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Abstract
To	acquire	a	fundamental	understanding	of	animal	communication,	continuous	obser-
vations	in	a	natural	setting	and	at	an	individual	level	are	required.	Whereas	the	use	of	
animal-	borne	acoustic	recorders	in	vocal	studies	remains	challenging,	light-	weight	ac-
celerometers	can	potentially	register	individuals’	vocal	output	when	this	coincides	with	
body	vibrations.	We	collected	one-	dimensional	accelerometer	data	using	light-	weight	
tags	on	a	free-	living,	crepuscular	bird	species,	the	European	Nightjar	(Caprimulgus eu-
ropaeus).	We	developed	a	classification	model	to	 identify	four	behaviors	 (rest,	sing,	
fly,	and	leap)	from	accelerometer	data	and,	for	the	purpose	of	this	study,	validated	the	
classification	of	song	behavior.	Male	nightjars	produce	a	distinctive	“churring”	song	
while	they	rest	on	a	stationary	song	post.	We	expected	churring	to	be	associated	with	
body	vibrations	(i.e.,	medium-	amplitude	body	acceleration),	which	we	assumed	would	
be	easy	to	distinguish	from	resting	 (i.e.,	 low-	amplitude	body	acceleration).	We	vali-
dated	the	classification	of	song	behavior	using	simultaneous	GPS	tracking	data	(i.e.,	
information	on	 individuals’	movement	 and	proximity	 to	 audio	 recorders)	 and	 vocal	
recordings	from	stationary	audio	recorders	at	known	song	posts	of	one	tracked	in-
dividual.	Song	activity	was	detected	by	the	classification	model	with	an	accuracy	of	
92%.	Beyond	a	threshold	of	20	m	from	the	audio	recorders,	only	8%	of	the	classified	
song	bouts	were	recorded.	The	duration	of	the	detected	song	activity	(i.e.,	accelera-
tion	 data)	was	 highly	 correlated	with	 the	 duration	 of	 the	 simultaneously	 recorded	
song	bouts	(correlation	coefficient	=	0.87,	N =	10,	S =	21.7,	p =	.001).	We	show	that	
accelerometer-	based	identification	of	vocalizations	could	serve	as	a	promising	tool	to	
study	communication	in	free-	living,	small-	sized	birds	and	demonstrate	possible	limita-
tions	of	audio	recorders	to	investigate	individual-	based	variation	in	song	behavior.

K E Y W O R D S
audio	recordings,	behavior	classification,	bioacoustics,	biologging,	birdsong,	Caprimulgus 
europaeus,	European	nightjar,	telemetry,	vocalizations
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1  |  INTRODUC TION

Animal-	borne	tags	for	behavioral	studies	are	opening	a	wide	range	
of	 possibilities	 to	 unravel	 previously	 undiscovered	 aspects	 of	 ani-
mal	life	(Brown	et	al.,	2013;	Johnson	et	al.,	2009;	Kays	et	al.,	2015;	
Nuijten	et	al.,	2020).	During	the	last	two	decades,	a	wide	range	of	
sensors	 have	 been	 deployed	 to	 directly	 record	 animals’	 position	
(GPS,	passive	and	active	transponder	tags),	body	movements	(accel-
erometers),	 and	 internal	 state	 (e.g.,	 heart	 rate	 and	 body	 tempera-
ture	sensors),	as	well	as	the	physical	environment	(e.g.,	temperature	
loggers,	 light	 sensors,	 and	 pressure	 sensors).	 These	 tools	 enable	
the	 automatic	 collection	 of	 individual-	based	 data	 on	 the	 behavior	
of	 free-	living	animals	over	extended	periods	 (Greif	&	Yovel,	2019;	
Hughey	et	al.,	2018).

Animal-	borne	devices	have	been	widely	applied	to	study	many	
aspects	of	animal	behavior	(Kays	et	al.,	2015),	but	have	only	rarely	
been	used	to	study	vocalization	and	song	behavior	in	free-	roaming	
animals	(Greif	&	Yovel,	2019).	It	is,	however,	essential	to	acquire	ob-
servations	at	the	individual	level	in	order	to	gain	fundamental	insights	
in	 animal	 communication	 (Gill	 et	 al.,	 2016).	 Collecting	 individuals’	
vocal	activity	is	challenging	when	using	stationary	or	handheld	bio-
acoustic	recorders,	which	are	mainly	suitable	to	monitor	site-	specific	
vocal	activity	that	may	integrate	multiple	individuals.	On	the	other	
hand,	 animal-	borne	 acoustic	 recorders	 are	 energy	 consuming	 and	
produce	 large	 volumes	 of	 data,	 requiring	 a	 high	 storing	 capacity	
(Brown	et	al.,	2013;	Gill	et	al.,	2016;	Greif	&	Yovel,	2019;	Hughey	
et	al.,	2018;	Korpela	et	al.,	2020).	The	size,	weight,	and	 limited	re-
cording	duration	(~24	h,	Couchoux	et	al.,	2015;	Cvikel,	Levin,	et	al.,	
2015)	 form	 important	 restrictions	 to	 their	 use	 beyond	 laboratory	
settings.	 Several	 studies	 have	 tried	 to	 overcome	 these	 challenges	
by	directly	transmitting	the	recorded	data	via	low-	power	frequency	
modulation	(Anisimov	et	al.,	2014;	Gill	et	al.,	2015;	Maat	et	al.,	2014)	
or	Bluetooth	low	energy	(Magno	et	al.,	2020)	to	a	receiver;	a	tech-
nique	 called	 microphone	 telemetry.	 These	 recent	 improvements	
have	 resulted	 in	 light,	 miniature	 microphones	 with	 extended	 re-
cording	possibilities	(up	to	10	days	or	longer)	which	can	be	deployed	
on	animals	as	small	as	zebra	finches	(Taeniopygia guttata)	(Gill	et	al.,	
2015,	2016;	Magno	et	al.,	2020).	However,	the	restricted	transmis-
sion	distance	(a	few	tens	of	meters;	Gill	et	al.,	2016)	still	 limits	the	
applicability	of	these	systems	to	study	free-	roaming	animals.

