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Abstract 30 

Objectives: We estimated the effect of pneumococcal vaccination (PV) on acute lower 31 

respiratory tract infections (LRTIs) in various age and risk groups using different methods 32 

within a causal inference methodological framework. 33 

Study Design and Setting: We used data from a general practitioners’ morbidity registry for 34 

the year 2019. Both traditional statistical methods (regression-based and propensity score 35 

methods) and machine learning techniques were deployed. Multiple imputation was used to 36 

account for missing data. Relative risks (RRs) with 95% confidence intervals were estimated. 37 

Sensitivity analyses were performed to account for the severity of LRTIs and differences in 38 

vaccination registration. 39 

Results: All methods showed a standardized mean difference below 0.1 for each covariate. No 40 

method was found to be superior to another. PV (combination of conjugate and polysaccharide 41 

vaccine) had an overall protective effect for severe LRTIs. PV was protective in different age 42 

and risk groups, especially in people aged 50-84 years with an intermediate risk group. 43 

Conclusion: Using several techniques, PV was found to prevent severe LRTIs and confirmed 44 

the recommendations of the Belgian Superior Health Council. 45 

Keywords: 46 

Pneumococcal vaccine; Relative risk; Causal inference; Propensity score; Registry data; 47 

Machine learning 48 

Running title: 49 

Pneumococcal vaccination prevents severe LRTIs in adults: A unified causal inference 50 
framework 51 
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1. Introduction  75 

 76 
Acute lower respiratory tract infections (LRTIs) are a major cause of morbidity and mortality 77 

[1]. Almost 2.38 million deaths worldwide resulted from LRTIs in 2016 [2], and LRTIs are the 78 

fourth leading cause of global disability-adjusted life-years [3]. Streptococcus pneumoniae was 79 

found to be responsible for at least 5% of the severe LRTIs in the adult population in primary 80 

care [4]. To prevent pneumococcal diseases in adults, two types of vaccines are available: the 81 

13-valent pneumococcal conjugate vaccine (PCV13) and the 23-valent pneumococcal 82 

polysaccharide vaccine (PPV23). 83 

 In Belgium, the Superior Health Council recommends vaccinating adults aged from 16-84 

85 years old with a high risk of pneumococcal infection, adults aged from 50-85 years old who 85 

have certain comorbidities and healthy people aged 65-85 years with PCV13 followed by 86 

PPV23 [5]. However, the efficacy of these vaccines in the prevention of LRTIs in adults 87 

remains the subject of debate [6-8]. 88 

What is new? 

• Registry data was used to estimate the effect of pneumococcal vaccination to prevent lower 

respiratory tract infections 

• Relative risks were calculated using different methods (regression-based 

methods, propensity score methods and machine learning techniques) to build confidence in 

the robustness of the conclusions 

• A combination of a conjugate and polysaccharide vaccine was found to prevent severe lower 

respiratory tract infections in the global adult population and in different age and risk groups 

• These results confirmed the recent recommendations of the Belgian Superior Health Council 
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 Randomized controlled trials (RCTs) are the gold standard approach for assessing the 89 

effect of treatments or interventions. Randomization ensures that the treatment effect can be 90 

directly estimated [9]. However, occasionally, a trial might be unethical, time-consuming and 91 

infeasible [10]. In addition, when the outcome is a rare disease or the aim is to investigate effects 92 

on patients with polymedication and multimorbidity, observational data are the only alternative 93 

[11]. In observational studies, treatment selection is often influenced by subject characteristics, 94 

which often differ systematically between treated and untreated subjects [12]. Therefore, 95 

methodologies and strategies that consider those systematic differences should be deployed. 96 

These methods vary and include general statistical methods, such as regression-based methods 97 

