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Abstract: In this paper, we prove some inequalities between intrinsic and extrinsic curvature in-
variants, namely involving the Chen first invariant and the mean curvature of totally real and
holomorphic spacelike submanifolds in statistical manifolds of type para-Kähler space forms. Fur-
thermore, we investigate the equality cases of these inequalities. As illustrations of the applications
of the above inequalities, we consider a few examples.
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1. Introduction

A fundamental challenge in submanifold theory is to obtain simple relationships be-
tween the main intrinsic and extrinsic invariants of submanifolds [1]. There is an increased
interest to provide answers of this open problem establishing some types of geometric
inequalities (see, e.g., [2–6]).

The study of Chen invariants started in 1993, when Chen investigated basic inequalities
for submanifolds in real space forms, now called the Chen inequalities [7]. An insightful and
comprehensive study on Chen inequalities can be discovered in [2]. Recently, illustrations
of some selected research works on Chen invariants are revealed in [8–10]. Actual solutions
of the above problem are focused on inequalities for submanifolds in a statistical manifold,
concept introduced by Amari [11] in 1985 in the context of information geometry. The
statistical manifolds also have applications in physics, machine learning, statistics, etc.
Recently, Chen et al. established a Chen first inequality for statistical submanifolds in
Hessian manifolds of constant Hessian curvature [12]. Moreover, Aytimur et al. studied
Chen inequalities for statistical submanifolds of Kähler-like statistical manifolds [13].

The para-complex numbers (hyperbolic numbers) are introduced by Graves in 1845 [14]
in the form z = x + yj, where x and y are real numbers, j2 = 1 and j 6= 1. Later, the para-
Kähler geometry is concerned with the study of para-Kähler structures. The notion of
para-Kähler manifold, first called stratified space by Rashevskij [15], is clearly defined in 1949
by Ruse [16] and Rozenfeld [17]. This geometry has applications in areas of mathematics,
mechanics, physics [18], and general theory of relativity [19]. Mihai et al. investigated
skew-symmetric vector fields on CR-submanifolds of para-Kähler manifolds [20]. Recently,
the concept of Codazzi–para-Kähler structure was introduced by Fei and Zhang in [21] in
order to represent the interaction of Codazzi couplings with para-Kähler geometry. Very
recently, Vîlcu studied statistical manifolds endowed with almost product structures and
para-Kähler-like statistical submersions [22]. Moreover, Chen et al. established Casorati in-
equalities for totally real spacelike submanifolds in statistical manifolds of type para-Kähler
space forms [23].
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The topic of totally real and Lagrangian submanifolds of Kähler manifolds has been
studied extensively (see, e.g., [24–27]). However, just a few results are devoted to the context
of para-Kähler manifolds. Chen established optimal Chen inequalities for Lagrangian
submanifolds of the flat para-Kähler manifold (E2n, g, P) [28]. Furthermore, the Lagrangian
H-umbilical submanifolds of para-Kähler manifolds are explored in [29,30].

In this paper, we prove some inequalities between intrinsic and extrinsic curvature
invariants, namely involving the Chen first invariant and the mean curvature of totally real
and holomorphic spacelike submanifolds in statistical manifolds of type para-Kähler space
forms. In this respect, we use a calculus of optimization theory. In addition, the case of
equalities is demonstrated and some examples are revealed.

2. Preliminaries

A statistical manifold is a semi-Riemannian manifold (M̄, ḡ), endowed with a pair of
torsion-free affine connections (∇̄, ∇̄∗) which satisfy the formula:

X ḡ(Y, Z) = ḡ(∇̄XY, Z) + ḡ(Y, ∇̄∗XZ),

for any X, Y, Z ∈ Γ(TM̄), where Γ(TM̄) is the set of smooth tangent vector fields on M̄.
Denote by (M̄, ḡ, ∇̄) a statistical manifold [31]. The connections ∇̄ and ∇̄∗ are called
conjugate (dual) connections. An obvious property of these dual connections is ∇̄ = (∇̄∗)∗.
The pair (∇̄, ḡ) is named statistical structure.