Less	 than	a	decade	ago,	Goldbogen	et	al.	 (2014)	and	Anisimov	
et	 al.	 (2014)	 described	 that	 animal-	borne	 accelerometers	 can	 reg-
ister	body	vibrations	that	reflect	the	vocal	output	of	baleen	whales	
(Mysticeti)	 and	 zebra	 finches,	 respectively.	 The	 lower	 costs,	 en-
ergy	consumption,	and	required	storing	capacity	of	accelerometers	
(Brown	et	al.,	2013;	Hughey	et	al.,	2018;	Korpela	et	al.,	2020)	result	
in	lower	weight	and	smaller-	sized	devices	with	extended	logging	du-
rations	(several	days	or	weeks;	Brown	et	al.,	2013).	Nonetheless,	fur-
ther	investigation	of	the	use	of	accelerometers	in	the	study	of	vocal	
communication	 has	 received	 limited	 attention	 (Naito	 et	 al.,	 2010;	
Oestreich	 et	 al.,	 2020;	 Saddler	 et	 al.,	 2017;	 Stimpert	 et	 al.,	 2020;	
Wijers	 et	 al.,	 2020)	 and	 has—	to	 the	 best	 of	 our	 knowledge—	only	
been	 applied	 in	 two	 species	 of	 bustards	 which	 perform	 booming	

calls,	 associated	 with	 excessive	 head	 movements	 (little	 bustards	
Tetrax,	Gudka	et	al.,	2019;	African	houbara	bustards	Chlamydotis un-
dulata,	Alonso	et	al.,	2021).	The	limited	adoption	of	accelerometers	
in	vocal	studies	is	possibly	due	to	the	difficulty	of	assigning	acceler-
ometer	data	to	different	behaviors	in	free-	roaming	animals	(Alonso	
et	 al.,	 2021;	 Brown	 et	 al.,	 2013;	 Nathan	 et	 al.,	 2012;	 Shamoun-	
Baranes	et	al.,	2012).	Observing	the	behavior	of	captive	conspecifics	
for	the	validation	of	accelerometer	data	can	circumvent	the	neces-
sity	to	make	field	observations	of	free-	living	individuals,	yet	may	fail	
to	reliably	distinguish	between	different	behaviors	in	free-	roaming	
populations	(Pagano	et	al.,	2017).	A	particularly	challenging	species’	
group	for	vocal	studies	consists	of	highly	mobile,	medium-		and	small-	
sized	 birds	 which	 often	 have	 complex	 vocalizations.	 Smaller-	sized	
birds	are	only	able	to	carry	relatively	small	devices	(Fiore	et	al.,	2017;	
Magno	et	al.,	2020;	Vandenabeele	et	al.,	2012),	and	the	validation	of	
accelerometer-	derived	behaviors	 is	 often	 complicated	by	poor	 ac-
cessibility/detectability	of	individuals	in	the	wild.

We	investigated	the	usefulness	of	accelerometers	to	record	the	
song	 activity	 of	 European	Nightjars	 (Caprimulgus europaeus,	 here-
after	nightjar;	Figure	1).	Nightjars	are	 light-	weight	(~70	g;	Schlegel,	
1967)	 crepuscular	 insectivores,	 which	 mainly	 communicate	 using	
in-	flight	 wing-	clapping,	 “dweep”	 calls	 and	 simple	 “churring”	 song.	
The	“churring”	song	is	less	complex	than	many	other	bird	songs	and	
comprises	extended	repetitive	trills,	from	widely	distributed	station-
ary	song	posts	(Rebbeck	et	al.,	2001;	Zwart	et	al.,	2014)	situated	up	
to	 several	 kilometers	 from	 the	 territory	 center	 (Evens,	 Beenaerts,	
Ulenaers,	 et	 al.,	 2018).	 Assuming	 the	 “churring”	 song	 would	 pro-
duce	detectable	body	vibrations,	we	deployed	a	custom	combina-
tion	 of	 an	 accelerometer	 and	 a	GPS	 logger	 on	male	 nightjars	 and	
simultaneously	made	audio	recordings	at	the	song	posts	of	tagged	
males.	We	 first	 trained	a	hidden	Markov	model	 (HMM)	 to	classify	
four	main	behaviors	 (flying,	 resting,	 leaping,	and	singing)	based	on	
one-	dimensional	(Z-	axis)	accelerometer	data.	We	then	validated	this	
classification	using	recorded	song	behavior	from	one	individual	for	
one	night	 at	 two	different	 song	posts.	Based	on	 this	 exercise,	we	

F I G U R E  1 The	European	Nightjar	(Caprimulgus europaeus)	is	
a	crepuscular	insectivore	that	performs	a	simple	“churring”	song,	
comprising	extended	repetitive	trills	from	widely	distributed	
stationary	song	posts
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highlight	the	potential	of	accelerometer-	based	identification	of	song	
activity	of	 individual	nightjars	as	a	promising	model	to	study	com-
munication	 in	 free-	living,	 small-	sized	birds	and	demonstrate	possi-
ble	limitations	of	audio	recorders	in	capturing	individual	variation	in	
song behavior.

