug-in Gait 160 

(Oxford Metrics), including 38 markers23. In addition, three marker clusters replaced the single 161 

markers on the segments (shank, thigh, upper and lower arms), and one extra three-marker cluster 162 

was placed on the superior aspect of the left iliac crest of the pelvis. We placed additional 163 

anatomical markers on the sacrum, medial femur epicondyle and medial malleoli23. 3D marker 164 

trajectories were collected using 13 optoelectronic cameras (Vicon, Oxford Metrics, UK, 100Hz). 165 

Ground reaction forces (GRF) were measured synchronously using three ground-embedded force 166 

plates (AMTI, Watertown, MA, USA, sampling at 1000Hz).  167 



9 
 

Musculoskeletal modelling 168 

The motion capture data were processed using a standard, musculoskeletal modelling workflow 169 

implemented in OpenSim3.324. We used the generic model gait2392 (—model specifications and 170 

comprehensive information on the musculoskeletal workflow, see Supplementary material B). The 171 

generic OpenSim model was scaled to match the body dimensions and bodyweight of the subject 172 

by using a measurement-based scaling approach within OpenSim. A personalised knee joint axis 173 

orientation and position were implemented within each scaled model to allow for a more complex 174 

knee joint description. The functional axis of rotation was calculated using the SARA algorithm 175 

based on a standing flexion/extension range of motion task25,26. All other coordinate frames were 176 

used directly within the OpenSim model. After that, joint angles were derived from the measured 177 

marker trajectories using the Kalman smoothing algorithm described by De Groote et al. (2008) 178 

and available from SimTK27. The Kalman smoother algorithm is an alternative to the standard 179 

Inverse Kinematics Tool available in OpenSim, which improves the estimation of the joint 180 

kinematics and kinetics by using prior knowledge with the measured marker trajectories while 181 

minimising the estimation error statistically27. Joint moments were calculated using a standard 182 

inverse dynamic approach available in OpenSim. Afterwards, muscle forces and activations were 183 

calculated using a static optimisation routine that minimised the total muscle activation squared. 184 

Finally, joint contact forces were calculated using the vector sum of the estimated muscle forces 185 

and reaction forces in the joint using the standard OpenSim pipeline28.  186 

Feature construction 187 

For each subject and each exercise, features were derived from the kinematics, kinetics and contact 188 

force time series using a multivariate feature construction tool, TSFuse29. Table 2 shows the 189 

variables of which the time series were used as input. The joint moments and joint contact forces 190 
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were normalised body weight. For the asymptomatic controls, both legs were analysed; for both 191 

OA groups, only the affected sides were analysed since altered kinematics and kinetics might have 192 

been related to contralateral, secondary OA involvement.  193 

Given these time series, TSFuse generates a new time series by fusing multiple input time series, 194 

for example, by computing the ratio of two-time series. The system then extracts features from 195 

both the input time series and the generated time series. These features include statistical features 196 

(mean, variance, minimum, maximum, etc.), Fourier transform coefficients, number of peaks, zero 197 

crossings, etc. Feature construction was performed in an unsupervised manner, i.e. independent of 198 

the groups. 199 

After extracting the features from each trial, the features were averaged over all trials per activity 200 

per participant. For the healthy participants, the features were also averaged over both legs. Note 201 

that we only use the affected leg for the hip and knee OA patients, and hence averaging over the 202 

legs is not necessary for the patients. 203 

Statistical analysis 204 

Separate analyses were used to compare people with hip OA versus asymptomatic controls as well 205 

as people with knee OA versus asymptomatic controls for all nine activities. Figure 1 also shows 206 

an overview of the statistical analysis. We used Python (version 3.7.8) with the TSFuse package 207 

(version 1.0dev) to construct the features and the scikit-learn package (version 0.21.2) to train the 208 

models. In total, we trained, tested, and evaluated 54 different models: hipOA-vs-Asymptomatic 209 

and kneeOA-vs-Asymptomatic models, for nine exercises with three levels of processing 210 

complexity of the input data.    211 



11 
 

To estimate the classification accuracy of a model on future (i.e., unseen) subjects a stratified five-212 

fold cross-validation procedure was used. This procedure partitions the data into five disjoint folds 213 

(i.e., subsets of the data), where each fold has an identical ratio of examples between each group. 214 

