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Abstract

The mathematical models for the capillary-driven flow of fluids in tubes are typ-

ically assuming a static contact angle at the fluid-air contact line on the tube walls.

However, the dynamic evolution of the fluid-air interface is an important feature during

capillary rise. Furthermore, inertial effects are relevant at early times and may lead

to oscillations. To incorporate and quantify the different effects, a fundamental de-

scription of the physical processes within the tube is used to derive an upscaled model

of capillary-driven flow in circular cylindrical tubes. The upscaled model extends the

classical Lucas–Washburn model by incorporating a dynamic contact angle and slip. It
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is then further extended to account for inertia effects. Finally, the solutions of the dif-

ferent models are compared to experimental data. In contrast to the Lucas–Washburn

model, the models with dynamic contact angle are matching well the experimental

data, both the rise height and the contact angle, even at early times. The models have

a free parameter through the dynamic contact angle description, which is fitted using

the experimental data. The findings here suggest that this parameter depends only on

the properties of the fluid, but is independent of geometrical features, such as the tube

radius. Therefore, the presented models can predict the capillary-driven flow in tubular

systems upon knowledge of the underlying dynamic contact-angle relation.

Introduction

One hundred years ago, the classical works of Lucas1, Washburn2, Rideal3 and Bosanquet4

laid the foundation for the description of the capillary-driven flow of fluids in porous struc-

tures. Since then, this field of research has gained attention due to its various applications,

ranging from water transport in soil and plants, over printing with ink, to oil recovery and

CO2 sequestration. To understand the flow processes in a porous medium, knowledge about

the fluid dynamics within its fundamental structures, the single pores, is needed. In these,

the surface tension leads to capillary-driven flow. An overview on the topic can be found in

the recent review by Cai et al.5.

The model of Lucas and Washburn describes the balance between capillary and hydro-

static pressure, leading to viscous flow until equilibrium at the so-called Jurin’s height is

reached. Fries and Dreyer6 derived a formulation for the solution of the Lucas–Washburn

equation that remains valid also at late times. Levine et al.7 studied in detail the resulting

flow close to the fluid-air interface, assuming a spherical meniscus and low Reynolds num-

bers. Although these basic mechanisms are well understood, the complex wetting effects

lead to a dynamic evolution of the interface, in particular of both its shape and position.

An important feature is the contact angle formed between the fluid-air interface and the
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pore wall. In the aforementioned works, this contact angle is assumed constant. However,

experimental results invalidate this assumption, in particular at early times8,9. Martic et

al.10,11 discussed this based on molecular dynamics simulations and the molecular kinetics

theory. This theory is also used by Hamraoui and Nylander12 to discuss the effect of a dy-

namic contact angle as a source of interface retardation and viscous dissipation. Chebbi13

and Popescu et al.14 compare several dynamic contact-angle models when applied to the

Lucas–Washburn equation.

Furthermore, inertial effects are relevant for early times of capillary rise, as discussed in

detail by Quéré15, and for low viscous fluids they can even lead to (damped) oscillations

around Jurin’s height at late times. Xiao et al.16 additionally considered the end effect

at the reservoir (sink flow) for parallel plates and tubes, and derived a double Dirichlet

series representation of the solution. An overview of the different regimes has been given by

Zhmud, et al.17 as well as by Fries and Dreyer18. However, all these models are based on

the assumption of a static contact angle.

To incorporate and quantify the influence of the different effects of the dynamic contact

angle and of inertia, one should start with a derivation based on the fundamental description

within the tube. Based on this detailed pore-scale model, and under suitable assumptions

on the nondimensional parameters like the Reynolds and capillary number, one can employ

asymptotic expansion techniques to derive an effective, so-called upscaled model for the

relevant quantities like flux, pressure, and rise height. The result is an upscaled model that

describes the effective behaviour of the relevant physical quantities, which can be validated

using experimental data. Thereby, the dynamics of the capillary rise including the detailed

evolution of the contact angle becomes predictable. Furthermore, the application of these

extended models helps to reduce the observed discrepancy9 between the experiments and

the classical Lucas–Washburn model.

In this paper, the upscaling of the capillary-driven flow in cylindrical tubes is discussed

first. The result is an upscaled model, which is a nonlinear first-order differential equation
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of Lucas–Washburn type. This is solved analytically to obtain directly usable solutions.