(RBMs) and propensity score (PS) methods. Recently, machine learning (ML) techniques, 98 

namely, Bayesian additive regression trees and generalized boosted modelling, have been 99 

increasingly used; they automatically detect the best model for balancing the covariates and for 100 

capturing nonlinearities, polynomial terms and interactions [13]. 101 

 Therefore, there were two objectives of this study. First, a causal inference 102 

methodological framework is developed for data from registries. Both traditional statistical 103 

methods and ML techniques are used, and the differences in terms of which method achieves 104 

the best balance is examined. Second, the association between pneumococcal vaccination (PV) 105 

and LRTIs in different age and risk groups was investigated. 106 

 107 

2. Materials and methods 108 

 109 
2.1 Data source 110 

We used the Intego registry, a Flemish general practice morbidity registry, which was 111 

described in more detail elsewhere [14]. Briefly, in 2019, Intego comprised approximately 112 

285,000 people from 104 general practice centres, accounting for 4.3% of the Flemish 113 
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population. Medication and vaccines were classified according to the WHO’s Anatomical 114 

Therapeutic Chemical classification system, and diagnoses were linked to the International 115 

Classification of Primary Care and International Statistical Classification of Diseases and 116 

Related Health Problems 10th Revision.  117 

2.2 Study design and study population 118 
 119 
2.2.1 Study population 120 
 121 

For the current study, we included only practices that coded more than 80% of their 122 

registered diagnoses in 2019 (n = 86). The study was performed on the population aged 16 123 

and older in 2019. 124 

2.2.2 Intervention 125 
 126 

PV consists of PPV23 (ATC code = J07AL01) and PCV13 (ATC code = J07AL02). We 127 

considered two strategies: (i) a patient was administered either vaccine, and (ii) a patient was 128 

administered both vaccines. We further categorized the treatment according to the years since 129 

the last vaccination of each type (0-5 years, 6-10 years, and ≥ 10 years), starting from the LRTIs 130 

date in 2019 or 31 December 2019. Last, to identify the PV in Intego, we used two sources: PV 131 

registrations and PV prescriptions. Nevertheless, when a vaccine was only prescribed, we 132 

cannot be certain that the vaccination occurred. Therefore, to make our conclusions robust, we 133 

investigated the effect of the intervention on (i) vaccination registration only and (ii) 134 

vaccination registration and vaccination prescription together. 135 

2.2.3 Outcome definition 136 

 The outcome of interest was LRTIs in 2019. We made a distinction between LRTIs 137 

with or without antibiotics since the prescription of antibiotics might indicate a more severe 138 

LRTIs. Specifically, we considered (i) LRTIs without a prescription of antibiotics and (ii) 139 

LRTIs with a prescription of antibiotics 1 month before or after the LRTIs. 140 



6 
 

2.2.4 Main analysis and sensitivity analyses 141 

In total, we performed eight analyses (one main and seven sensitivity analyses) on the 142 

effect of PV to prevent LRTIs. In addition, we estimated the effect of PV in different age groups 143 

(16-49, 16-84, 50-64, 50-84, 65-74, 74-84, 65-84, 85-plus, 50-plus, 65-plus, and 75-plus) and 144 

risk groups (low, intermediate and high risk). 145 

 146 

2.3 Covariate selection 147 

We selected appropriate confounding factors using previous research evidence from the 148 

literature, expert advice and the recommendations of the Superior Health Council in Belgium 149 

[15, 16]. The covariates used for adjustment were the baseline characteristics, the risk group for 150 

LRTIs infection, lab tests and comorbidities as detailed in Supplementary Tables S1 and S2. 151 

2.4 Treatment effect estimators 152 
 153 

The estimands of interest differ according to the research question at hand and the target 154 

population to be compared. The two most common estimands are the following: the average 155 

treatment effect, which is the effect on the entire population; and the average effect of the 156 

treatment on the treated, which is the effect for those in the treatment group [17]. The average 157 

treatment effect is of more interest if every treatment potentially might be offered to every 158 

subject, namely, if the entire population was moved from the control to the treated group [18]. 159 