Then four of the folds are used to train the model, and the model is used to make predictions on the 215 

held aside fold. This procedure is repeated five times, with each fold serving as the held aside test 216 

set one time.   217 

To predict whether a given person belongs to the OA group, an L1-regularisation logistic regression 218 

(LR)30 was trained on the training set and tested on the unseen test set31. LR returns a score between 219 

0 and 1, representing the likelihood that an individual belongs to the OA group32 (figure 2). If the 220 

probability score is below 0.5, the subject is predicted as belonging to the asymptomatic control. 221 

Otherwise, it is predicted as belonging to the OA patient group. The input of the model consists of 222 

the features constructed by TSFuse. Since we use regularised logistic regression, all features are 223 

normalised. All participants with missing values for the exercise that was analysed were removed. 224 

The L1-regularization strength of the LR model was tuned based on the training data of each fold. 225 

To select a reduced number of features, we compared different values for the regularisation strength 226 

hyperparameter and selected the value that resulted in the lowest number of non-zero coefficients 227 

but still had a good area under the receiver operator characteristic curve (AUC) (i.e. the smallest C 228 

to the right of the largest change in AUC). Specifically, we trained LR models for ten different 229 

values of the inverse regularisation strength C, spaced logarithmically between 0.01 and 1. For 230 

each C, we evaluated the AUC using an inner 5-fold cross-validation procedure. As illustrated in 231 

Figure 3, we searched for the largest drop in AUC (computed as the difference in AUC between 232 

each consecutive pair of C values) and selected the smallest C to the right of this drop. 233 
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The usefulness of the LR model is evaluated in two different ways. First, the performance of the 234 

LR model is analysed by computing the accuracy, AUC, recall, miss, and fallout. Accuracy 235 

measures the model’s ability to differentiate between asymptomatic controls and OA patients. The 236 

AUC is another standard measure of a model’s classification ability33.  Fallout represents the 237 

number of false alarms the model gives, i.e. when an asymptomatic individual is misclassified as 238 

symptomatic. The recall denotes how many of the patients are correctly classified by the model. 239 

The miss indicates the proportion of patients that are misclassified as asymptomatic controls, i.e. 240 

the patients that are missed by the model. Preferably, fallout and miss are low, recall and accuracy 241 

high. However, it is most often a trade-off between the metrics. Those metrics can be calculated 242 

using the true positive (TP), false positive (FP), true negative (TN), and false-negative (FN) 243 

predictions. Second, the features selected by the LR model are considered.  244 

Results 245 

Classification accuracies   246 

The average classification results are shown in Table 3 and Table 4 for HipOA-vs-Asymptomatic 247 

and KneeOA-vs-Asymptomatic, respectively. The best performing classifier for HipOA-vs-248 

Asymptomatic was found using class 2 of the statistical models during ascending stairs (Table 3). 249 

Overall accuracy was 0.970, fallout = 0, which means no asymptomatic controls were misclassified 250 

as symptomatic, 92.3% of the HipOA subjects were correctly classified (recall = 0.923) and 7.7% 251 

were misclassified as asymptomatic (miss = 0.076). Using kinematics only (class 1) a slightly lower 252 

overall accuracy was obtained during ascending stairs and gait. During ascending stairs, the 253 

accuracy was 0.939, with a slightly higher number of HipOA patients that were misclassified (miss 254 

= 0.143). At the same time, all asymptomatic controls were still correctly classified (fallout = 0). 255 

During gait, the accuracy is slightly lower (accuracy = 0.879). However, the recall was higher 256 



13 
 

(0.900), and miss was lower (0.100). That means that it was better at classifying HipOA patients; 257 

however, it performed poorer on the asymptomatic controls (fallout = 0.130). The most important 258 

time series to distinguish between HipOA-vs-Asymptomatic using class 1 during ascending stairs 259 

are from the lumbar spine and hip kinematics (Table S2). 260 

To distinguish KneeOA-vs-Asymptomatic controls, we found perfect classification accuracies 261 

using kinematical data (class 1) during ascending stairs (Table 4). Overall accuracy = 1, fallout = 262 

0, recall = 1, and miss = 0. Indicating that the model misclassified no asymptomatic controls and 263 