2  |  MATERIAL AND METHODS

2.1  |  General field practices

During	the	2019	breeding	season,	we	collected	acceleration	data	
in	 various	 sites	 in	 Belgium	 and	 Switzerland.	 All	 sites	 were	 well	
known	 from	 previous	 studies	 (Evens,	 Beenaerts,	 Neyens,	 et	 al.,	
2018;	Evens	et	al.,	2020).	Behavioral	classification	using	acceler-
ometer	 data	was	 also	 based	 on	 the	 data	 collected	 in	 these	 two	
countries.	When	focusing	on	the	validation	of	song	activity	from	
accelerometer	 data,	we	 only	 used	 data	 collected	 in	 two	Belgian	
sites	(Klein	Schietveld	[N:	51.35,	E:	4.49]	and	Kalmthoutse	Heide	
[N:	51.39,	E:	4.43]).	Here	we	also	made	automated	audio	record-
ings	at	known	song	posts	of	tagged	individuals	using	a	maximum	of	
35	SongMeters	(SongMeter™	SM2+;	Wildlife	Acoustics	Inc.).	The	
SongMeters	were	programmed	to	record	environmental	sounds	at	
the	same	time	schedule	as	the	accelerometers	(for	detailed	sched-
ules,	 see	 further)	 and	 recordings	 (time	 recorded	 in	 GMT)	 were	
saved	to	a	64GB	SD	card.

We	 captured	 nightjars	 using	 ultrafine	 mist	 nets	 (Ecotone,	
12 ×	 3	 m)	 and	 tape	 lures	 within	 presumed	 territories	 (Evens	
et	al.,	2017)	and	fitted	a	custom	combination	of	an	accelerometer	
(0.9	 g;	 SOI-	GDL3),	 a	 radio	 tag	 (0.4	 g;	 Biotrack	 Ltd.),	 and	 a	 GPS	
logger	 (1.8	 g;	 Pathtrack	 Ltd.)	 to	 the	 tail	 of	males	 using	 a	 simple	
drop-	off	 mechanism	 (Evens,	 Beenaerts,	 Ulenaers,	 et	 al.,	 2018).	
Tags	 weighed	 approximately	 4.8	±	 0.3%	 ([4.4%–	5.4%];	 total	 tag	
weight =	3.1	g)	of	 the	mean	weight	of	 tagged	birds	 (66	±	4.7	g,	
[57–	70.9	g];	Appendix	S1).	We	programmed	the	accelerometers	to	
start	measuring	one-	dimensional	 acceleration	 (g,	Z-	axis,	 time	 re-
corded	in	GMT)	continuously	at	25	Hz;	from	before	sunset	(9	PM)	
until	after	sunrise	(6	AM).	This	allowed	the	logging	of	individuals’	
activity	for	a	maximum	of	48	h.	To	obtain	a	value	for	dynamic	ac-
celeration	 (acceleration	resulting	from	movement),	we	smoothed	
the	acceleration	data	using	a	running	mean	(2-	s	interval)	and	sub-
tracted	the	smoothed	data	from	the	unsmoothed	data	to	remove	
the	 static	 acceleration	 (i.e.,	 acceleration	 resulting	 from	 the	 tag's	
angle	with	respect	to	the	Earth's	gravity;	Nathan	et	al.,	2012).	We	
programmed	GPS	loggers	to	fix	positions	at	3-	min	intervals	during	
the	same	period	of	the	night.	For	the	purpose	of	this	study,	we	de-
ployed	eight	loggers	and	recovered	seven	loggers	in	Kalmthoutse	
Heide	 and	 Klein	 Schietveld.	 All	 the	 recovered	 loggers	 dropped	
from	the	birds	after	approximately	6	days	(7	±	3	days,	[3–	10	days],	
n =	7).	From	visual	 inspection	of	GPS	tracks	and	 individuals	that	
were	recaptured	later	in	the	season,	we	could	not	observe	abnor-
mal	behavior	or	apparent	negative	effects	from	carrying	the	cus-
tom	tracking	devices.

2.2  |  Behavior classification

We	 followed	a	 two-	step	 approach	 to	 classify	 four	 behaviors	 from	
one-	dimensional	 accelerometer	data	 (Figure	2).	First,	we	designed	
an	 ethogram	 in	 order	 to	 describe	 four	 main	 behaviors	 nightjars	
perform	 at	 night:	 rest,	 sing,	 fly,	 and	 leap	 (Table	 1).	We	 processed	
GPS-	based	movement	data	and	collected	field	observations	(audio	
recordings	 and	 thermal	 videos	 (Videos	2	 and	3)	 of	 each	 behavior.	
Second,	we	applied	unsupervised	machine	learning	to	classify	accel-
erometer	data	and	verified	the	classification	with	field	observations	
to	establish	that	each	of	 the	four	behaviors	was	associated	with	a	
distinctive	accelerometer	signal.	For	 the	purpose	of	 this	study,	we	
focus	on	the	validation	of	song	activity.

