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Changes in respiratory rate have been found to be one of the early signs of health
deterioration in patients. In remote environments where diagnostic tools and medical
attention are scarce, such as deep space exploration, the monitoring of the respiratory
signal becomes crucial to timely detect life-threatening conditions. Nowadays, this signal can
be measured using wearable technology; however, the use of such technology is often
hampered by the low quality of the recordings, which leads more often to wrong diagnosis
and conclusions. Therefore, to apply these data in diagnosis analysis, it is important to
determine which parts of the signal are of sufficient quality. In this context, this study aims to
evaluate the performance of a signal quality assessment framework, where two machine
learning algorithms (support vector machine–SVM, and convolutional neural network–CNN)
were used. The models were pre-trained using data of patients suffering from chronic
obstructive pulmonary disease. The generalization capability of themodels was evaluated by
testing them on data from a different patient population, presenting normal and pathological
breathing. The new patients underwent bariatric surgery and performed a controlled
breathing protocol, displaying six different breathing patterns. Data augmentation (DA)
and transfer learning (TL) were used to increase the size of the training set and to
optimize the models for the new dataset. The effect of the different breathing patterns
on the performance of the classifiers was also studied. The SVM did not improve when using
DA, however, when using TL, the performance improved significantly (p < 0.05) compared to
DA. The opposite effect was observed for CNN, where the biggest improvement was
obtained using DA, while TL did not show a significant change. The models presented a low
performance for shallow, slow and fast breathing patterns. These results suggest that it is
possible to classify respiratory signals obtainedwithwearable technologies using pre-trained
machine learning models. This will allow focusing on the relevant data and avoid misleading
conclusions because of the noise, when designing bio-monitoring systems.
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1 INTRODUCTION

Spaceflights impose many challenges to the well-being of
astronauts due to their particular conditions, such as altered
gravity, radiation, isolation and confinement (Vernikos, 1996;
Tascher et al., 2019). The effects of these conditions on the health
of the crew include affections to bone and muscle structures as
well as deregulation of metabolic, cardiovascular, respiratory and
immunologic systems, among others (Tascher et al., 2019;
Crucian et al., 2013, 2015). Combined with the limited access
to medical attention, these alterations can be a high risk to the
crew members during the missions.

In addition to systemic alterations, the crew members can
suffer from injuries, wounds, traumatic events and surgical
emergencies. Illnesses and infections may also be acquired
even though, prior to the start of the spaceflight, the crew
undergoes a medical screening and a quarantine period. These
events can be associated with external environmental conditions,
such as first-degree burns as a result of ultraviolet light exposure,
or with the internal atmosphere of the spacecraft, such as latent
viruses reactivation, higher number of free-floating particles,
chemicals, allergens, and microorganisms (e.g., bacteria, fungi
and molds) (Crucian et al., 2016; Barratt et al., 2020; Barrila et al.,
2021).

While in past and current space missions the incidence of
these issues has been low, this might not be the case for longer
missions like Mars or asteroid exploration. In such missions,
health care in-situ becomes even more critical as delays in
communications with the Earth are more common, and
emergency extraction of crew members that could fall ill are
harder. Under these new circumstances, wounds and infections
require special attention regarding their management and
monitoring.

It has been observed that in spaceflight conditions, the healing
process of wounds is altered (Cialdai et al., 2020). This, in
conjunction with the dysfunction of the immune system might
cause complications. During the healing process, the continuous
monitoring of vital signs can help to identify changes in the state
of the patient and, in this way, allows to take the appropriate
measures when deterioration is discovered (Brown et al., 2014).

Wearable technology presents a suitable alternative to
traditional monitoring for continuous measurement of vital
signs, because it does not interfere with the mobility and
comfort of the patient. In the last years, this technology has
been evaluated in clinical environments on Earth (Fieselmann
et al., 1993; Prgomet et al., 2016; Weenk et al., 2020; Subbe and
Kinsella, 2018). For the case of space exploration, joint efforts
between space agencies (National Aeronautics and Space
Administration—NASA, Canadian Space Agency—CSA) and
industry have resulted in the design of wearable sensors to
monitor the vital signs of the crew members during missions,
which have been tested in the International Space Station (ISS)
and in settings on ground to validate their performance (Mundt
et al., 2005; Bellisle et al., 2020; Falker et al., 2015; Villa-Colín
et al., 2018).