KneeOA subjects. No other activity performed as well as ascending stairs. The most important time 264 

series to distinguish between KneeOA-vs-Asymptomatic during ascending stairs were features 265 

derived from the lumbar spine and hip kinematics; particularly, hip flexion, hip adduction and 266 

lumbar extension. (Table S3). In particular, it was the variance between the different repetitions 267 

that was important. 268 

Discussion 269 

This study aims to evaluate whether we can use biomechanical data collected from a specific 270 

activity of daily living to help distinguish hip OA patients from controls and knee OA patients from 271 

controls using features that potentially could be measured in a clinical setting. The three different 272 

classes of statistical models applied in this study contained different levels of complexities: (1) 273 

kinematics only (clinically applicable); (2) includes joint kinetics (semi clinically applicable); (3) 274 

using advanced musculoskeletal modelling (not clinically applicable). To independently classify 275 

both OA groups from controls (hipOA-vs-Asymptomatic and kneeOA-vs-Asymptomatic), 276 
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ascending stairs using class 1 of the statistical models was most accurate also showing the 277 

generalisability of the approach across two different populations.  278 

The kinematics only statistical model distinguished hip OA patients from asymptomatic controls 279 

with an overall accuracy of 93.9% using data collected during ascending stairs. Gait showed a 280 

slightly lower accuracy; however, the recall increased. Indicating that gait is marginally better at 281 

classifying hip OA patients but performs poorer on asymptomatic individuals. Knee OA patients 282 

could be perfectly distinguished from asymptomatic controls using kinematical data during 283 

ascending stairs.  284 

To indicate whether a classification model is accurate enough depends on the number of subjects 285 

per group. A good classification model should always perform better than simply predicting the 286 

class that is represented most. For our HipOA-vs-Asymptomatic model, it should outperform the 287 

overall accuracy of 0.64. Our KneeOA-vs-Asymptomatic model should reach at least 0.59, and in 288 

both cases, our model far outperformed that threshold. Furthermore, our HipOA-vs-Asymptomatic 289 

model performed similarly to the model of Laroche et al. (2014) that reported accuracy levels 290 

between 93% and 97%14. However, we used a far simpler LR model, which has two advantages 291 

over an SVM model. First, by using an L1-regularization instead of an L2-regularization, we use 292 

less input data, which improves the interpretability of our model. Secondly, the LR model gives a 293 

probabilistic outcome, indicating how confident the model is that a subject belongs to a specific 294 

group. This probability score could, in theory, be used in the follow-up of patients. Changes in the 295 

probability of a person belonging to the OA class after an intervention might mean that the 296 

intervention was successful with regards to changing the biomechanical pattern. However, how 297 

well the classification model is able to evaluate progression after an intervention should be 298 

investigated in future work.  299 
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Our KneeOA-vs-Asymptomatic model surpassed the classification accuracies of models already 300 

existing in the literature 13,15–19. Jones et al. (2008) showed classification accuracies of 97.62%, 301 

only minimally lower than our classification accuracy17. However, one disadvantage of Jones’ 302 

model is the need for force plate data, limiting the use of that model in the clinical setting. 303 

Considering that we only need kinematical data makes the translation to the clinic easier. However, 304 

in order to obtain high accuracies using our LR-model, the variance between the repetitions is of 305 

importance. Therefore, measuring the activity multiple times is necessary.  306 

There are still some limitations to the applicability of this study in the clinic. We only included a 307 

limited number of subjects in this study. By only using such a small number of subjects, we 308 

obtained a “wide data set”, i.e., more features than subjects, risking the overfitting of our model. 309 

We reduced the risk of overfitting by only including the most relevant features using regularisation. 310 

However, we did see a decrease in the test accuracies compared to the training accuracies for some 311 

of the activities however this was not the case for our best classifier. Therefore, in future research, 312 

when other activities are included, more subjects need to be added to our machine learning model 313 

to investigate whether there is an added benefit of more complex input data. Moreover, the 314 

inclusion of additional subjects will improve the generalisability of the model. Furthermore, we 315 

included unilateral end-stage hip and knee OA patients. Therefore, at this point, we cannot 316 

generalise the results to populations with lower KL grades or people suffering from bi-lateral OA. 317 