2.2.1  |  Identification	of	target	behavior

The	crepuscular/nocturnal	behavior	of	nightjars	impedes	an	elabo-
rate	field	study	that	would	enable	the	direct	annotation	of	accelera-
tion	measurements	in	relation	to	the	species’	behavior	(Bom	et	al.,	
2014;	Nathan	et	al.,	2012;	Shamoun-	Baranes	et	al.,	2012).	Instead,	
we	 combined	GPS	 data	 and	 field	 observations,	 an	 already	widely	
used	approach	for	behavioral	classification	and	validation	of	these	
classifications	 in	 free-	living	 birds	 (Nathan	 et	 al.,	 2012;	 Patterson,	
Gilchrist,	 et	al.,	2019).	We	 investigated	GPS	 tracking	data	of	well-	
known	 individuals	 (Evens,	 Beenaerts,	 Neyens,	 et	 al.,	 2018;	 Evens	
et	al.,	2020)	and	we	used	field	observations,	sound	recordings,	and	
thermal	 videos	 (Pulsar	 Helion	 XQ38F	 Thermal	 Imaging	 Scope)	 to	
identify	unique	events	of	the	target	behaviors	which	could	then	be	
linked	 to	acceleration	measurements	 (Table	1;	 for	a	description	of	
other	 target	behavior,	 see	Appendix	S2).	 In	case	of	song	behavior,	
we	focused	on	identifying	“churring”	events.	Males	produce	the	dis-
tinctive	“churring”	song	from	a	stationary	song	post	(Rebbeck	et	al.,	
2001;	Zwart	et	 al.,	2014).	Therefore,	we	 investigated	GPS	data	 to	
differentiate	between	stationary	periods	(Table	1:	resting	or	singing)	
or	movement	(Table	1:	flying	or	leaping;	Figure	3b:	blue	lines)	either	
within	or	outside	known	breeding	habitat.	Stationary	periods	could	
be	 identified	as	clustered	GPS	observations	 (spatial	 error	±	20	m;	
Evens,	 Beenaerts,	 Ulenaers,	 et	 al.,	 2018).	During	 these	 stationary	
periods,	 we	 expected	 nightjars’	 body	 to	 vibrate	 when	 they	 were	
“churring.”	This	enabled	us	to	distinguish	between	resting	(i.e.,	low-	
amplitude	body	acceleration;	Figure	3b:	black	lines)	and	singing	(i.e.,	
medium-	amplitude	body	acceleration;	Figure	3b:	red	lines).

2.2.2  | Modeling

We	used	an	unsupervised	machine	learning	approach	to	differen-
tiate	four	nocturnal	behaviors	(rest,	sing,	fly,	and	leap)	from	one-	
dimensional	accelerometer	data.	We	fitted	random	initializations	
for	 hidden	Markov	models	 (one	 continuous	 variable;	 RcppHMM	
R-	package;	Cardenas-	ovando	et	al.,	2017)	containing	four	to	seven	
hidden states to a representative training dataset. The training 
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dataset	contained	50%	of	the	acceleration	data	of	one	night	from	
one	 well-	known	 individual	 whose	 song	 posts,	 foraging	 areas,	
and	general	space	use	were	also	investigated	in	a	previous	study	
(Evens,	Beenaerts,	Neyens,	 et	 al.,	 2018).	We	 then	 ran	an	expec-
tation	maximization	algorithm	(10,000	iterations)	to	estimate	the	
model	 predictors	 based	 on	 the	 smoothed	 acceleration	 data.	We	
used	 the	Viterbi	 algorithm	 to	 estimate	 the	most	 likely	 sequence	
of	states	(hereafter	predicted	states)	to	have	generated	from	the	
observed	acceleration	measurements.	We	evaluated	each	model's	
performance	based	on	a	visual	 inspection	of	classification	of	the	
training	 dataset	 and	 opted	 for	 the	 five-	state	 model	 (using	 two	
states	for	inactive	behavior)	for	the	classification	of	the	full	data-
set.	We	converted	the	predicted	states	to	the	four	target	behaviors	
by	further	specifying	the	behaviors.	The	additional	specifications	
are	based	on	behavior-	specific	information	extracted	from	litera-
ture	 (Cresswelll	 &	 Alexander,	 1992;	 Evens,	 Beenaerts,	 Neyens,	
et	 al.,	 2018;	Rebbeck	et	 al.,	 2001)	 and	observations	 from	exclu-
sive	behavioral	 events.	 In	 case	of	 singing	behavior,	 for	 example,	

we	 considered	 bouts	 to	 be	 biologically	meaningful	 if	 they	were	
longer	 than	10	 s	 (Rebbeck	 et	 al.,	 2001)	 and	omitted	 song	 bouts	
shorter	than	10	s.	Song	bouts	were	defined	as	uninterrupted	clas-
sifications	of	 singing	behavior.	 Lastly,	we	 subsampled	all	 data	 to	
1-	s	intervals	because	the	target	behaviors	occur	at	intervals	which	
are larger than 1 s.