While capillary-rise models with dynamic contact angle have been described in literature, to

the best of the authors’ knowledge, this work is the first to derive such a model rigorously

by upscaling. The upscaled model is then extended to incorporate inertial effects. To

validate the theory, the solutions to the upscaled and to the extended model are compared

to the experimental results reported by Heshmati and Piri9. This includes the simultaneous

comparison to the provided height and contact-angle data for different fluids and several

radii, which has not been presented before. Finally, the results of the comparison including

uncertainties and limitations are discussed. More details of the upscaling procedure and of

the comparison are presented in the supporting information (SI).

Material and method

First, the derivation of the upscaled model and its analytical solution are discussed. To this

end, the capillary-driven flow in circular cylindrical tubes is modelled by the Navier–Stokes

equations. These equations are defined in an evolving domain, as the fluid-air interface is

moving due to capillary effects. The model includes a dynamic contact angle and slip. Then,

a matched asymptotic expansion method is applied to obtain the effective model. Thereafter,

the model is extended to incorporate inertial effects.

Upscaled model and analytic solution

In the following, we summarize the derivation of the upscaled model based on the ideas by

Lunowa et al.19. The detailed derivation of the equation is provided in the SI, where the

details and assumptions for the non-dimensionalization and the asymptotic expansion are

given.

The flow of a fluid in a thin, vertical tube, driven by the surface tension at the fluid-air in-

terface, can be modelled by the Navier–Stokes equations defined in a time-dependent domain,
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Figure 1: Schematic
drawing of the tube
with radius R. The
contact angle θ is
formed between the
tube wall and the
fluid-air interface at
rise height hL. The
inlet pressure pin is
attained between
tube and reservoir.

where the fluid-air interface is a free boundary. Assuming a small

Reynolds number, one can derive the solution by a matched asymp-

totic expansion for the limit of a vanishing radius-to-length ratio

ε = R/L� 1 (R being the tube radius and L Jurin’s height). The

result is Hagen-Poiseuille flow driven by the difference between the

surface-tension and the hydrostatic pressure. In the dimensionless

form, the evolution of the fluid rise height h is then governed by

pin − h−
8h

1 + 4λ

dh

dt
= −

2 cos
(
θ(dh

dt
)
)

Ca
. (1)

Here pin is the pressure at the inlet (bottom), λ denotes the slip

length at the tube wall and Ca is the capillary number, see Figure 1.

Note that the dynamic contact angle θ may depend on the velocity

of the interface. Furthermore, (1) resembles the relation derived by

Washburn2, based on macroscopic arguments. However, Washburn

discussed only the case of a static contact angle, while here a dynamic contact-angle model

is incorporated.

In the context of capillary rise experiments, the pressure at the inlet is approximately

atmospheric, i.e., pin = 0. The typical length scale is given by the equilibrium or Jurin’s

height L = 2σ cos(θs)/(ρgR), attained as t → ∞, and which is depending on the fluid-air

surface tension σ, the static contact angle θs (measured in the fluid), the density ρ of the

fluid, the gravitational acceleration g = 9.81 m/s2, and the tube radius R. This yields

Ca = 2 cos(θs) (cf. SI), so that (1) becomes

8h

1 + 4λ

dh

dt
=

cos
(
θ(dh

dt
)
)

cos(θs)
− h, (2)

for all t > 0. Clearly, the solution h = h(t) depends on the contact-angle model. However, the

specific choice of this model is uncertain without much reference data, since the differences
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resulting after fitting the different models are typically very small14,20. For simplicity, a linear

model in the velocity is considered here, which was also used frequently as a simplification

of the molecular kinetics theory10–12,14,20–22, valid at low velocities. Specifically,

cos(θ(v)) = cos(θs)− ηCav,

where the dynamic parameter η ≥ 0 denotes the strength of the linear response due to the

interface velocity v = dh
dt
. Note that this model arises naturally for all possible contact-

angle models after linearisation using the relation cos θ̃(v) ≈ cos θ̃(0) − sin θ̃(0)dθ̃
dv
(0) v, and

therefore is generic. Other models could be used as well, however the advantage of the linear

model is that the resulting equation can be solved analytically, as discussed in the following.