Considering that previous research found significant differences in gait patterns between people 318 

with mild to moderate OA and asymptomatic individuals and between different stages of OA 319 

severity (e.g. Astephen et al. (2008)34; Foucher et al. (2012)35), models need to be trained and tested 320 

using appropriate input data (i.e. lower KL-grades or multi-joint OA). Even though our results 321 

show that kinematic data alone are sufficient to distinguish OA patients from asymptomatic 322 

controls, we still used laboratory-based data as input. Recognising that differences in absolute 323 
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angles were previously reported between IMU data and lab-based36,37, we are uncertain how well 324 

our model performs with kinematic data derived from IMU sensors. Good results have been found 325 

by Teufl et al. (2019) that used kinematics derived from IMU sensors to distinguish healthy gait 326 

from postoperative hip arthroplasty gait—indicating that it is possible to use IMU derived 327 

kinematics in a classification problem with good accuracy and validity38. Alternatively, future 328 

research could also focus on determining which features derived from raw acceleration data are 329 

useful in classifying OA patients from asymptomatic controls using a machine learning pipeline. 330 

In running and gait research, many variables have been identified to be able to distinguish between 331 

patient populations and asymptomatic controls using data derived from the IMU sensor39. 332 

However, if they can be used to classify new unseen patients is still largely undetermined. Lastly, 333 

we excluded participants with a BMI above 30 kg/m2. As BMI is an important risk factor for OA, 334 

this might influence the generalisability of our model.  335 

In conclusion, features derived from the lumbar spine and hip kinematics during ascending stairs 336 

are sufficient in classifying HipOA-vs-Asymptomatics and KneeOA-vs-Asymptomatic controls. 337 

However, to enable clinical use, we need to validate if IMU-based kinematical data works as well 338 

and whether the probabilistic outcome of the logistic regression model can be used in the follow-339 

up of patients with OA. 340 
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List of figures 464 

Figure 1 Schematic summary of the methodological analysis; The first step is the data acquisition 465 

consisting of lab-based data collection and calculating the parameters of interest using a 466 

musculoskeletal workflow. The second step is building the machine learning pipeline. Automatic 467 

feature construction from the time series is performed with TSFresh. After that, the complete data 468 

set is run through a 5-fold cross-validation method. The first step in the kth-fold is to split the data 469 

set in a training (80%), and a test (20%) set containing the same percentage of healthy controls 470 

and OA patients. On the training set, a classification model is trained using the following steps: 471 

(1) normalising features (2) feature selection using hyperparameter tuning of the L1-472 

regularization strength, (3) train the logistic regression model. the model is evaluated on the 473 

unseen test set. The classification model is evaluated on the unseen test set. This procedure was 474 

repeated for every fold.  475 

Figure 2: Schematic representation of the sigmoid function of the logistic regression analysis and 476 

class allocation.  477 
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Figure 3: Hyperparameter tuning for the regularisation strength. The selected regularisation 478 

strength C is the smallest C to the right of the largest change in AUC. 479 









 
Table 1 Patient demographics and HOOS/KOOS scores mean [+/- 95% confidence interval]. * indicates a significant 
difference (p<0.05) between the indicated OA group and the asymptomatic control group 

 
Asymptomatic  Hip OA Knee OA 95%CI difference between groups 

 
N=12 N=20 N=19   

Age (yrs) 59.7 [55.3 – 64.2] 63.1 [60.0 – 66.2] 65.1 [62.6 – 67.6]   

Weight 

(kg) 
74.2 [64.8 – 83.7] 75.4 [70.1 – 80.7] 79.8 [75.7 – 83.9]   

Height (m) 1.71 [1.65 – 1.77] 1.75 [1.71 – 1.79] 1.75 [1.71 – 1.79]   

BMI 

(kg/m) 
25.1 [23.0 – 27.3] 24.5 [23.3 – 25.8] 26.0 [24.9 – 27.0]   

Gender/sex 6 female 9 female 7 female   

PROM KOOS HOOS KOOS Hip OA - asym knee OA - asym 

Pain 95.4 [91.8 - 98.9] 56.8 [48.8 – 64.7]* 50.9 [45.0 – 56.8]* [29.0-48.8] [37.8- 51.1] 

Symptoms 96.9 [93.7 – 100] 51.8 [42.6 – 60.9]* 52.3 [43.4 – 61.1]* [34.5- 57.0] [35.4- 53.9] 