The average effect of the treatment on the treated is preferable when patients’ characteristics 160 

are more likely to determine the treatment received [19]. In our study, PV was more likely to 161 

be administered to patients belonging to specific age groups and with specific comorbidities. 162 

Therefore, for our research question, the average effect of the treatment on the treated estimand 163 

is of interest. 164 
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2.5 Modelling framework 165 
 166 
2.5.1 Regression-based methods 167 
 168 

Multivariable logistic regression  is used to compute odds ratios. However, in our study 169 

we aim to compute relative risks (RRs), thus a log-binomial model will be deployed. The 170 

difference between the multivariable logistic regression  and log-binomial models is the link 171 

function: in the multivariable logistic regression, the logit function is used; and in the log-172 

binomial model, the log function is used [20].  173 

 174 
2.5.2 Propensity score methods 175 
 176 

The PS of a subject is defined as the probability of treatment assignment T conditional 177 

on a vector of observed baseline covariates X [12], 178 

e(X) = Pr (T = 1 | X) 179 

In this way, all the baseline covariates X are summarized into one single variable. In 180 

RCTs, when the outcome is binary, the PS is approximately 0.5 since we expect a balance of 181 

covariates between the intervention and control groups. In observational studies, due to the 182 

imbalance of the covariates, the PS differs between subjects and therefore needs to be estimated. 183 

The most popular method to estimate the PS is the logistic regression, where the outcome is the 184 

intervention conditional on all covariates. Once the PS is calculated, we can use PS-based 185 

methods including matching, stratification, inverse probability of treatment weighting and 186 

overlap weighting to balance our covariates [21, 22]. We performed nearest neighbour matching 187 

with a calliper of 0.2 combined with exact matching for sex, age group, risk, socioeconomic 188 

status and smoking status. 189 
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2.5.3 Machine learning methods 190 
 191 

ML techniques offer an alternative approach when calculating PSs [23, 24]. It differs 192 

from the logistic regression in terms of automatically incorporating quadratic, polynomial, or 193 

interaction terms and does not require any parametric assumptions [25, 26]. In this work, we 194 

deployed the Bayesian additive regression trees and generalized boosted modelling for binary 195 

outcomes [27, 28].  196 

2.6 PSs after multiple imputation 197 

An additional difficulty arises when data are incomplete. Multiple imputation is a 198 

methodology to “fill in” the missing data multiple times with plausible values that reflect the 199 

uncertainty in predicting the true unobserved values [29]. The values are typically drawn from 200 

the conditional distribution of a subject’s missing measurements given the observed ones. We 201 

performed longitudinal imputation for the missing covariates since the previous and earlier 202 

observations of the same patient can be considered. The partially missing variables were 203 

smoking status, body mass index, estimated glomerular filtration rate, systolic blood pressure 204 

and diastolic blood pressure. We drew 20 imputations, which is prudent since the percentage of 205 

missing values was substantial. In the context of PSs, there are two strategies for estimating the 206 

effects after multiple imputation. The first strategy is the within approach [30], where the effects 207 

are calculated within each dataset and then the results are pooled together. The second strategy 208 

is the across approach [31], where the PSs are averaged across imputed datasets, and the effects 209 

are calculated using this average PS. We used the within approach since it was demonstrated to 210 

have superior statistical performance [32]. 211 

2.7 Balance diagnostics 212 

The standardized difference, which is a comparison of the means of continuous 213 

covariates and the distribution of their categorical counterparts divided by the pooled standard 214 
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deviation between treated and untreated subjects, was used to investigate the covariate balance 215 

between the intervention groups [33]. This metric lies between 0 and 1, and the typical threshold 216 

is 0.1 [34, 35]. In addition, the bias reduction is given as: 217 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟 =  �1 − |𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|
|𝑑𝑑𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎|

∗ 100�, 218 

where 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏and 𝑟𝑟𝑎𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏 denote the standardized difference before and after PS 219 

matching, respectively. The bias reduction provides an alternative and intuitive way to 220 

investigate how the bias is reduced by using this method. 221 

2.8 Statistical analysis 222 

We deployed eight different methods to calculate the RRs and the 95% Confidence 223 