With this contact-angle model, the rise model (2) becomes

(
8h

1 + 4λ
+ 2η

)
dh

dt
= 1− h, (3)

for all t > 0. A natural initial condition is

h(0) = 0. (4)

Observe that, since 1 is an equilibrium solution to (3), the solution to the initial value

problem (3)–(4) remains below 1 for all times t. Moreover, h is increasing. By separation of

variables, the solution to (3)–(4) is obtained in implicit form,

(1− h(t)) exp
(

4h(t)

(1 + 4λ)η + 4

)
= exp

(
− (1 + 4λ)t

2(1 + 4λ)η + 8

)
. (5)

As h is monotone, using (5) one can express t as a function of h, namely

t = t(h) = − 8h

1 + 4λ
− 2(1 + 4λ)η + 8

1 + 4λ
ln(1− h).
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At early times, this yields

t ≈ 2ηh+
(
η + 4

1+4λ

)
h2.

If η = 0, this resembles the classical Lucas–Washburn equation. If η > 0, the first term

implies a linear time-height relation at early times, when h � 1, and therefore quadratic

terms can be neglected. Figure 2 illustrates possible solutions. The dynamic parameter η

determines the velocity of the rise in the beginning, since (3) yields dh
dt
(0) = 1

2η
. In particular,

it is singular if η = 0, since inertial terms and the movement of the air are neglected. On

the other hand, the influence of the slip length λ on the velocity increases with increasing

height h. Furthermore, for η > 0, this yields an initial contact angle θ = 90◦ at time t = 0.
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Figure 2: The height of the capillary rise given by (5) increases faster for higher slip length
λ. The dynamic parameter η retards the rise and determines the initial velocity at time
t = 0.

Extended model including inertial effects

The upscaled model described above requires the Reynolds number to be small. In case

of a low viscosity, or when the tube radius increases, the Reynolds number becomes large,

so that one cannot neglect inertial effects. In that situation, the upscaling procedure does

not yield a closed expression for the height of the capillary rise, as the system remains fully
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coupled. Instead, an empirical extension of the upscaled model is used, based on macroscopic

considerations4,12,17,18,22. In these references, the balance between hydrostatic, inertial and

capillary forces was considered assuming Hagen–Poiseuille flow and a spherical meniscus. In

this context, the resulting balance reads

I d

dt

(
h
dh

dt

)
+

(
8h

1 + 4λ
+ 2η

)
dh

dt
= 1− h, (6)

where I = ε2Re = ρ3g2R5/(2µ2σ cos(θs)) is the inertial coefficient, see SI. Note that the

denominator (1 + 4λ) accounts for slip, and the term 2η dh
dt

is due to the linearised contact-

angle model. Note that this extended model (6) is closely related to the modified Lucas-

Washburn equation discussed by Martic et al.10,11. However, they considered a model that

does not account for a slip length λ.

With (4), this nonlinear second-order differential equation (6) becomes degenerate. Fur-

thermore, one needs to specify a second initial condition, similar to the initial velocity.

For this purpose, one can use an asymptotic analysis carried out for t → 0 with ansatz

h(t) = ctα+ o(tα)17,22. Equating the leading order terms yields h(t) ∼ t/(η+
√
η2 + I), and

hence

dh

dt

∣∣∣
t=0

=
1

η +
√
η2 + I

. (7)

To solve the initial value problem (4), (6), and (7) numerically, it is reformulated as a

system of nonlinear first-order differential equations in the variables w := h2 and v := dw
dt
.

Equation (6) then becomes

dw

dt
= v,

dv

dt
=

2

I

(
1−
√
w −

(
4

1 + 4λ
+

η√
w

)
v

)
.

To avoid the singularity at w = 0, the initial conditions used here are w(0) = 10−12 and

v(0) = 2
√
w(0)(

√
η2 + I−η)/I. Note that this choice does not significantly affect the result
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as long as w(0) is sufficiently small. The implementation of the numerical solver23 is done in

Python using the packages NumPy 1.21.024, and SciPy 1.3.325. The chosen time integrator is

an implicit multi-step variable-order (1–5) BDF method.

Results and Discussion

To validate the suggested models, the solutions are compared to the experimental data

reported by Heshmati and Piri9, where the capillary rise of glycerol, Soltrol 170 and water

in vertical glass tubes with constant radii was investigated. These results include both the

rise height and of the contact angle over time.