2.2.3  |  Validation	of	song	activity	with	
audio recordings

For	the	purpose	of	this	study,	we	only	consider	the	validation	of	
song	 activity.	 For	 one	 male,	 high-	quality	 song	 recordings	 were	
made	at	two	of	its	song	posts	in	Klein	Schietveld	(night	from	July	
23	to	24).	We	used	these	song	recordings	to	validate	the	accuracy	
of	 song	classification	by	 the	hidden	Markov	model.	Acceleration	
and	 audio	 spectrograms	were	 visually	 aligned	 (both	 recorded	 in	
GMT;	 spectrograms	 were	 opened	 in	 R	 3.6.3	 and	 in	 Raven	 Pro	

F I G U R E  2 A	schematic	of	the	methodological	workflow	followed	in	our	study	to	classify	behavior	from	one-	dimensional	accelerometer	
data.	The	workflow	contains	two	main	categories:	Identify	target	behaviors	and	Modeling.	Ovals	represent	steps	involved	in	data	
management	and	rectangles	represent	steps	involved	in	building	of	the	classification	model.	Solid	arrows	present	the	workflow	to	move	
from	various	data	sources	to	processed	data,	training	the	classification	model,	and	finally	the	application	of	the	classification	model	to	all	
accelerometer	data	and	the	extraction	of	variables	for	analyses.	Dashed	arrows	present	(i)	steps	wherein	specific	information	was	inserted	
into	the	workflow	or	(ii)	feedback	loops	where	a	certain	part	of	the	workflow	is	repeated	in	response	to	progressive	insights.	*,	Classification	
of	behavior.	**,	derived	variables	used	as	input	for	generalized	linear	mixed	models

TA B L E  1 Ethogram	of	target	behaviors

Behavior Locomotion Description GPS observation Verification

Rest No Standing	or	sitting Clustered,	daytime Visual	observations

Sing No Singing Clustered,	breeding	habitat Song	recordings

Fly Yes Flying Scattered	observations Inbound	commuting	flights	(Video	2)

Leap Yes Chasing	prey Clustered,	foraging	habitat Thermal	videos	(Video	3)

Note: Exclusive	events	of	the	four	behaviors	were	identified	from	GPS	observations,	validated	using	various	types	of	field	observations,	and	linked	
with	accelerometer	measurements.	GPS	observation:	type	of	GPS	observation	used	for	the	identification	of	behavior.	Verification:	information/
method	used	to	validate	the	GPS	observations.
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1.5.0,	 respectively).	We	distinguished	between	 classifications	 of	
song	activity	for	periods	when	the	focal	individual	was	closer/fur-
ther	than	20	m	from	the	recorder	(20	m	is	the	maximum	distance	
at	which	start	and	end	time	of	song	were	clearly	audible	on	record-
ings,	distance	tool	in	ArcGis	10.7.1.).	The	start	time,	end	time,	and	
duration	of	each	 song	bout	 (acceleration	data	+	 song	 recording)	
were	manually	determined	(±1	s,	only	recorded	song	bouts	of	at	
least	 10	 s).	 We	 discriminate	 between	 true-	positive	 song	 detec-
tions	 (song	detections	 that	could	be	verified	based	on	 the	audio	
recordings),	 false-	positive	 song	 detections	 (song	 detections	 that	
could	 not	 be	 verified	 based	on	 the	 audio	 recordings),	 and	 false-	
negative	 song	detections	 (song	on	 audio	 recording	 that	was	not	
recognized	by	the	model).

Since	the	durations	of	the	song	bouts	were	not	normally	dis-
tributed	 (Shapiro–	Wilk	W	 test,	W <	 0.9),	 a	 spearman	 rank	 cor-
relation	 test	 was	 used	 to	 determine	 whether	 the	 durations	 of	
the audio and acceleration song detections were correlated. In 
order	 to	 determine	whether	 the	 durations	 of	 the	 detected	 song	
bouts	differed	between	the	 two	methods	 (acceleration	data	and	
audio	recordings),	a	Wilcoxon	signed	rank	test	and	a	paired	t-	test	
were	used;	after	removing	song	bouts	with	a	recorded	duration	of	
<20	s,	 the	durations	were	normally	distributed	 (Shapiro–	Wilk	W 
test,	W >	0.9).

3  |  RESULTS

Although	 acceleration	 data	were	 successfully	 collected	 for	 seven	
individuals,	simultaneously	recorded	GPS	and	acceleration	data	and	
clear	audio	recordings	were	available	only	from	one	night	for	one	
male	in	Klein	Schietveld,	at	two	of	its	song	posts.	Battery	changes	
of	the	audio	recorders,	within	the	48	h	data	collection	timeframe	of	
accelerometers,	 caused	an	unfortunate	mismatch	 in	 simultaneous	
recordings	and	measurements.	A	total	of	68	potential	song	bouts	of	
at	least	10	s	(median	duration	25	±	39	s;	11–	204	s)	were	classified	by	
the	hidden	Markov	model.	Fifty-	six	potential	song	bouts	were	clas-
sified	when	the	male	was	further	than	20	m	from	one	of	the	audio	
recorders	 and	 12	 potential	 song	 bouts	 were	 classified	 when	 the	
male	was	located	<20	m	from	one	of	the	audio	recorders	(Table	2;	
Figures	3	and	4).	In	the	latter	case,	when	the	male	was	closer	than	
20	m	from	an	audio	recorder	(Figure	3,	Table	2),	one	of	the	recorded	
song	bouts	was	misclassified	by	the	model	as	a	leaping	event	(false	
negative;	Appendix	S3).	This	means	 that	 the	number	of	 classified	
song	bouts	should	have	been	13,	leading	to	a	classification	accuracy	
of	92%.	Audio	recorders	detected	11	of	the	13	classified	song	bouts	
(85%).	Two	song	bouts,	classified	from	the	acceleration	data,	could	
not	be	detected	on	the	audio	recordings	(Figure	3).	When	the	male	
was	more	than	20m	from	the	audio	recorders,	audio	recorders	only	