It follows that (M̄, ḡ, ∇̄∗) is also a statistical manifold. Denote by ∇̄0 the Levi–Civita
connection of M̄ defined by ∇̄0 = ∇̄+∇̄∗

2 [32].
Suppose M is an m-dimensional submanifold of a 2n-dimensional statistical manifold

(M̄, ḡ, ∇̄) with g the induced metric on M, and ∇ the induced connection on M. Then
(M, g,∇) is likewise a statistical manifold.

The formulas of Gauss [31] are represented by the expressions:

∇̄XY = ∇XY + h(X, Y),

∇̄∗XY = ∇∗XY + h∗(X, Y),

for any X, Y ∈ Γ(TM), where the bilinear and symmetric (0, 2)-tensors h and h∗ are called
the imbedding curvature tensor of M in M̄ with respect to ∇̄ and ∇̄∗, respectively.

Denote by R and R̄ the (0, 4)-curvature tensors for the connections∇ and ∇̄, respectively.
Then, for the vector fields X, Y, Z, and W tangent to M, the equation of Gauss on the

connection ∇̄ is given by [32]:

ḡ(R̄(X, Y)Z, W) = g(R(X, Y)Z, W) + ḡ(h(X, Z), h∗(Y, W)) (1)

− ḡ(h∗(X, W), h(Y, Z)).

Similarly, let R∗ and R̄∗ be the (0, 4)-curvature tensors for the connections ∇∗ and ∇̄∗,
respectively.

Hence, the equation of Gauss on the connection ∇̄∗ becomes [32]:

ḡ(R̄∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + ḡ(h∗(X, Z), h(Y, W)) (2)

− ḡ(h(X, W), h∗(Y, Z)),

for any vector fields X, Y, Z, and W tangent to M.
Denote by S the statistical curvature tensor field on the statistical manifold (M, g,∇)

defined by [31]:

S(X, Y)Z =
1
2
{R(X, Y)Z + R∗(X, Y)Z}, (3)

for any X, Y, Z ∈ Γ(TM). Clearly, S is skew-symmetric. Thus S is a Riemann-curvature-
like-tensor [33].
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For a non-degenerate two-dimensional subspace π of the tangent space Tx M, at a
point x ∈ M, the sectional curvature of (M,∇, g) [31] is given by:

K(π) = K(X ∧Y) =
g(S(X, Y)Y, X)

g(X, X)g(Y, Y)− g2(X, Y)
, (4)

where {X, Y} is a basis of π.
Denote by K0 the sectional curvature of the Levi–Civita connection ∇0 on M.
The scalar curvature τ of (M,∇, g) at a point x ∈ M is defined by the expression:

τ(x) = ∑
1≤i<j≤m

K(ei ∧ ej) = ∑
1≤i<j≤m

g(S(ei, ej)ej, ei), (5)

where {e1, . . . , em} is an orthonormal frame at x.
Denote by τ0 the scalar curvature of the Levi–Civita connection ∇0 on M.

Let {e1, . . . , em} and {em+1, . . . , e2n} be orthonormal bases of the tangent space Tx M and
T⊥x M, respectively, at a point x ∈ M. Then, the mean curvature vector fields of M for ∇̄ and
∇̄∗ are defined by, respectively:

H =
1
m

m

∑
i=1

hii, H∗ =
1
m

m

∑
i=1

h∗ii.