ADL 98.7 [97.2 - 100] 57.9 [48.5 – 67.4]* 56.4 [48.8 – 64.1]* [32.3- 53.6] [34.5- 50.0] 

Sport 93.3 [88.0 – 98.6] 35.8 [23.7 – 47.9]* 24.1 [12.2 – 36.0]* [44.9- 71.9] [56.5- 82.0] 

QOL 92.1 [97.7 – 86.5] 41.7 [33.8 - 49.5]* 28.0 [20.1 – 35.8]* [38.4- 59.7] [54.8- 73.4] 

 

  



 

Table Variables of which time series were used as input for TSFuse 

Kinematics Kinetics Contact forces 

ankle plantar-dorsiflexion  ankle plantar-dorsiflexion moment ankle x 

knee flexion-extension  knee flexion-extension moment ankle y 

knee ab-adduction knee ab-adduction moment ankle z 

hip rotation hip rotation moment knee x 

hip ab-adduction hip ab-adduction moment knee y 

hip flexion-extension hip flexion-extension moment knee z 

lumbar rotation 
 

hip x 

lumbar bending 
 

hip y 

lumbar flexion-extension 
 

hip z 

   



 

Table3  Model accuracy to differentiate HipOA-vs-Asymptomatic controls for the different exercises and different 
combinations of input variables were used. The three different classes are different statistical models with different levels 
of data complexity. Class 1 is kinematics based only (clinical applicable), class 2 includes force plate data to the kinematics 
(semi applicable under the condition of, e.g. access to a force plate or prediction models), and class 3 uses data from 
advanced musculoskeletal modelling (kinematics, kinetics and contact forces; not clinically applicable). Acc is the ratio of 
how many subjects were predicted correctly to the total number of subjects. Constr. shows the number of features 
obtained by the feature constriction tool TSFuse and selected shows the number of features that were selected by the 
Logistic Regression model. TP, FP, FN, and TN are true positive, false positive, false positive and true negative respectively. 

 

  

HipOA-vs-Asymptomatic 

 