Thereafter, the physical basis of the fitted dynamical parameter is elaborated, and further

aspects that might have an impact on the experimental and theoretical data are discussed.

In particular, the influence of the initial transient regime and of the meniscus shape are

considered, as well as possible wetting films and resulting slip in the case of water. Finally,

the uncertainty and limitations of the suggested models and of the fitting are addressed.

Comparison with experimental data

The comparison with experimental data is done in three steps. First, the reported physical

properties are used for the dimensionless scaling, see also Table 1. Note that the scale ratio

ε was below 0.1 in all cases. Second, the late-time data is assumed to be near to equilibrium,

so that the static contact angle can be extracted from it for each of the three fluids. Note

Table 1: The density ρ, viscosity µ, surface tension σ of the fluids and the tube radii R of
the experiments9, and the static contact angle θs extracted from late-time data.

Fluid ρ [kg/m3] µ [Pa s] σ [N/m] R [mm] θs [deg]

Glycerol 1260 1.0111 0.06346 0.250, 0.500, 1.00 5.63
Soltrol 170 774 0.0026 0.02483 0.375, 0.500, 0.65 9.79
Water 997 0.0011 0.0728 0.375, 0.500, 0.65 9.99
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that the resulting static angles (<10◦) hardly influence the rise height (<2%), but strongly

affect the dynamic contact angle. In the third step, the solutions of the suggested models are

matched to the experimental data by fitting the remaining parameters; namely the dynamic

contact-angle parameter η and the slip length λ. For this, for each fluid and each radius

separately, a non-linear least-squares fitting of the rise height (h-fit), of the contact angle

(θ-fit), and of both at the same time (both-fit) is performed. Thereby, one can compare the

parameter values obtained for the different fits as well as for the different radii, to investigate

the predictive abilities of the suggested models. The implementation of the procedure23 is

done in Python using the packages pandas 1.3.026 and LMFIT 1.0.227.

To illustrate the effect of the dynamic contact-angle model, the classical Lucas–Washburn

(LW) solution is also provided. It is obtained from (5) when taking η = 0 and λ = 0, using

the dimensionless scaling and static contact angle found in the first and second step for the

comparison.

Glycerol. In the first set of measurements, glycerol was used as the rising fluid. Due to

the high viscosity, the inertial effects are negligible (I < 1.5 · 10−3), so that the solutions

to the upscaled model (5) and to the extended one (6) coincide. Therefore, only the results

for the upscaled model are presented in Table 2. Note that the simultaneous fitting of the

parameters η and λ results in dimensionless slip lengths λ < 10−2, except for the both-fit at

the radius 1.0mm, which yields λ = 0.026 ± 0.109. Hence, slip is negligible and ignored in

the further discussion.

Table 2: The best-fit parameter η (± estimated standard deviation) and the reduced residual
χ2
ν when fitting the upscaled model to the experimental data of the height (h-fit), the contact

angle (θ-fit) and both (both-fit), for the glycerol experiments.

R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.25 0.402 ± 0.010 0.059 0.525 ± 0.008 0.647 0.519 ± 0.006 0.388
0.50 2.356 ± 0.066 0.327 2.151 ± 0.069 2.105 2.183 ± 0.049 1.203
1.00 5.935 ± 0.383 1.226 10.077 ± 0.613 3.985 8.787 ± 0.461 4.053
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R = 0.25mm: Experiment Lucas–Washburn Upscaled Model (η = 0.52)
R = 0.50mm: Experiment Lucas–Washburn Upscaled Model (η = 2.18)
R = 1.00mm: Experiment Lucas–Washburn Upscaled Model (η = 8.79)

Figure 3: The experimental data for glycerol is matched well by the upscaled model (both-
fit). In particular, at early times the representation of the rise is much better than the one
for the classical Lucas–Washburn model.

The comparison of the experimental data with the fitted upscaled model (3) and the

classical Lucas–Washburn model in Figure 3 illustrates the relevance of the dynamic con-

tact angle. While both models match the late-time data when the static contact angle is

approached, only the upscaled model with dynamic contact angle agrees with the early-time

data. In particular, it matches reasonably both the rise height and the contact angle for

all three radii. Note that the three fit-types (h, θ, both) yield different parameters, but the

resulting solutions only differ on the scale of the scatter in the experimental data (cf. SI).