Even though the continuous monitoring works appropriately
and the versatility of the wearable devices allows a wide range of

movements, it has been found that this added flexibility makes the
recorded signals more prone to noise sources (Orphanidou et al.,
2015). As a consequence, the presence of artefacts prevents the
extraction of reliable information, increasing the probability of
false alarms and inaccurate measures. Some of the artefacts can be
easily removed through filtering, but others are beyond repair,
such as motion artefacts due to displacement of electrodes, for
example, as observed in Villa-Colín et al. (2018).

In order to overcome the difficulties related with the removal
of artefacts, some works have implemented signal quality
indication approaches to identify the parts of the data that are
useful for analysis (Orphanidou et al., 2015; Johnson et al., 2015;
Castro et al., 2016; Castro et al., 2018; Charlton et al., 2021;
Moeyersons et al., 2021). In general, the quality indication for
electrocardiogram and photoplethysmogram signals, for the
estimation of heart rate, has been investigated further than the
quality indication of other signals, such as respiration.

The respiratory signal, however, is of great interest in health
monitoring, given that it is one of the key markers that indicates
deterioration in patients. Increasing respiratory rate (i.e., going
above 20 breaths per minute) has been found to be an early
predictor in different life-threatening conditions, such as cardiac
arrest, respiratory adverse events and sepsis (Cretikos et al., 2008;
Lee, 2016; Hotchkiss et al., 2016). Nevertheless, when the
respiratory rate is not overlooked, its monitoring is often
performed manually and at specific times during the day. The
use of wearable devices for this task is not yet widely spread,
because of the lack of evidence of accurate and reliable results.
Given the useful characteristics of this signal for determining
health adverse conditions (Nicolò et al., 2020) and the importance
of its continuous monitoring in the early detection of these
situations, this study is focused in the quality assessment of
respiratory signals obtained from wearable sensors.

Previously, a quality index for respiratory signals was
developed by Charlton et al. (2021), which then was compared
to a machine learning framework for quality assessment by
Moeyersons et al. (2021). Rozo et al. (2021) presented the
results of applying transfer learning to the previous
framework. In this context, this study extends the latter work
including a data augmentation approach to improve the
performance of the machine learning framework when applied
to new data.

The presented framework consists of two machine learning
models, which are used to classify segments of thoracic bio-
impedance (BioZ) signals into clean or noisy (containing
artefacts). The first classification model is a support vector
machine (SVM), and the second one is a convolutional neural
network (CNN). These models were designed for a dataset of
patients suffering from chronic obstructive pulmonary disease
(COPD).

Currently, there is a lack of available data from space
exploration missions, in which health adverse situations have
occurred, thanks to the extensive training and health screenings
of the astronauts previous to the flight, combined with a relatively
short time in the mission. Considering this, and the fact that the
framework presented in this study could be used for the
monitoring of astronauts’ health during longer missions where
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pathological breathing could be observed, a “worst case scenario”
is presented. To this end, multiple respiratory patterns are
included by testing the models on patients’ data. As a
consequence, the algorithms are tested not only on “normal”
breathing patterns but they are also adequate for diseased
conditions.

Considering this, the goal of this study is twofold. First, the
models are pre-trained with the COPD data and their
performance is evaluated when applied on a different patient
population. Signals from patients undergoing bariatric surgery
(BS) are used. These patients performed a controlled breathing
protocol, which resulted in six different respiratory patterns.
The use of these datasets for training and testing the models
helps to obtain a general algorithm that is robust against
changes in subjects population, and allows to generalize the
classification performance for the use of normal and
pathological respiration. Data augmentation (DA) and
transfer learning (TL) are used to reduce the possible bias of
the algorithms towards the class with the largest representation,
and to optimize the models for the new, unseen data. Second,
the effect of the properties of the respiration on the performance
of the models is analyzed.

In this way, this study proposes a novel approach
incorporating the use of DA and TL with machine learning
algorithms for the quality assessment of respiratory signals
from wearable devices. Also, the analysis of different breathing
types using a single classification model is part of the novelty
presented in this paper.

This paper is organized as follows: Section 2 describes the
datasets and methodologies used in this study. In Section 3 the
results are presented, and then discussed in Section 4.
Concluding remarks are presented in Section 5.