 acc. constr. selected TP FP FN TN Fallout Recall Miss AUC 

Gait            

Class 1 0.879 27221 24 9 3 1 20 0.130 0.900 0.100 0.925 

Class 2 0.818 57490 39 9 3 3 18 0.143 0.750 0.250 0.810 

Class 3 0.758 107688 20 8 4 4 17 0.190 0.667 0.333 0.833 

Forward lunge            

Class 1 0.844 29147 22 11 1 4 16 0.059 0.733 0.267 0.925 

Class 2 0.750 64028 17 8 4 4 16 0.200 0.667 0.333 0.808 

Class 3 0.719 115754 25 10 2 7 13 0.133 0.588 0.412 0.788 

Sideward Lunge            

Class 1 0.848 15915 15 11 1 4 17 0.056 0.733 0.267 0.877 

Class 2 0.727 32581 11 10 2 7 14 0.125 0.588 0.412 0.837 

Class 3 0.758 61140 16 8 4 4 17 0.190 0.667 0.333 0.865 

Single-leg-stance            

Class 1 0.818 31076 65 11 1 5 16 0.059 0.688 0.313 0.948 

Class 2 0.818 56779 52 10 2 4 17 0.105 0.714 0.286 0.913 

Class 3 0.788 89404 25 11 1 6 15 0.063 0.647 0.353 0.845 

Single-leg-squat            

Class 1 0.813 27992 21 11 1 5 15 0.063 0.688 0.313 0.875 

Class 2 0.844 54448 21 11 1 4 16 0.059 0.733 0.267 0.912 

Class 3 0.844 95865 15 11 1 4 16 0.059 0.733 0.267 0.883 

Sit down            

Class 1 0.667 13042 31 7 5 6 15 0.250 0.538 0.462 0.758 

Class 2 0.697 27797 22 7 5 5 16 0.238 0.583 0.417 0.698 

Class 3 0.606 49254 32 5 7 6 15 0.318 0.455 0.545 0.679 

Stand up            

Class 1 0.879 13228 13 10 2 2 19 0.095 0.833 0.167 0.804 

Class 2 0.788 26829 12 8 4 3 18 0.182 0.727 0.273 0.780 

Class 3 0.758 48100 36 9 3 5 16 0.158 0.643 0.357 0.752 

Ascending stairs            

Class 1 0.939 28750 6 12 0 2 19 0.000 0.857 0.143 1.000 

Class 2 0.970 63997 6 12 0 1 20 0.000 0.923 0.077 0.996 

Class 3 0.939 119961 7 12 0 2 19 0.000 0.857 0.143 1.000 

Descending stairs            

Class 1 0.939 31042 16 12 0 2 19 0.000 0.857 0.143 0.968 

Class 2 0.909 55563 17 12 0 3 18 0.000 0.800 0.200 0.976 

Class 3 0.909 117300 18 12 0 3 18 0.000 0.800 0.200 0.988 



Table 2 Model accuracy to differentiate KneeOA-vs-Asymptomatic controls for the different exercises and different 
combinations of input variables were used. The three different classes are different statistical models with different levels 
of data complexity. Class 1 is kinematics based only (clinical applicable), class 2 includes force plate data to the kinematics 
(semi applicable under the condition of, e.g. access to a force plate or prediction models), and class 3 uses data from 
advanced musculoskeletal modelling (kinematics, kinetics and contact forces; not clinically applicable). Accuracy is the ratio 
of how many subjects were predicted correctly to the total number of subjects. Constructed shows the number of features 
obtained by the feature constriction tool TSFuse and selected shows the number of features that were selected by the 
Logistic Regression model. TP, FP, FN, and TN are true positive, false positive, false positive and true negative respectively. 

 

 
 

 

KneeOA-vs-Asymptomatic 

 acc. constr. selected TP FP FN TN Fallout Recall Miss AUC 

Gait            

Class 1 0.833 27221 31 10 2 3 15 0.118 0.769 0.231 0.889 

Class 2 0.833 57490 31 11 1 4 14 0.067 0.733 0.267 0.894 

Class 3 0.800 107688 15 10 2 4 14 0.125 0.714 0.286 0.843 

Forward lunge            

Class 1 0.586 29147 38 8 4 8 9 0.308 0.500 0.500 0.696 

Class 2 0.517 64028 54 8 4 10 7 0.364 0.444 0.556 0.532 

Class 3 0.690 115754 15 9 3 6 11 0.214 0.600 0.400 0.711 

Sideward Lunge            

Class 1 0.444 15915 82 6 6 9 6 0.500 0.400 0.600 0.561 

Class 2 0.444 32581 29 5 7 8 7 0.500 0.385 0.615 0.489 

Class 3 0.704 61140 32 9 3 5 10 0.231 0.643 0.357 0.683 

Single-leg-stance            

Class 1 0.800 31076 59 10 2 4 14 0.125 0.714 0.286 0.843 

Class 2 0.733 56779 39 9 3 5 13 0.188 0.643 0.357 0.778 

Class 3 0.733 89404 98 9 3 5 13 0.188 0.643 0.357 0.764 

Single-leg-squat            

Class 1 0.724 27992 23 8 4 4 13 0.235 0.667 0.333 0.760 

Class 2 0.621 54448 28 7 5 6 11 0.313 0.538 0.462 0.662 

Class 3 0.655 95865 80 9 3 7 10 0.231 0.563 0.438 0.750 

Sit down            

Class 1 0.483 13042 67 7 5 10 7 0.417 0.412 0.588 0.613 

Class 2 0.448 27797 32 7 5 11 6 0.455 0.389 0.611 0.495 

Class 3 0.448 49254 25 4 8 8 9 0.471 0.333 0.667 0.426 

Stand up            

Class 1 0.690 13228 33 7 5 4 13 0.278 0.636 0.364 0.760 

Class 2 0.724 26829 76 10 2 6 11 0.154 0.625 0.375 0.755 

Class 3 0.690 48100 37 9 3 6 11 0.214 0.600 0.400 0.828 

Ascending stairs            

Class 1 1.000 28750 7 12 0 0 16 0.000 1.000 0.000 1.000 

Class 2 1.000 63997 7 12 0 0 16 0.000 1.000 0.000 1.000 

Class 3 1.000 119961 7 12 0 0 16 0.000 1.000 0.000 1.000 

Descending stairs            

Class 1 0.852 31042 17 11 1 3 12 0.077 0.786 0.214 0.867 

Class 2 0.852 55563 23 11 1 3 12 0.077 0.786 0.214 0.922 

Class 3 0.815 117300 37 11 1 4 11 0.083 0.733 0.267 0.867 
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A. 