Note that the increase in η with increasing radius is expected, as the dimensional dynamic

parameter should be approximately constant. This effect is discussed below for all fluids.

Soltrol. In the second set of measurements, Soltrol 170 was used as the rising fluid. In

contrast to the previous case, the extended model differs from the upscaled one (I = 1.0, 4.2,

15.7), but for all radii the best-fit parameters coincide within 1.5 standard deviations (< 5%

difference), while the residuals are rather lower (−40% to +30% difference, avg. −6%). The
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Table 3: The best-fit parameter η (± estimated standard deviation) and the reduced residual
χ2
ν when fitting the upscaled model (top rows) and the extended model (bottom rows) to the

experimental data of the height (h-fit), the contact angle (θ-fit) and both (both-fit), for the
Soltrol 170 experiments.

R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.375 1.464 ± 0.067 0.313 1.250 ± 0.058 2.153 1.273 ± 0.042 1.232
0.500 2.521 ± 0.080 0.196 2.358 ± 0.081 1.042 2.386 ± 0.056 0.603
0.650 4.588 ± 0.162 0.414 3.963 ± 0.143 1.370 4.098 ± 0.108 0.951

0.375 1.437 ± 0.005 0.340 1.241 ± 0.027 2.239 1.261 ± 0.044 1.275
0.500 2.430 ± 0.075 0.207 2.309 ± 0.062 0.623 2.330 ± 0.045 0.403
0.650 4.370 ± 0.016 0.537 3.830 ± 0.024 1.183 3.944 ± 0.122 0.899

minor differences are illustrated in Figure 4, and the results for both models are reported in

Table 3. Note that the fit of the dimensionless slip length yields λ < 10−6 in all cases, which

is again negligible and thus ignored.

For Soltrol, the fitted upscaled model (5) matches the experimental data almost perfectly,

while the classical Lucas–Washburn model only predicts the stationary solution well (see

Figure 4). In particular, the upscaled model with dynamic contact angle agrees with the

data of both the rise height and the contact angle for all three radii and at all times. For

more details, see also the SI. The fit of the extended model coincides with the one of the

upscaled model. Only at very early times (until 0.05s), the extended model predicts a slightly

lower contact angle. These early-time dynamics are especially relevant for larger radii and

less viscous fluids like water, as shown and discussed below.

Water. In the last set of measurements, distilled water was used as the rising fluid. In

contrast to the previous cases, the extended model differs significantly from the upscaled one

(I = 4.1, 17, 64), see Figure 5. The upscaled model (both-fit) only matches the contact angle

and late-time height (after ≈ 0.05s). The experimental data is much better represented by

the extended model, hence only these results are reported in Table 4. More details and the

results of the upscaled model can be found in the SI. Note that the fit of the dimensionless
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R = 0.375mm: Experiment LW Upscaled Model (η = 1.27) Extended Model (η = 1.26)
R = 0.500mm: Experiment LW Upscaled Model (η = 2.39) Extended Model (η = 2.33)
R = 0.650mm: Experiment LW Upscaled Model (η = 4.10) Extended Model (η = 3.94)

Figure 4: The experimental data for Soltrol 170 is matched almost perfectly by the upscaled
model (both-fit), while the classical Lucas–Washburn model (LW) only describes the sta-
tionary solution well (after 1s). For the upscaled and the extended models after fitting, the
solutions practically coincide.

slip length was inconsistent (λ < 0.15) with generally large standard deviation. For the

θ-fits, the slip was negligible (λ < 10−9), while the other fits suggest the occurrence of an

effective slip, which might be due to pre-wetting films, as discussed below.

For water, the fitted extended model matches reasonably the experimental data, although

the rise height is slightly over-predicted (+10%) for the radius R = 0.65mm, see Figure 5.

In particular, note that the model predicts an overshoot (between 0.2s and 0.4s). The

Table 4: The best-fit parameter η (± standard deviation) and the reduced residual χ2
ν when

fitting the extended model (without slip) to the experimental data of the height (h-fit), the
contact angle (θ-fit) and both (both-fit), for the water experiments.