F I G U R E  3 Space	use,	audio	recordings,	
and	singing	activity	of	one	male	near	
one	audio	recorder	in	the	same	30-	min	
timeframe.	Space	use	(a)	of	one	male	(GPS	
locations,	3-	min	interval)	near	one	audio	
recorder	(*).	Four	recorded	song	bouts	(b:	
indicated	with	*)	overlap	with	the	male's	
presence	near	the	audio	recorder	(a:	
green	dots).	For	other	GPS	observations,	
no	song	bouts	were	recorded	(a:	red	
dots).	Acceleration	data	(c)	demonstrate	
singing	activity	during	the	male's	presence	
near	the	audio	recorder	(a:	green	dots)	
which overlaps with the recorded song 
bouts	(b:	indicated	with	*).	Additionally,	
singing	activity	(c)	was	observed	from	
acceleration	data,	but	not	from	audio	
recordings	when	the	male	was	further	
from	the	audio	recorder	(a,	b:	red	dots,	
indicated	with	numbers	1–	3)
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detected	four	song	bouts	(8%;	4	of	56);	leaving	52	(93%;	52	of	56)	
potential	song	bouts	undetected	by	the	audio	recorders	(Table	2).	
Overall,	this	means	that	only	15	of	68	potential	song	bouts	(22%)	
were	detected	by	the	audio	recorder	(Video	1).

Further	comparison	of	 the	10	matched	recorded	and	classified	
song	 bouts	 (13	 [actual	 song	 bouts]	 –		 1	 [false	 negative	 song	 bout]	
–		2	[undetected	song	bouts]	=	10	[matched	song	bouts];	male	closer	
than	20	m	 from	 the	audio	 recorders)	demonstrates	 that	 the	dura-
tion	of	these	classified	song	bouts	is	significantly	correlated	with	the	
recorded	song	bout	 length	 (correlation	coefficient	=	0.87,	N =	10,	
S =	 21.7,	p =	 .001;	Figures	3	 and	4).	 The	duration	of	 all	 classified	
song	bouts	was	on	average	7.8	seconds	longer	than	the	duration	of	
the	simultaneously	recorded	song	bouts	(N =	10,	V =	4.5,	p = .02; 
Figure	 4).	 Recorded	 song	 bouts	 longer	 than	20	 s	 did	 not	 differ	 in	
length	from	classified	song	bouts	(N =	5,	t =	−1.2,	df	=	4,	p =	.3).

4  |  DISCUSSION

Our	study	shows	that	accelerometer-	based	identification	of	vocali-
zations	could	serve	as	a	promising	tool	to	study	communication	 in	

free-	living,	 small-	sized	birds.	Validation	of	 the	classification	model	
was	possible	when	the	male	sang	sufficiently	close	to	an	audio	re-
corder	 (<20	m),	 indicating	 that	 song	 activity	was	 detected	 by	 the	
classification	model	with	an	accuracy	of	92%.	Classified	song	bout	
length	was	highly	correlated	with	that	of	recorded	song	bouts.	At	the	
same	time,	accelerometer	data	suggest	that	the	audio	recorders	only	
captured	approximately	20%	of	song	bouts	produced	by	the	studied	
individual;	hence,	demonstrating	possible	 limitations	of	such	audio	
recorders	to	investigate	individual-	based	variation	in	song	behavior.

The	current	classification	accuracy	of	song	bouts	produced	near	
an	audio	recorder	 is	92%,	meaning	that	10	of	11	song	bouts	were	
correctly	classified	from	acceleration	data	(Figure	3),	with	an	accu-
rate	estimate	of	song	bout	length	(Figure	4).	One	false-	negative	clas-
sification	was	a	clear	misclassification	by	the	model,	and	comprised	
a	song	bout	midst	of	a	period	with	 intensive	 flying	 (Appendix	S3).	
Importantly,	GPS	data	initially	suggested	two	putative	false-	positive	
classifications	of	 song	bouts	 close	 to	 an	 audio	 recorder.	Here,	we	

F I G U R E  4 Simultaneous	audio	
recording and acceleration data in 
a	2-	min	timeframe.	One	2-	min	song	
recording	(a)	shows	the	alternation	
between	song	strophes,	interrupted	by	
brief	pauses	(P),	and	ending	in	a	wing	
clapping	phase	(W).	This	tightly	overlaps	
with	the	male's	acceleration	data	(b).	
Simultaneously	recorded	acceleration	
data	(b)	demonstrate	the	same	alternation	
between	singing	activity	(red)	and	pauses	
(P).	The	terminal	wing	clapping	phase	
is	reflected	by	the	acceleration	data	as	
high-	pitched	flight	activity	(blue).	See	
embedded	Video	1

V I D E O  1 Animation	of	singing	nightjar	containing	accelerometer	
data	(top)	and	sonogram	(bottom)
Video	content	can	be	viewed	at	https://onlinelibrary.wiley.com/
doi/10.1002/ece3.8446

TA B L E  2 Number	of	song	bouts	detected	by	the	model	(Model),	
number	of	recorded	song	bouts	(Audio),	number	of	matches	
between	the	model	and	the	recordings	(Match),	number	of	song	
bouts	detected	by	the	model	but	not	recorded	(Model	only),	and	
number	of	recorded	song	bouts	that	were	not	detected	by	the	
model	(Audio	only)	at	various	distances	from	the	recorders

Distance Model Audio Match
Model 
only

Audio 
only

<20 12 11 10 2a 1

>20 56 4 4a 52 0

All 68 15 14 54 1

aThe	classification	model	detected	flight	activity	immediately	before	
and/or	after	the	singing	activity,	meaning	that	the	nightjar	was	
stationary	for	<3	min	during	singing.	Therefore,	it	is	likely	that	the	true	
location	of	the	song	post	was	not	registered	by	the	GPS	logger.
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observed	 flight	 activity	 prior	 and	 after	 the	 song	 bouts,	 indicating	
that	the	individual	shortly	moved	out	of	the	detection	range	of	the	
audio	recorder	and	did	not	remain	stationary	at	its	song	post	for	a	
period	longer	than	3	min.