All participants performed five repetitions of nine functional exercises in the Movement and 

posture Analysis Laboratory of the KU Leuven:  

● Level walking; self-selected pace. A trial was successful when the entire foot contacted 

the force plate.  

● Forward lunge and sideward lunge; Step length and step width was standardised at 70% 

of the leg length. Leg length was defined as the distance from the trochanter major to 

the floor. The participant was instructed to go as far as possible while remaining stable 

● Single-leg stance and single-leg squat; Hands were fixed at the side. For the single-leg 

squat, the participant was instructed to go as far as possible while remaining stable 

● Stand up and sit-down transition; chair height was standardised as knee height. Knee 

height was defined as the distance from the tibiofemoral joint line to the floor. The 

participant was instructed not to look back before sitting down.  

● Ascending stairs and descending stairs; at self-selected speed without handheld support 

on a standardised 4-step staircase (step height = 0.16m and tread length = 0.31m). The 

first, second, and third step was placed on the floor embedded force plates. These steps 

were loose blocks within the staircase. During the placement of the stairs, special care 

was taken to put the steps on the force plates properly. For the analysis, the second and 

third step was analysed.   
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Table S1 shows the definitions of the start and end of the trials that were analysed 

Exercises Start End 

 
Level walking; Ascending stairs; Descending 

stairs 

Force on force 

plate exceeds 40N  

Consecutive 

contact of the same 

foot 

 
Single leg squat; Forward lunge; Single leg 

stance; Sideward lunge 

The velocity of the 

toe marker exceeds 

0.15 m/s 

The velocity of the 

toe marker is below 

0.15 m/s 

 
Sit down transition 

The velocity of the 

clavicular marker 

exceeds 0.15 m/s 

The first peak after 

the force under the 

seat exceeds 75% 

bodyweight (see 

figure 1)  

 
Stand up transition 

Peak before the 

force under the seat 

is below 75% (see 

figure 1)  

The velocity of the 

clavicular marker is 

below 0.15 m/s 
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B.  

Gait2392 is a generic lower limb model (no arms) 24. The original model has 92 musculotendon 

accentuators that represent 76 muscles of the lower limbs and torso (Figure S2). The lower 

extremities are represented by seven rigid-body segments (pelvis, femur, tibia, patella, talus, 

calcaneus, and toe); the torso and head are considered as one. The relative segmental motions 

are described by the lumbar spine, hip, knee, ankle, subtalar, and metatarsophalangeal joints. 

We added a DOF for the ab-adduction of the knee joint with a constraint of 20 degrees. We 

removed the DOFs of the subtalar and metatarsophalangeal joints. The modified model’s DOFs 

were as follows: 6-DOF pelvis (pelvis wrt ground), 3-DOF hip joints (pelvis wrt femur), 2-

DOF knee joints (femur wrt tibia), 1-DOF ankle joints (tibia wrt foot), and 3-DOF lumbar spine 

joint (pelvis wrt torso).  

The extended generic model was scaled to match the body dimensions and bodyweight of the 

subject by using a measurement-based scaling approach within OpenSim. Scaling factors per 

segment were calculated using the relative distance between the markers positioned on the 

anatomical landmarks recorded in a static trial and the corresponding virtual makers in the 

Figure S SEQ Figure \* ARABIC 1 Determination of the end of the sit down movement and the beginning of the stand-up movement 
using the vertical ground reaction force under the seat. Time normalized to 100% of the complete cycle (example data from one 

subject). 
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musculoskeletal model. A personalised knee joint axis orientation and position was 

implemented within each scaled model to allow for a more complex knee joint description. The 

functional axis of rotation was calculated using the SARA algorithm based on a standing 

flexion/extension range of motion task25,26. For more details on the SARA algorithm, see Ehrig 

et al. (2007)25 and evaluated for use in knee OA patients in Meireles (2017)26. In short, the 

algorithm uses marker trajectory data from the marker on the lateral epicondyle combined with 

the cluster marker set of the shank and thigh. Based on the marker trajectories throughout the 

motion, the averaged orientation and position of the knee flexion/extension axis (i.e. functional 

axis) are calculated in both the femoral reference frame and the tibial reference frame. The knee 

joint centre is then defined as the intersection of the functional axis and the XY-planes of the 

femoral reference frame and tibial reference frame.  The orientation of the ab/adduction axis 

was defined as the cross product of the unit vector of the functional axis and the axis pointing 

from the hip joint centre to the knee joint center25. The functional axis of rotation was 

implemented in each scaled OpenSim model by changing the joint axis definition relative to 

the femoral and tibial reference frame such that it corresponds to the calculated location and 