Intervals. Further details for these methods can be found in Supplementary Methods. We used 224 

robust standard errors to account for potential sources of uncertainty when using weighting 225 

techniques. For our analysis, we used the R software [36] and different packages as described 226 

in Supplementary R packages. 227 

 228 

 229 

 230 

 231 

 232 

3. Results 233 
 234 
3.1 Baseline covariate balance 235 
 236 
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Fig. 1 displays the flowchart of the study population as described in the materials 237 

section. 238 

 239 
Fig. 1: Flowchart of the study population in 2019 240 

 241 

 242 

Table 1 reports the absolute standardized difference before and after PS matching when 243 

the treatment was PPV23 & PCV13 located in the vaccine and prescription data source, and the 244 

outcome was LRTIs with antibiotics. We observe that bias was present in our data since the 245 

standardized difference of the distance measure in the original sample was 1.38, and most of 246 

the variables had standardized differences largely above the 0.10 threshold. This was further 247 

supported by the bias reduction metric, which reached 99% for several variables. 248 

 249 

 250 

 251 
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 252 

Table 1: Baseline covariates before and after 1:1 PS matching for PCV13 & PPV23 (0-5 years) 253 
                                                                                                                    Original sample PS matching 1:1 254 

Variables Not vaccinated Vaccinated SMD/
SPD* 

Not vaccinated Vaccinated SMD/ 
SPD 

Bias 
reduction 

 (N = 188815) (N = 6310)  (N = 6022) (N = 6022)   
Propensity score (distance measure)   1.3755   0.0007 99.95 
Sex, male (%) 86893 (46.0) 3029 (48.0) 0.040 2875 (47.7) 2875 (47.7) <0.001 99.75 
Age, mean (SD) 46.66 (18.99) 69.41 (12.26) 1.424 69.47 (12.61) 69.34 (12.26) 0.011 99.23 
Socioeconomic status, no compensation (%) 160856 (85.2) 5125 (81.2) 0.106 4922 (81.7) 4922 (81.7) <0.001 99.91 
Risk status   1.071   <0.001 99.99 
    High risk (%) 4336 (2.3) 920 (14.6)  735 (12.2) 735 (12.2)   
    Low risk (%) 139375 (73.8) 1725 (27.3)  1723 (28.6) 1723 (28.6)   
    Intermediate risk, yes (%) 45104 (23.9) 3665 (58.1)  3564 (59.2) 3564 (59.2)   
Smoking status   0.317   <0.001 99.97 
    Ex-smoker (%) 50625 (26.8) 2585 (41.0)  2455 (40.8) 2455 (40.8)   
    Smoker (%) 48780 (25.8) 1111 (17.6)  1023 (17.0) 1023 (17.0)   
    Never-smoker (%) 89410 (47.4) 2614 (41.4)  2544 (42.2) 2544 (42.2)   
Body mass index, obese (%) 32792 (17.4) 1317 (20.9) 0.089 1323 (22.0) 1259 (20.9) 0.026 70.79 
Systolic blood pressure, mean (SD) 124.65 (14.88) 128.84 (14.54) 0.285 129.55 (14.88) 129.02 (14.43) 0.037 87.02 
Diastolic blood pressure, mean (SD) 76.69 (9.19) 75.49 (8.49) 0.135 76.10 (8.66) 75.58 (8.47) 0.060 55.56 
Liver disease, yes (%) 4049 (2.1) 386 (6.1) 0.201 348 (5.8) 370 (6.1) 0.015 92.54 
Heart failure, yes (%) 1771 (0.9) 298 (4.7) 0.230 244 (4.1) 276 (4.6) 0.026 88.7 
Atrial fibrillation, yes (%) 4349 (2.3) 711 (11.3) 0.362 606 (10.1) 678 (11.3) 0.039 89.23 
Heart valve, yes (%) 2206 (1.2) 360 (5.7) 0.251 298 (4.9) 334 (5.5) 0.027 89.24 
Atherosclerosis, yes (%) 2502 (1.3) 327 (5.2) 0.219 296 (4.9) 304 (5.0) 0.006 97.26 
Chronic obstructive pulmonary disease, yes (%) 3976 (2.1) 1012 (16.0) 0.500 830 (13.8) 820 (13.6) 0.005 99 
Asthma, yes (%) 16310 (8.6) 1226 (19.4) 0.315 1035 (17.2) 1093 (18.2) 0.025 92.06 
Diabetes, yes (%) 10674 (5.7) 1155 (18.3) 0.397 1148 (19.1) 1100 (18.3) 0.020 94.96 
Hypertension, yes (%) 29216 (15.5) 2746 (43.5) 0.646 2612 (43.4) 2596 (43.1) 0.005 99.23 
Ischemic disease, yes (%) 5347 (2.8) 746 (11.8) 0.350 672 (11.2) 708 (11.8) 0.019 94.57 
Stroke, yes (%) 4152 (2.2) 500 (7.9) 0.263 415 (6.9) 469 (7.8) 0.034 87.07 
Cancer, yes (%) 30740 (16.3) 2402 (38.1) 0.505 2216 (36.8) 2223 (36.9) 0.002 99.6 
Estimated glomerular filtration rate category   0.370   0.021 94.32 