For the Levi–Civita connection ∇̄0, we denote by h0 = h+h∗
2 the second fundamental

form, and by

H0 =
H + H∗

2
(6)

the mean curvature vector field of M.
Next, the squared mean curvatures of M for ∇ and ∇∗ are given by:

‖H‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1

m2

2n

∑
α=m+1

(
m

∑
i=1

h∗αii

)2

,

where hα
ij = g(h(ei, ej), eα) and h∗αij = g(h∗(ei, ej), eα), for i, j ∈ {1, . . . , m}, α ∈ {m +

1, . . . , 2n}.
A tensor field P 6= ±I of type (1, 1), satisfying P2 = I, where I is the identity tensor

field on M̄, is named an almost product structure on M̄.
An almost para-Hermitian manifold denoted by (M̄, P, ḡ) [2] is a manifold M̄ equipped

with an almost product structure P and a semi-Riemannian metric ḡ performing:

ḡ(PX, PY) = −ḡ(X, Y), (7)

for all vector fields X, Y on M̄. Notice that the dimension of (M̄, P, ḡ) is even.
If (M̄, P, ḡ) satisfies the formula ∇̄P = 0, then it is called a para-Kähler manifold [2],

where ∇̄ is the Levi–Civita connection of M̄.
An almost para-Hermitian-like manifold (M̄, P, ḡ) [22] is a semi-Riemannian manifold

(M̄, ḡ) equipped with an almost product structure P satisfying:

ḡ(PX, Y) + ḡ(X, P∗Y) = 0, (8)

for all vector fields X, Y on M̄, where P∗ is (1,1)-tensor field on M̄.
A para-Kähler-like statistical manifold [22] is defined as an almost para-Hermitian-like

manifold (M̄, P, ḡ) endowed with a statistical structure (∇̄, ḡ) such that ∇̄P = 0. It fol-
lows that the para-Kähler-like statistical manifolds are the generalization case of the para-
Kähler manifolds.
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A statistical manifold of type para-Kähler space form [22] is defined as a para-Kähler-like
statistical manifold (M̄, ∇̄, P, ḡ) where the curvature tensor R̄ of the connection ∇̄ satisfies:

R̄(X, Y)Z =
c
4
{ḡ(Y, Z)X− ḡ(X, Z)Y + ḡ(PY, Z)PX (9)

−ḡ(PX, Z)PY + ḡ(X, PY)PZ− ḡ(PX, Y)PZ},

for any vector fields X, Y, and Z and a real constant c.
A submanifold M in an almost para-Hermitian (like) manifold (M̄, P, ḡ) is called totally

real if P maps each tangent space Tx M into its corresponding normal space T⊥x M.
A submanifold M in an almost para-Hermitian (like) manifold (M̄, P, ḡ) is called

holomorphic (or invariant) submanifold if P(Tx M) = Tx M, x ∈ M.
We consider the following constrained extremum problem

min
x∈M

f (x), (10)

where M is a submanifold of a (semi)-Riemannian manifold (M̄, ḡ), and f : M̄ → R is a
function of differentiability class C2.

Theorem 1 ([34]). If M is complete and connected, (grad f )(x0) ∈ T⊥x0
M for a point x0 ∈ M,

and the bilinear form F : Tx0 M× Tx0 M→ R defined by:

F (X, Y) = Hess( f )(X, Y) + ḡ(h(X, Y), grad f ), (11)

is positive definite in x0, then x0 is the optimal solution of the problem (10), where h is the second
fundamental form of M.

Remark 1 ([34]). If the bilinear form F defined by (11) is positive semi-definite on the submanifold
M, then the critical points of f |M are global optimal solutions of the problem (10).

3. Main Inequalities

Theorem 2. (i) The Chen first invariant of a holomorphic spacelike submanifold M of dimension
m in a statistical manifold of type para-Kähler space form (M̄, ∇̄, P, ḡ) of dimension 2n
satisfies the inequality:

τ − K(π) ≥ 2(τ0 − K0(π)) +
c
8 ∑

1≤i<j≤m
{g2(ei, Pej) + g2(Pei, ej) + 2g(ei, Pei)g(ej, Pej)

−4g(ei, Pej)g(Pei, ej)} −
c
8
{g2(e1, Pe2) + g2(Pe1, e2) + 2g(e1, Pe1)g(e2, Pe2) (12)

−4g(e1, Pe2)g(e2, Pe1)}+
(m− 2)(m + 1)c

8
− m2(m− 2)

4(m− 1)
(‖H‖2 + ‖H∗‖2).