Besides	the	identification	of	different	song	bouts,	the	estimated	
duration	 of	 song	 bouts	 was	 highly	 accurate.	 The	 model	 overesti-
mates	song	bout	length	by	7.8	s	in	case	song	bouts	are	shorter	than	
20	s.	The	estimated	duration	of	 longer	song	bouts	does	not	differ	
between	 audio	 recordings	 and	 model	 estimates.	 Our	 data	 were	
collected	 in	 the	night	 from	 July	23	 to	24,	when	 the	vocal	 activity	
is	no	 longer	peaking	 (Schlegel,	1967).	Early	 in	the	breeding	season	
(May),	song	bouts	can	last	for	up	to	10	min	and	longer	(own	observa-
tions;	Schlegel,	1967),	which	means	that	song	bouts	are	significantly	
shorter	 in	July.	To	what	extent	overall	daily	song	activity	might	be	
overestimated	later	in	the	breeding	season,	therefore,	remains	to	be	
investigated.

With	a	total	weight	of	3.1	g,	the	tag	combination	is	appropriate	
to	deploy	on	medium-		to	small-	sized	birds	(Rutz	&	Troscianko,	2013;	
although	the	impact	of	tags	and	their	weight	should	be	investigated	

separately	 for	 each	 species	 (Portugal	&	White,	 2018)).	While	 the	
choice	for	tail-	mounted	devices	was	initially	made	to	facilitate	the	
retrieval	of	data	loggers	(Evens,	Beenaerts,	Ulenaers,	et	al.,	2018),	
this	 alternative	 logger	 placement	 may	 have	 unintentionally	 im-
proved	the	detectability	of	subtle	body	vibrations,	and	allowed	us	
to	 discriminate	 between	 “resting”	 and	 “vocally	 active.”	 It	may	 be	
interesting	 to	 investigate,	 test,	 and	 validate	 how	 alternative	 log-
ger	placements	may	be	useful	to	detect	vibrational	signals	or	body	
movement	associated	with	vocal	communication	in	birds	with	more	
complex	song	types	(Alonso	et	al.,	2021;	Gudka	et	al.,	2019).	With	
research	primarily	 focusing	on	 internal	and	environmental	 factors	
influencing	nightjars’	“churring”	song	behavior,	we	did	not	investi-
gate	all	types	of	display	behavior	 in	our	study.	Wing	clapping	and	
a	 “bubbling”	 song	 type	 (Figure	 4)	 are	 often	 displayed	 in-	flight	 at	
the	end	of	a	nightjar	song	bout.	These	types	of	aerial	displays,	also	
performed	by	many	other	species	such	as	Larks,	can	currently	not	
be	identified.	More	behavioral	details	may	be	acquired	by	enhanc-
ing	the	acceleration	sampling	rate	to	the	range	of	the	kHz	and/or	
by	 using	 tri-	axial	 accelerometers	 combined	 with	 species-	specific	
observations.

Using	a	more	sophisticated	version	of	the	accelerometers	than	in	
the	current	study	 (three-	dimensional	measurements	and	 improved	
battery	capacity),	it	will	be	possible	to	quantify	daily	song	activity	of	
individual	nightjars	continuously	up	to	10	days/nights	and	determine	
the	 timing	 and	 approximate	 length	 of	 each	 song	 bout.	 This	 infor-
mation	will	fulfil	the	requirements	to	study	proximate	and	ultimate	
factors	 shaping	 vocal	 communication	 in	 birds,	 using	nightjars	 as	 a	
model	 organism.	 The	 “churring”	 song	 of	 nightjars	 is	 powerful	 and	
less	 complex	 than	many	other	bird	 songs,	which	will	 facilitate	 the	
investigation	of	new	questions	regarding	intra-		and	inter-	individual	
variation	in	song	output	in	response	to	internal	(e.g.,	mating	status,	
age,	 and	body	 condition)	 and/or	 environmental	 factors	 (e.g.,	 lunar	
cycle,	weather	conditions,	and	artificial	light)	that	contribute	to	indi-
vidual-		and	population-	level	variation	in	song	output.	For	example,	
to	 unravel	 the	 functions	 of	 song	 (mate	 attraction	 and/or	 territory	
defense),	 it	 is	 important	 to	 know	 how	 song	 expression	 varies	 be-
tween	pairing	and	breeding	stages	(Gienapp	&	Merilä,	2010;	Moran	
et	al.,	2019).	This	seasonal	variation	in	song	activity	can	be	strongly	
affected	by	weather	factors	(Bruni	et	al.,	2014;	Hasan,	2010;	Keast,	
1994;	Naguib	et	al.,	2019;	Schäfer	et	al.,	2017)	and	the	lunar	cycle	
(Alonso	et	al.,	2021;	Dickerson	et	al.,	2020;	York	et	al.,	2014).	A	fur-
ther	application	can	be	sought	in	determining	nightjars’	time	activity	
budget.	For	 instance,	 time-	related	 trade-	offs	between	singing	and	
foraging	can	be	investigated	using	the	same	recording	device.	Until	
now,	mainly	 behaviors	 related	 to	 locomotion	 have	 been	 classified	
from	 accelerometer	 data,	 like	 “resting,”	 “flying,”	 “swimming,”	 etc.	
(Kays	et	al.,	2015;	Nathan	et	al.,	2012;	Patterson,	Elliott,	et	al.,	2019).	
Given	 indications	 that	 nightjars’	 nocturnal	 flight	 activity	 (Evens,	
Kowalczyk,	Norevik,	et	al.,	2020),	breeding	ecology	(Mills,	1986),	and	
vocal	activity	(Reino	et	al.,	2015)	are	strongly	influenced	by	the	lunar	
cycle,	it	is	likely	that	anthropogenic	influences,	and	especially	astro-
nomical	 light	pollution	 (indirect	artificial	 light	 irradiation,	percepti-
ble	over	large	distances,	especially	during	covered	nights),	can	have	