Stage 1 (%) 46271 (24.5) 845 (13.4)  829 (13.8) 812 (13.5)   
    Stage 2 (%) 98308 (52.1) 3118 (49.4)  3039 (50.5) 3005 (49.9)   
    Stage 3 (%) 40743 (21.6) 2094 (33.2)  1929 (32.0) 1963 (32.6)   
    Stage 4 (%) 2948 (1.6) 201 (3.2)  176 (2.9) 191 (3.2)   
    Stage 5 (%) 545 (0.3) 52 (0.8)  49 (0.8) 51 (0.8)   
Flu vaccine in 2018, yes (%) 33034 (17.5) 5203 (82.5) 1.709 4923 (81.8) 4932 (81.9) 0.004 99.77 

*For continuous variables standardised mean differences (SMD) are used, whereas for categorical covariates standardised 255 
proportion differences (SPD) 256 

 257 

Before matching, we observed that the vaccinated group was older with higher 258 

percentages belonging to the intermediate- and high-risk groups and a large difference in 259 

influenza vaccination in 2018 (82.5% versus 17.5%). After matching, 6,022 patients remained 260 

in each intervention group. The standardized differences dropped substantially and were less 261 

than the threshold of 0.1. In addition to 1:1 PS matching, we investigated the covariate balance 262 

on all methods, and the results are shown in Supplementary Tables S3, S4, and S5. 263 
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Fig. 2 presents an intuitive and straightforward comparison of all statistical methods in 264 

terms of covariate balance utilizing the absolute standardized difference. We observe that the 265 

overlap method, followed by the ML techniques, produced the best balance. Nevertheless, for 266 

all methods except the unmatched (crude regression), each covariate was well below 0.1, 267 

demonstrating that all methods adequately balanced the data.  268 

 269 

 270 

Fig. 2: Comparison of the different methods for subjects who received PCV13 and PPV23 based on the standardized 271 
mean difference 272 
 273 
3.2 Effect of pneumococcal vaccination on LRTIs 274 

Fig. 3 indicates a protective effect of PPV23 & PCV13 vaccination for the prevention 275 

of LRTIs with antibiotics using all methods. However, the effect of PPV23 or PCV13 was not 276 

significant using the large majority of models. 277 
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 278 

Fig. 3: Forest plot of the RR of PPV23 or PCV13 and PPV23 & PCV13 on LRTIs treated with antibiotics (vaccine and 279 
prescription registration) according to each statistical method used. 280 