(ii) The Chen first invariant of a totally real spacelike submanifold M of dimension m in a
statistical manifold of type para-Kähler space form (M̄, ∇̄, P, ḡ) of dimension 2n satisfies
the inequality:

τ − K(π) ≥ 2(τ0 − K0(π)) +
(m− 2)(m + 1)c

8
− m2(m− 2)

4(m− 1)
(‖H‖2 + ‖H∗‖2). (13)
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Moreover, the equality cases of (12) and (13) hold identically at all points x ∈ M if and only if
we have:

hα
1j = hα

2j = hα
ij = 0,

h∗α1j = h∗α2j = h∗αij = 0,

hα
11 + hα

22 = hα
33 = . . . = hα

mm,

h∗α11 + h∗α22 = h∗α33 = . . . = h∗αmm,

for any α ∈ {m + 1, . . . , 2n} and any i, j ∈ {3, . . . , m}, i < j.

Proof. For x ∈ M, consider {e1, . . . , em} and {em+1, . . . , e2n} orthonormal bases of Tx M
and T⊥x M, respectively. Let {e1, e2} be an orthonormal basis in a plane section π at x,
where the sectional curvature of Tx M is minimum. The Chen first invariant is defined by
the expression:

δM(x) = τ(x)− K(π).

The sectional curvature K(π) of the plane section π is given by:

K(π) =
1
2
[g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)]. (14)

From the Formulas (1) and (9), we achieve:

g(R(e1, e2)e2, e1) =
c
4
{1 + g2(e1, Pe2) + g(e2, Pe2)g(e1, Pe1) (15)

−2g(Pe1, e2)g(e1, Pe2)}+
2n

∑
α=m+1

(h∗α11 hα
22 − h∗α12 hα

12).

From the Formulas (2) and (9), we have:

g(R∗(e1, e2)e2, e1) = −g(R(e1, e2)e1, e2) = −
c
4
{−1− g2(Pe1, e2)− g(e2, Pe2)g(e1, Pe1) (16)

+2g(Pe1, e2)g(e1, Pe2)}+
2n

∑
α=m+1

(hα
11h∗α22 − h∗α12 hα

12).

Replacing (15) and (16) in (14), we find:

K(π) =
c
4
{1 + g2(e1, Pe2)

2
+

g2(Pe1, e2)

2
+ g(e2, Pe2)g(e1, Pe1) (17)

−2g(Pe1, e2)g(e1, Pe2)}+
1
2

2n

∑
α=m+1

(hα
11h∗α22 + h∗α11 hα

22 − 2hα
12h∗α12 ).

From 2h0 = h + h∗, it follows that (17) becomes:

K(π) =
c
4
{1 + g2(e1, Pe2)

2
+

g2(Pe1, e2)

2
+ g(e2, Pe2)g(e1, Pe1)

−2g(Pe1, e2)g(e1, Pe2)}+ 2
2n

∑
α=m+1

[h0α
11h0α

22 − (h0α
12)

2] (18)

−1
2

2n

∑
α=m+1

{[hα
11hα

22 − (hα
12)

2] + [h∗α11 h∗α22 − (h∗α12 )
2]}.
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On the other hand, the scalar curvature of M, related to the sectional curvature K is
given by:

τ =
1
2 ∑

1≤i<j≤m
[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)]. (19)

From the Formulas (2) and (9), we obtain:

∑
1≤i<j≤m

g(R(ei, ej)ej, ei) =
m(m− 1)c

8
+

c
4 ∑

1≤i<j≤m
[g2(ei, Pej) + g(ei, Pei)g(ej, Pej)

−2 g(Pei, ej)g(ei, Pej)] (20)

+ ∑
1≤i<j≤m

[g(h∗(ei, ei), h(ej, ej))− g(h(ei, ej), h∗(ei, ej))].