R h-fit θ-fit both-fit
[mm] η χ2

ν η χ2
ν η χ2

ν

0.375 0.162 ± 0.005 0.058 0.377 ± 0.017 2.054 0.367 ± 0.013 1.143
0.500 0.111 ± 0.020 0.153 0.498 ± 0.037 3.914 0.476 ± 0.026 2.249
0.650 2.849 ± 0.064 0.234 1.052 ± 0.079 4.595 1.248 ± 0.079 4.203
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R = 0.375mm: Experiment LW Upscaled Model (η = 0.42) Extended Model (η = 0.37)
R = 0.500mm: Experiment LW Upscaled Model (η = 0.64) Extended Model (η = 0.48)
R = 0.650mm: Experiment LW Upscaled Model (η = 1.91) Extended Model (η = 1.25)

Figure 5: The experimental data for water is matched well by the extended model (both-fit),
while the upscaled model (both-fit) only matches the contact angle and late-time data (after
≈ 0.05s). The classical Lucas–Washburn (LW) model only describes the stationary solution
well (after 0.1s).

experimental data does not show this behaviour. Instead, the rise seems delayed compared

to the other experiments (3.4mm vs. 6.5–7.4mm at time 0.016s).

The dynamic parameter as physical property

The dynamic parameter η obtained by fitting can be interpreted as a physical property of the

fluid system. For this, dimensional quantities are marked with a hat. Although the different

fitting criteria, namely the height, the contact angle, or both, provide optimal parameters

with significant variation, the dynamic parameter η̂ [s/m] (scaling µ/(ρgR2)) seems to be

independent of the tube radius, see Figure 6. This agrees with the results reported by

Hamraoui et al.12,21, where the Lucas–Washburn equation with dynamic contact angle was

compared with experiments of ethanol, water and silicon oil in glass tubes, and those obtained

by Martic et al.10 for molecular dynamics simulations. Further experimental data considering

a larger range of radii and hence velocities is necessary to confirm this hypothesis.
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Note that the closely related linearised molecular-kinetic theory10–12,20–22 yields the dy-

namic contact-angle model

cos(θs)− cos(θ) = ξv̂,

where v̂ denotes the contact line velocity. Here, the intrinsic friction coefficient ξ [s/m] is

proportional to the ratio µ/σ of the viscosity to the fluid-air surface tension. Therefore,

one expects an almost constant ratio η̂σ/µ for all fluids, which is also found for the fitted

parameter η̂, since the ratio is ca. 30–70 for glycerol, ca. 25–35 for Soltrol 170 and ca. 5–50

for water. Finally, Martic et al.11 demonstrated that neglecting the dynamic parameter can

lead to significant underestimation of the effective pore radius in porous media.
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Figure 6: The dimensional dynamic parameter η̂ of the models (empty : upscaled, filled :
extended) fitted to the experimental data of the height (h-fit), the contact angle (θ-fit) and
both (both-fit). Observe that these parameters vary significantly from one fluid to another,
but appear to not depend on the tube radius.

The influence of the initial transient regime

At the start of the experiment, the tube touches the surface of the fluid in the reservoir. This

topological change initiates the rise and the meniscus shape, which are hence strongly affected

by the (touch) speed and the exact (nanometric) surface of the tube tip. In the suggested

models, this initial transient regime is neglected, and a stable Hagen–Poiseuille flow profile

and a spherical meniscus are assumed to form quasi-instantaneously. To understand the
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details better, accurate micro-scale analysis and simulations in the initial stage are necessary.

For micro-gravity experiments, Stange et al.28 found three successive phases: a quadratic

dependence of the meniscus height on time (h ∼ t2), followed by a linear increase (h ∼ t),

and, finally, the Lucas–Washburn behaviour (h2 ∼ t).

However, the fitting results suggest that the initial transient regime is indeed negligible

here, especially for glycerol and Soltrol 170 (cf. the above comparison), for which one could

even neglect inertia. Nevertheless, for large radii, as well as less viscous fluids, such as water,

these effects might be significant. In particular, the water experiment with largest radius

(R = 0.65mm) shows deviations from an initially linear height-time relation, see Figure 5

and SI. Additionally, for such regimes, the proper choice of the (numerical) initial conditions

for the extended model (6) might be important. Here, they are based on asymptotic analysis

to approach t = 0, and a sufficiently small numerical regularization with negligible impact

on the solution. Further investigation can lead to conditions (or extensions) that include the

transient effect.