Figure S2 Generic model gait2392 with displayed joint axis and virtual 
marker positions (far left). Middle and far right are front and back view 
respectively of the muscles used in this model. 
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orientation of the knee joint functional axis26. All other coordinate frames were used directly 

within the OpenSim model. 

After that, joint angles were derived from the measured marker trajectories using the Kalman 

smoothing algorithm described by De Groote et al. (2008) and available from SimTK27. The 

Kalman smoother algorithm is an alternative to the standard Inverse Kinematics Tool available 

in OpenSim, which improves the estimation of the joint kinematics and kinetics by using prior 

knowledge on the measured marker trajectories while minimising the estimation error 

statistically27. The following angles were calculated for each activity: hip flexion/extension, hip 

ab/adduction, hip internal/external rotation; knee flexion/extension, knee ab/adduction; ankle 

flexion/extension; lumbar spine flexion/extension, lumbar spine rotations, lumbar spine 

bending. Considering that the head and thorax are considered as a single segment, all motion 

from the upper body are assumed to take place in the lumbar spine. We followed the ISB 

recommendation for kinematic data convention, meaning the left and right hip rotation angles, 

knee flexion angles, left knee ab/adduction angle calculated by OpenSim were inverted. 

Joint moments were calculated using an inverse dynamics approach using the standard 

implementation in OpenSim. Afterwards, muscle forces and activations were calculated using 

a static optimisation routine within the OpenSim tool that minimised the total muscle activation 

squared. Finally, joint contact forces were calculated using the vector sum of the estimated 

muscle forces and reaction forces in the joint using the standard OpenSim tool28. 
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C.  

Table S2: List of features needed to classify HipOA-vs-Asymptomatic control subjects and the 

number of fold in which they are used. Variance represents the variance of the feature over the 

five repetitions of that exercise. ArgMax indicates the difference in the location of the 

maximum in the time curve. Difference represents the newly constructed time curve of the 

difference between, e.g. lumbar bending and hip flexion. The input signals of each feature are 

highlighted in bold 

Feature Number of folds 

Variance[HighStandardDeviation(Difference(lumbar bending, hip flexion), r=0.3)] 5 

Variance[ArgMax(Difference(hip flexion, hip adduction), first=true, rel=true)] 1 

Variance[ArgMax(hip flexion, first=true, rel=true)] 1 

Variance[ArgMax(hip flexion, first=false, rel=true)] 1 

Variance[HighStandardDeviation(Difference(hip flexion, hip adduction),r=0.3)] 1 

Variance[ArgMax(Difference(hip flexion, hip adduction), first=false, rel=true)] 1 
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Table S3: List of features needed to classify KneeOA-vs-Asymptomatic control subjects and 

the number of fold in which they are used. Variance represents the variance of the feature over 

the five repetitions of that exercise. ArgMax indicates the difference in the location of the 

maximum. Difference means the newly constructed time curve of the difference between, e.g. 

lumbar bending and hip flexion. The input signals of each feature are highlighted in bold. 

Feature Number of folds 

Variance[ArgMax(Difference(hip flexion, hip adduction), first=false, rel=true)] 5 

Variance[ArgMax(hip flexion, first=true, rel=true)] 5 

Variance[ArgMax(Difference(hip flexion, hip adduction), first=true, rel=true)] 5 

Variance[ArgMax(hip flexion, first=false, rel=true)] 4 

Variance[ArgMax(Difference(lumbar extension, hip flexion), first=true, rel=true)] 1 

Variance[ArgMax(Difference(lumbar extension, hip flexion), first=false, rel=true)] 1 

Variance[HighStandardDeviation(Difference(hip flexion, hip adduction), r=0.3)] 1 

 

 

 

 

 

  

 