Furthermore, we investigated the effect of PPV23 & PCV13 vaccination in different age 281 

groups for high-, intermediate-, and low-risk statuses. Fig. 4 displays the RR for all patients 282 

aged from 65-84 and further stratified by risk status. We observed that the treatment was 283 

protective for the entire age group and different risk categories. However, there were few 284 

patients in the high-risk group; thus, uncertainty remained, as expressed by the large CI. A 285 

protective trend was observed in high-risk people aged 16-84 years as depicted in 286 

Supplementary Fig. S1, although the CI was not significant. Supplementary Fig. S2 shows that 287 
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in the intermediate-risk people aged 50-84 years, a significant protective effect was found. 288 

Furthermore, a protective effect was seen in the 50-plus, 65-plus and 65-74 age categories as 289 

described in Supplementary Table S6.  290 

 291 
Fig. 4: Forest plot of the RR of PPV23 & PCV13 on LRTIs treated with antibiotics (vaccine and prescription registration) 292 
in the 65-84 age group stratified by risk status 293 
 294 
 295 
3.3 Sensitivity analyses 296 

Starting from PPV23 or PCV13 (registered or prescribed), we observed a harmful trend 297 

for LRTIs without antibiotics and a nonsignificant effect for LRTIs with antibiotics. The same 298 
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effect was observed when we only used the registered vaccinations as depicted in 299 

Supplementary Fig. S3. For PPV23 & PCV13 (registered or prescribed), we observed a 300 

nonsignificant effect for LRTIs without antibiotics. However, the effect was protective for 301 

LRTIs with antibiotics (primary analysis). Supplementary Fig. S4 demonstrates that the same 302 

trend was observed when we only used registered vaccinations. Furthermore, a protective effect 303 

of vaccination was observed in the 16-84, 50-84, 65-plus, 65-74 and 65-84 age groups for all 304 

analyses (primary and sensitivity), as described in Supplementary Table S7. Only for sensitivity 305 

analyses 6 and 8, i.e., PPV23 or PCV13 when the outcome was LRTIs without antibiotics, did 306 

we observe a nonsignificant effect. 307 

Discussion 308 
 309 

In this large registry-based study, a causal inference methodological framework was 310 

used to estimate the effect of PV to prevent LRTIs in adults. Several methods, including RBMs, 311 

PS and ML were utilized to balance the intervention and control groups and estimate an 312 

unbiased effect. The overlap method produced the best balance; however, all methods were 313 

below the threshold of 0.1. Therefore, no method was found to be superior to the others, which 314 

underscores the robustness of the results. Vaccinating adults with PPV23 or PCV13 did not 315 

have a protective effect against LRTIs. However, a combination of PPV23 and PCV13 was 316 

found to prevent severe LRTIs in the global adult population and in different age and risk 317 

groups, confirming the recommendations of the Belgian Superior Health Council. 318 

In earlier literature, controversy arose over the preferred or most suitable methodology 319 

to balance the intervention and control groups. When differences are large between intervention 320 

and control subjects and the true relationship between the covariate and outcome is even 321 

moderately nonlinear, RBMs can increase the bias in the treatment effect [37–39]. However, 322 

RBMs and PS were compared; and in 43 observational studies, both methods yielded similar 323 
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results [40]. Additionally, in several cardiovascular studies, PS methods were not superior to 324 

RBMs and were worse in some scenarios [41]. Nevertheless, PS methods are superior to RBMs 325 

when modelling rare events [42]. Furthermore, ML techniques are of increasing interest since 326 

they automatically detect the best model for balancing the covariates and capture nonlinearities, 327 

polynomial terms and interactions. Our conclusion is that no method is superior to another. As 328 

Stuart stated, matching techniques should not conflict with RBMs but should be considered to 329 

be complementary [25]. However, we would further extend this statement by suggesting that 330 