The meniscus shape

The meniscus shape is assumed spherical for the experimental measurement of the contact

angle, as well as for the discussed models. However, this shape might be deformed due to

the influence of the inertia and gravity. For glycerol and Soltrol 170, the agreement of the

experimental contact-angle data and the fitted upscaled model gives confidence that these

effects can be neglected. For water, the experimental contact angle data has a rather large

scatter, and the differences between experiments and fitted models are higher (cf. Figure 5

and SI). For experiments with water in glass tubes of lower radius (R = 0.15mm and R =

0.2mm), Xue et al.8 reported that the rise velocity is too high to have a spherical meniscus

shape. Therefore, the obtained results for the contact angle of water should be treated with

caution.
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Wetting films and slip

For glycerol and Soltrol 170, Heshmati and Piri9 vacuum-dried the tubes immediately before

the experiments, so that no pre-wetting films were present. The model fitting resulted

accordingly in negligible slip lengths, λ < 10−2, which translates into a dimensional slip

length below 1µm. On the contrary, the tubes for the experiments with water were only

partially dried using a paper filter, to avoid a contamination affecting the contact angle

and the equilibrium rise9. Hence, heterogeneous pre-wetting films of water could possibly

be present in the tubes. This can influence the contact angle and the meniscus shape, and

induces difficulties for the measurements and the modelling, so that a direct comparison

becomes more involved.

Additionally, the presence of wetting films would reduce the dissipation from the for-

mation of water-glass interfacial area. Hence, the water rises faster, which corresponds to

an effective slip in the presented models. In the fitting of the extended model using the

height data (h-fit & both-fit), indeed, a relevant slip length up to 0.15 (dimensional about

0.1mm, cf. SI) was observed. However, the dynamic coefficient η and the slip length λ are

strongly correlated, such that the slip length in the model is difficult to relate to the physical

behaviour.

Furthermore, note that negative effective slip was observed for nanometric pores29. There,

the effective slip length depends on the wettability and the viscosity, which considerably

differs for confined water near walls and for bulk water. Here however, the fitting did not

allow for negative slip lengths, since these effects were found to be only relevant for radii on

nanometer scale29.

Uncertainty and limitations of the suggested models and of the fitting

Since the suggested models are derived in leading order for ε � 1, errors in the order of

ε are expected (here ε < 0.01). Furthermore, a linearised dynamic contact-angle model is

chosen here for simplicity. A higher accuracy can be obtained using a more sophisticated

17



contact-angle model, which, itself, needs further investigation and validation14,20. Addition-

ally, a Hagen–Poiseuille flow is assumed for the extended model. Deviations due to inertial

effects are ignored, but might affect the inertial coefficient I. This could explain the over-

shoot observed for the extended model in the case of water with tube radius R = 0.65mm

(cf. Figure 5), which is not present in the experiment.

Furthermore, the static contact angle is highly sensitive to the used materials. In contrast

to the total wetting (θ = 0◦) used by Heshmati and Piri9, the values extracted from the

experiments range between 5 and 10 degrees. Note that, for water-air-glass systems, even

a static contact angle of 20–30 degrees is reported by Li et al.30. Although this has only a

minor influence on the rise height, it affects the fitting for the dynamic contact angle.

Conclusions

The upscaled model of capillary-driven flow in circular cylindrical tubes extends the clas-

sical Lucas–Washburn theory by incorporating a dynamic contact angle. Using a simple

relation between the contact angle and the velocity of the moving contact line, an analytical

expression for the capillary rise over time was derived. Based on empirical arguments, the

mathematical model was extended to account for inertial effects.

To validate the models, the solutions were compared to the experimental data observed

by Heshmati and Piri9. In contrast to the Lucas–Washburn model, the models with dynamic

contact angle do match the experimental data, both the rise height and the contact angle,

even at early times. The fitting procedure requires only one parameter for the dynamic

contact angle. In particular, the findings suggest that this parameter depends only on the

physical properties of the involved fluids (and of the tube), but is independent of geometrical

features, such as the radius of the tube. Therefore, the presented models can be used to

predict capillary-driven flow in tubular systems upon knowledge of the underlying dynamic

contact-angle relation.
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In future work, this approach will be used to construct dynamic pore-network models,

to study the resulting dynamic core-scale effects and to derive upscaled models valid a that

and possibly larger scale.
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