Similarly, we have:

∑
1≤i<j≤m

g(R∗(ei, ej)ej, ei) = − ∑
1≤i<j≤m

g(R(ei, ej)ei, ej) =
m(m− 1)c

8

+
c
4 ∑

1≤i<j≤m
[g(ei, Pei)g(ej, Pej) + g2(ej, Pei)

−2 g(ei, Pej)g(ej, Pei)] (21)

− ∑
1≤i<j≤m

[g(h(ei, ei), h∗(ej, ej))− g(h(ei, ej), h∗(ei, ej))].

Replacing (20) and (21) in (19), we find:

τ =
m(m− 1)c

8
+

c
4 ∑

1≤i<j≤m
{

g2(ei, Pej)

2
+ g(ei, Pei)g(ej, Pej)

−2g(Pei, ej)g(ei, Pej) +
g2(ej, Pei)

2
}

+
1
2

2n

∑
α=m+1

∑
1≤i<j≤m

(hα
iih
∗α
jj + hα

jjh
∗α
ii − 2hα

ijh
∗α
ij )

=
m(m− 1)c

8
+

c
4 ∑

1≤i<j≤m
{

g2(ei, Pej)

2
+ g(ei, Pei)g(ej, Pej) (22)

−2g(Pei, ej)g(ei, Pej) +
g2(ej, Pei)

2
}

+
1
2

2n

∑
α=m+1

∑
1≤i<j≤m

[(hα
ii + h∗αii )(h

α
jj + h∗αjj )− hα

iih
α
jj − h∗αii h∗αjj

−(hα
ij + h∗αij )

2 + (hα
ij)

2 + (h∗αij )
2].
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From 2h0 = h + h∗, the latter equation becomes:

τ =
m(m− 1)c

8
+

c
4 ∑

1≤i<j≤m
{

g2(ei, Pej)

2
+ g(ei, Pei)g(ej, Pej)

−2g(Pei, ej)g(ei, Pej) +
g2(ej, Pei)

2
}

+2
2n

∑
α=m+1

∑
1≤i<j≤m

[h0α
ii h0α

jj − (h0α
ij )

2] (23)

−1
2

2n

∑
α=m+1

∑
1≤i<j≤m

{[hα
iih

α
jj − (hα

ij)
2] + [h∗αii h∗αjj − (h∗αij )

2]}.

Subtracting (18) from (22), the invariant δM can be written:

δM = τ − K(π) =
(m + 1)(m− 2)c

8
+

c
4 ∑

1≤i<j≤m
{

g2(ei, Pej)

2
+ g(ei, Pei)g(ej, Pej)

−2g(Pei, ej)g(ei, Pej) +
g2(ej, Pei)

2
}+ 2

2n

∑
α=m+1

∑
1≤i<j≤m

[h0α
ii h0α

jj − (h0α
ij )

2]

−1
2

2n

∑
α=m+1

∑
1≤i<j≤m

{[hα
iih

α
jj − (hα

ij)
2] + [h∗αii h∗αjj − (h∗αij )

2]} (24)

− c
4
{ g2(e1, Pe2)

2
+

g2(Pe1, e2)

2
+ g(e2, Pe2)g(e1, Pe1)

−2g(Pe1, e2)g(e1, Pe2)} − 2
2n

∑
α=m+1

[h0α
11h0α

22 − (h0α
12)

2]

+
1
2

2n

∑
α=m+1

{[hα
11hα

22 − (hα
12)

2] + [h∗α11 h∗α22 − (h∗α12 )
2].