ML techniques should be an extra tool in the methodological framework, because deploying 331 

several methods serves as a thorough and informative sensitivity analysis that highlights the 332 

robustness of the results. In future research, we suggest (i) carefully choosing the estimand of 333 

interest, (ii) utilizing an array of methodologies to build confidence in the robustness of the 334 

conclusions, (iii) incorporating missing data to include all covariates, (iv) balancing diagnostics 335 

to help determine which method might be preferable, and (v) performing sensitivity analyses 336 

with EHR data when registrations might be incomplete. 337 

PPV23 & PCV13 showed a protective effect against severe LRTIs in the overall adult 338 

population and in specific age and risk groups, which confirms the recommendations of the 339 

Belgian Superior Health Council [5]. No benefit was found for people aged 85-plus. In addition, 340 

our conclusions are similar to those of a literature review when both vaccinations were 341 

administered [43]. However, we did not investigate the sequentiality of the different vaccines. 342 

This will be a topic for further research. 343 

Importantly, the proportion of pneumococcal infection and circulating types of S. 344 

pneumoniae among people with LRTIs can differ from year to year, although the change in 345 

capsular types is a slow process [44]. This means that the results of our study might change 346 

depending on the year used in the analyses. However, using registry data has the advantage that 347 
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the analyses can easily be repeated each year in order to continuously monitor the effect of 348 

vaccination. 349 

The current study has several strengths. First, having a large sample size allowed more 350 

controls to be available; and especially in 1:1 PS matching, we lost very few treated patients. 351 

Notably, PS matching differs from weighting since it discards many units, thus in settings where 352 

few controls are available, weighting techniques might be preferable. Second, MI was 353 

performed for missing covariates, which allowed many covariates to be incorporated in the 354 

models. Third, by using several models and performing multiple sensitivity analyses, we were 355 

able to show the robustness of our results. Finally, our study is the first to calculate the effect 356 

of PV vaccination not only in different age groups but also stratified by risk categories, which 357 

targets patients more in need of PV vaccination. 358 

Some limitations of working with registry data should be noted. First, since data on 359 

hospitalization and severity of the LRTIs are missing in Intego, we used antibiotic treatment as 360 

a ‘proxy’ for more severe LRTIs. In total, 67% of LRTIs episodes in 2019 were treated with 361 

antibiotics. However, in Belgium, the proportion of LRTIs treated with antibiotics is high 362 

compared to that in other countries [45], [46]. In this respect, our results should be interpreted 363 

with caution. Second, not all vaccinations might be registered. Therefore, we used registered 364 

and prescribed vaccinations as the intervention. Our reasoning for including the vaccination 365 

prescriptions was that 82% of people with a prescription also had a vaccination registered, 366 

indicating that this population is more prone to get vaccinated. Furthermore, sensitivity analyses 367 

were able to show the robustness of our results. Third, misclassification of the outcome might 368 

be present. Finally, the run-time when deploying ML techniques was significantly high. With 369 

big data, many covariates and 20 imputations, the run-time was approximately 20 hours (30 370 

min for Bayesian additive regression trees and 30 min for generalized boosted modelling using 371 
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20 imputed datasets) for a single analysis. Since we conducted 7 additional sensitivity analyses, 372 

the run time increased to 160 hours. 373 

Conclusion 374 
 375 

In this large registry-based study, several methods were utilized to balance the 376 

intervention and control groups and estimate an unbiased effect of PV for LRTIs. The overlap 377 

method followed by ML techniques produced the best balance. However, all methods 378 

sufficiently balanced the covariates, which enhanced the robustness of the results. A 379 

combination of PPV23 and PCV13 was found to prevent severe LRTIs in the global adult 380 

population and in different age and risk groups, confirming the recommendations of the Belgian 381 

Superior Health Council. These findings may assist clinicians in making more informed 382 

decisions in vaccinating patients with PV to prevent severe LRTIs. Epidemiologists, 383 

statisticians, and biomedical researchers can utilize the unified methodological framework for 384 

estimating unbiased effects and derive robust conclusions. 385 
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