V I D E O  2 Thermal	video	of	flying	nightjar
Video	content	can	be	viewed	at	https://onlinelibrary.wiley.com/
doi/10.1002/ece3.8446

V I D E O  3 Thermal	video	of	flycatching	nightjar
Video	content	can	be	viewed	at	https://onlinelibrary.wiley.com/
doi/10.1002/ece3.8446
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important	 implications	 for	 daily	 behavioral	 trade-	offs.	 To	 address	
these	questions,	individual-	based	recordings	will	provide	much	more	
valuable	information	in	the	near	future.

We	highlight	that	the	use	of	accelerometers	could	overcome	im-
portant	 shortcomings	 in	 the	 study	of	vocal	behavior	of	 free-	living	
animals.	Firstly,	our	results	suggest	that	only	20%	of	the	daily	song	
bouts	are	captured	by	the	audio	recorders,	which	were	distributed	
over	the	presumed	territory	of	the	tracked	male.	Indeed,	stationary	
recorders	likely	record	only	a	subset	of	an	individual's	vocal	output	
(Johnson	et	al.,	2009)	because	individuals’	song	posts	can	be	distrib-
uted	over	a	wide	area,	even	outside	the	presumed	territory	(Evens,	
Beenaerts,	 Ulenaers,	 et	 al.,	 2018),	 impeding	 a	 complete	 coverage	
with	 stationary	 sound	 recorders.	 Secondly,	 animal-	borne	 acceler-
ometers	allow	singing	activity	to	be	unambiguously	attributed	to	the	
focal	animal.	Even	when	using	animal-	borne	microphones,	it	can	be	
challenging	to	discriminate	the	vocalizations	of	the	focal	 individual	
from	those	of	nearby	conspecifics	(Anisimov	et	al.,	2014;	Gill	et	al.,	
2015;	Greif	&	Yovel,	 2019);	 and	 stationary	microphones	may	only	
record	 individuals	when	 they	 vocalize	 sufficiently	 close	 to	 the	 re-
corder.	Recent	studies	have	used	autonomous,	bioacoustic	record-
ers	to	monitor	vocal	activity	of	nightjars	at	specific	sites	(Zwart	et	al.,	
2014).	Although	song	activity	of	 individual	nightjars	can	readily	be	
identified,	 identification	 is	only	reliable	for	a	 limited	group	of	 indi-
viduals	 (Rebbeck	et	al.,	2001;	Zwart	et	al.,	2014).	This	means	 that	
studying	individual	vocal	activity	using	animal-	borne	devices	could	
therefore	give	better	insights	into	the	determinants	of	vocal	activity	
of	 individual	nightjars.	Thirdly,	the	use	of	animal-	borne	accelerom-
eters allows that individuals can be recorded undisturbed in their 
natural	 environment	 for	 prolonged	 periods,	 whereas	 previously,	
individual-	based	 studies	 on	 vocal	 behavior	 either	 struggled	 with	
short	recording	durations	(Couchoux	et	al.,	2015;	Cvikel,	Egert	Berg,	
et	al.,	2015)	or	had	to	be	carried	out	on	captive	animals	(Gill	et	al.,	
2015,	2016;	Magno	et	al.,	2020).

With	the	help	of	new	biologging	devices,	knowledge	gaps	can	
be	filled	concerning	animal	behavior,	especially	when	thoughtfully	
combined	with	acoustic	and	visual	observations	 (Smith	&	Pinter-	
Wollman,	2021).	Our	study	shows	that	accelerometers	can	serve	
as	 a	 cheaper,	 lighter,	 and	 longer-	lived	 alternative	 to	microphone	
tags	to	study	vocal	behavior	of	animals	with	relatively	simple	song	
types.	It	will	open	new	perspectives	to	study	the	vocal/display	be-
havior	in	great	detail	and	with	individual-	level	resolution,	even	in	
difficult	 to	 observe	 species.	We	 anticipate	 further	 validation	 of	
our	 methods,	 using	 more	 sophisticated	 devices,	 in	 order	 to	 im-
prove	 the	 identification	of	 different	 vocalizations	 and	 support	 a	
broader	application	of	this	method.
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