Denote by A the expression:

A =
(m + 1)(m− 2)c

8
+

c
4 ∑

1≤i<j≤m
{

g2(ei, Pej)

2
+ g(ei, Pei)g(ej, Pej)

−2g(Pei, ej)g(ei, Pej) +
g2(ej, Pei)

2
}

− c
4
{ g2(e1, Pe2)

2
+

g2(Pe1, e2)

2
+ g(e2, Pe2)g(e1, Pe1)− 2g(Pe1, e2)g(e1, Pe2)}

+2(τ0 − K0(π)).

Moreover, δM becomes:

δM = A− 1
2

2n

∑
α=m+1

{ ∑
1≤i<j≤m

[hα
iih

α
jj − (hα

ij)
2]− hα

11hα
22 + (hα

12)
2}

−1
2

2n

∑
α=m+1

{ ∑
1≤i<j≤m

[h∗αii h∗αjj − (h∗αij )
2]− h∗α11 h∗α22 + (h∗α12 )

2}. (25)

It follows that:
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δM = A− 1
2

2n

∑
α=m+1

{ ∑
3≤i<j≤m

[hα
iih

α
jj − (hα

ij)
2] + ∑

3≤j≤m
[hα

11hα
jj − (hα

1j)
2] + ∑

3≤j≤m
[hα

22hα
jj − (hα

2j)
2]}

−1
2

2n

∑
α=m+1

{ ∑
3≤i<j≤m

[h∗αii h∗αjj − (h∗αij )
2] + ∑

3≤j≤m
[h∗α11 h∗αjj − (h∗α1j )

2] + ∑
3≤j≤m

[h∗α22 h∗αjj − (h∗α2j )
2]}

≥ A− 1
2

2n

∑
α=m+1

{ ∑
3≤i<j≤m

hα
iih

α
jj + ∑

3≤j≤m
hα

11hα
jj + ∑

3≤j≤m
hα

22hα
jj} (26)

−1
2

2n

∑
α=m+1

{ ∑
3≤i<j≤m

h∗αii h∗αjj + ∑
3≤j≤m

h∗α11 h∗αjj + ∑
3≤j≤m

h∗α22 h∗αjj }.

Let qα be a quadratic form defined by qα : Rm → R for any α ∈ {m + 1, . . . , 2n},

qα(hα
11, hα

22, . . . , hα
mm) = ∑

3≤i<j≤m
hα

iih
α
jj + ∑

3≤j≤m
(hα

11 + hα
22)h

α
jj

We investigate the constrained extremum problem

max qα

with the condition
G : hα

11 + hα
22 + . . . + hα

mm = kα,

where kα is a real constant.
We find the solution of the following system of first order partial derivatives:

∂qα

∂hα
11

=
m

∑
j=3

hα
jj = 0

∂qα

∂hα
22

=
m

∑
j=3

hα
jj = 0

∂qα

∂hα
33

= hα
11 + hα

22 +
m

∑
j=4

hα
jj = 0

. . . . . .

∂qα

∂hα
mm

= hα
11 + hα

22 +
m−1

∑
j=3

hα
jj = 0

for any α ∈ {m + 1, . . . , 2n}.
The solutions of the above system are:

hα
11 + hα

22 = hα
33 = . . . = hα

mm =
kα

m− 1
.

For p ∈ V, consider F a 2-form, F : TpV × TpV → R defined by:

F (X, Y) = Hess(qα)(X, Y) + 〈h′(X, Y), (gradqα)(p)〉,

where h′ is the second fundamental form of V in Rm and 〈·,·〉 is the standard inner product
on Rm.
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The Hessian matrix of qα is given by:

Hess(qα) =


0 0 1 . . . 1
0 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

.

