A three-stage model to support capacity decisions in intermodal transport under uncertainty

Thibault Delbart Prof. Dr. Yves Molenbruch Prof. Dr. Kris Braekers Prof. Dr. An Caris Hasselt University Vrije Universiteit Brussel Hasselt University Hasselt University

LOG RESEARCH GROUP LOGISTICS

DISpATch project

- Digital twin for synchromodal transport
- Partners:

Objective: Facilitate synchromodal transport

Introduction

Support logistics service providers in their transition towards synchromodal transport.

- Multimodal: multiple transport modes
- Intermodal: same loading unit
- Synchromodal: complete integration and flexibility

Rationale:

- Increased freight consolidation
- Higher vehicle fill rates
- More environmentally friendly transport modes

- Trucks can be booked at the last minute
- Other modes are booked in advance before demand is known

Introduction

Address capacity planning under uncertainty from the perspective of LSPs

Only container transport

Scope: single corridor

Source: European Commission

Transport planning

Tactical planning

Capacity decisions

Transport planning

Tactical planning

- Capacity decisions
- **Operational planning**
- Short-term capacity adjustments
- Container routing

Transport planning

Tactical planning

- Capacity decisions
- **Operational planning**
- Short-term capacity adjustments
- Container routing

Types of uncertainty

- Stochastic demand
- Stochastic travel times
- Remaining available capacity
- Deviations between actual capacity and booked capacity
- Sudden disruptions

Problem description

- Challenges faced by LSPs
 - How much capacity should be booked in advance?
 - How many trucks to keep?
 - How to deal with disruptions in real-time?

Literature results

Reference	Stochasticity	Approach	Recourse actions
Lium et al. (2009)	Demand	Two-stage stochastic programming	Ad hoc capacity increase
Hoff et al. (2010)	Demand	Two-stage stochastic programming	Ad hoc capacity increase
Crainic et al. (2011)	Demand	Two-stage stochastic programming	Ad hoc capacity increase
Bai et al. (2014)	Demand	Two-stage stochastic programming	Ad hoc capacity increase and rerouting
Meng et al. (2015)	Demand	Two-stage stochastic programming	Ad hoc capacity increase
Zhao et al. (2018)	Demand and transportation time	Two-stage chance constrained programming	

Delbart, T., Molenbruch, Y., Braekers, K., & Caris, A. (2021). Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions. Sustainability, 13(7), 3980.

NOWLEDGE IN ACTION

First stage

Objective function:

Minimise costsCapacity costs in the first stageExpected additional capacity costsExpected penalty costs

Decisions variables: Booked slots per service

Constraint: Booked capacity \leq available capacity

Second stage

Decisions variables:

Booked slots per service

Cancelled slots per service

Constraints:

Extra capacity \leq remaining available capacity

Cancelled slots \leq previously booked slots

Third stage

Decisions variables:

Booked slots per service

Emergency capacity

Containers per order assigned to each service

Constraints:

Booked capacity \leq remaining available capacity

Time window constraints

Flow conservation constraints

Next steps

- Determine how to model demand
- Develop a solution method
- Apply the model with company data
- Expand the model with additional sources of uncertainty

References

Bai, R.; Wallace, S.W.; Li, J.; Chong, A.Y.-L. Stochastic service network design with rerouting. Transp. Res. Part B Methodol. 2014, 60, 50–65.

Crainic, T.G.; Fu, X.; Gendreau, M.; Rei, W.; Wallace, S.W. Progressive hedging-based metaheuristics for stochastic network design. Networks 2011, 58, 114–124.

Delbart, T., Molenbruch, Y., Braekers, K., & Caris, A. (2021). Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions. Sustainability, 13(7), 3980.

Hoff, A.; Lium, A.-G.; Løkketangen, A.; Crainic, T.G. A metaheuristic for stochastic service network design. J. Heuristics 2010, 16, 653–679.

Lium, A.-G.; Crainic, T.G.; Wallace, S.W. A study of demand stochasticity in service network design. Transp. Sci. 2009, 43, 144–157.

Meng, Q.; Hei, X.; Wang, S.; Mao, H. Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand. Transp. Res. Part E Logist. Transp. Rev. 2015, 82, 38–54.

Zhao, Y.; Xue, Q.; Cao, Z.; Zhang, X. A two-stage chance constrained approach with application to stochastic intermodal service network design problems. J. Adv. Transp. 2018, 2018.

Thank you for your attention Questions are welcome

M <u>thibault.delbart@uhasselt.be</u>

Thibault Delbart

Prof. dr. Yves Molenbruch Prof. dr. Kris Braekers Prof. dr. An Caris Hasselt University

Vrije Universiteit Brussel Hasselt University Hasselt University

KNOWLEDGE IN ACTION