As ∑m
i=1 Ui = 0, for a vector field X ∈ TpV, then the hyperplane V is totally geodesic

in Rm. Moreover, we see:

F (X, Y) = 2 ∑
1≤i<j≤m

UiUj − 2U1U2 = (
m

∑
i=1

Ui)
2 −

m

∑
i=1

(Ui)
2 − 2U1U2

= −(U1 + U2)
2 −

m

∑
i=3

(Ui)
2 ≤ 0. (27)

Using the Remark 1, adapted to our case, the critical point (hα
11, . . . , hα

mm) of qα is the
global maximum point of the problem. Then we achieve:

qα ≤
(m− 2)

2(m− 1)
(

m

∑
i=1

hα
ii)

2. (28)

Similarly, we consider q∗α be a quadratic form defined by q∗α : Rm → R for any
α ∈ {m + 1, . . . , 2n},

q∗α(h
∗α
11 , h∗α22 , . . . , h∗αmm) = ∑

3≤i<j≤m
h∗αii h∗αjj + ∑

3≤j≤m
(h∗α11 + h∗α22 )h

∗α
jj .

We also study the constrained extremum problem

max q∗α

with the condition
G∗ : h∗α11 + h∗α22 + . . . + h∗αmm = k∗α,

where k∗α is a real constant. Therefore, we find:

q∗α ≤
(m− 2)

2(m− 1)
(

m

∑
i=1

h∗αii )
2. (29)

Finally, δM from (26) has the expression:

δM ≥ A−
1
2

2n

∑
α=m+1

(m− 2)
2(m− 1)

(
m

∑
i=1

hα
ii)

2

−1
2

2n

∑
α=m+1

(m− 2)
2(m− 1)

(
m

∑
i=1

h∗αii )
2.

Moreover, δM satisfies the inequality:

δM ≥ A−
m2(m− 2)
4(m− 1)

(‖H‖2 + ‖H∗‖2). (30)

Consequently, the inequalities (12) and (13) are obtained.
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The equality cases of the inequalities (12) and (13) hold if and only if we have equality
sign in (26), (28), and (29). In this respect, we find:

hα
1j = hα

2j = hα
ij = 0,

h∗α1j = h∗α2j = h∗αij = 0,

hα
11 + hα

22 = hα
33 = . . . = hα

mm,

h∗α11 + h∗α22 = h∗α33 = . . . = h∗αmm,

for any α ∈ {m + 1, . . . , 2n} and any i, j ∈ {3, . . . , m}, i < j.

4. Examples

Example 1. We point out that any para-Kähler manifold is a para-Kähler-like statistical manifold.
Moreover, examples of statistical manifolds of type para-Kähler space forms can be illustrated among
para-Kähler space forms. The flat para-Kähler space forms are represented by E2n

n [35]. Delightful
examples of spacelike Lagrangian submanifolds in E2n

n can be discovered in [28,29]. The para-Kähler
space forms of nonzero para-sectional curvature are investigated in [36].

Example 2. Let R2n be a semi-Euclidean space of dimension 2n, with the coordinates
(x1, . . . , xn, y1, . . . , yn), the flat affine connection∇ and the pseudo-Riemannian metric g defined by

g =
n

∑
i=1

(dx2
i − αdy2

i ),

where α 6= 0 is a real constant. The almost product structure P on R2n is defined by

P(∂xi ) = ∂yi , P(∂yi ) = ∂xi , i = 1, . . . , n.

Then (R2n,∇, P, g) is a statistical manifold of type para-Kähler space form. Moreover, P∗ is
expressed by

P∗(∂xi ) =
1
α

∂yi , P∗(∂yi ) = α∂xi .

For X an open set of Rn, define an isometric immersion u : X → R2n by

u(y1, . . . , yn) = (0, . . . , 0, y1, . . . , yn).

Then u can be represented as a spacelike Lagrangian submanifold of (R2n,∇, P, g), where the
above inequalities are satisfied.

5. Conclusions

In this article, we established new Chen inequalities for totally real and holomorphic
spacelike submanifolds in statistical manifolds of type para-Kähler space form. Moreover,
we examined the equality cases and we indicated a few examples.
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