2 METHODS

2.1 Datasets
Two datasets were used in this study. The first one was used to
pre-train the classification models, and consists of the respiratory
recordings of 47 COPD patients of the Ziekenhuis Oost-Limburg
(ZOL), Belgium. From the patient population, 11 were female and
the mean (±standard deviation) BMI was 26.2 ± 4.9 kg/m2. Each
patient was equipped with a wearable device to measure the BioZ,
as well as a traditional wired acquisition system, which measures
respiratory airflow with an airflow transducer, used as reference
system. The recording of the data followed the World Medical
Association’s Declaration of Helsinki on Ethical Principles for
Medical Research Involving Humans Subjects. More details about
this dataset can be found in (Blanco-Almazan et al., 2021;
Moeyersons et al., 2021).

The second dataset consists of 72 respiratory recordings of 20
patients who underwent bariatric surgery (BS), and were in
treatment at the Nederlandse Obesitas Kliniek, Netherlands.
There were 16 female and the mean (±standard deviation)
BMI at inclusion was 42.5 ± 3.4 kg/m2. The respiration of
each patient was recorded using the same wearable device
(BioZ) used for the COPD dataset, this time with a spirometer

as the reference system. The recording of the data followed the
World Medical Association’s Declaration of Helsinki on Ethical
Principles for Medical Research Involving Humans Subjects.

The wearable device (ROBIN, Stichting imec Netherlands)
recorded the BioZ signals with a sampling frequency of 16 Hz.
Stress test AG/AgCl electrodes (Kendall H92SG, Covidien Inc.,
Walpole, MA, United States) were placed on the thorax of the
subject as shown in Figure 1. Using multiplexing, four different
tetra-polar configurations were created. The amplitude of the
excitation current was 110 μA at 80 kHz. The airflow for the
COPD dataset was measured with a Biopac transducer
(neumo-tach transducer TSD107B, Biopac Systems, Inc.), and
digitalized at a sampling frequency of 10 kHz. The spirometer
(TSD117A, Biopac Systems, Inc.) used a sampling frequency of
100 Hz. Further details on this equipment can be found in
(Blanco-Almazan et al., 2019).

Each of the BS patients performed a controlled breathing
protocol during the recording of their respiration. The protocol
consisted of 1 minute of spontaneous breathing (Sp), followed by
a period of breath holding and then five blocks of 30 seconds of
chest (Ch), shallow (Sh), abdominal (Ab), slow (Sl) and fast (Fa)
breathing. The pacing of the different breathing types was left to
the patient’s comfort. Figure 2 shows an example of the
respiratory signal of one of the patients during the followed
protocol.

2.2 Preprocessing
Both datasets were preprocessed in the same way. First, the
signals were band-pass filtered using a fourth-order
Butterworth filter with cutoff frequencies at 0.05 Hz (3 breaths
per minute) and 0.70 Hz (42 breaths per minute), removing the
baseline changes and high frequency content not related to
breathing.

The signals were then segmented as follows. For each
recording, the first three and last seconds were removed due
to loss of data when starting or stopping the measurements.
Afterwards, the COPD recordings were divided into non-
overlapping 1-min segments, resulting in 1,896 segments. In
the case of the BS dataset, the breath holding period was
localized and removed. After this, the recordings were divided
into 30-s segments. Due to variations in the length of each
respiration type, in some segments for the BS data two types
of breathing were overlapped and the associated type of breathing
is the one that is predominant. In total, 2,916 segments were
obtained.

As one of the goals of this study was to observe the effect of
different respiratory patterns on the performance of the
classifiers, the segments of the BS dataset were grouped
according to each of the six different breathing patterns.

2.3 Labeling
Supervised machine learning algorithms, such as the ones that are
studied in this paper, require the ground truth of each sample for
training and testing.

In this case, the ground truth of the recordings corresponds to
one of the quality classes: clean or noisy. To obtain the class to
which each signal belongs, four independent annotators were
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asked to assign a label to them. For this, the graphical user
interface and the five classes defined in (Moeyersons et al., 2021)
were used. The classes 1 (Excellent signal quality), 2 (Good signal
quality), 3 (Average signal quality) and 4 (Bad signal quality) refer
to the BioZ signal with respect to the reference system. The class 5
(Bad reference quality) is reserved for the cases where the
reference signal is of bad quality due to acquisition problems,
motion artefacts or signal saturation. In Figure 3 an example
signal from each label is shown.

After the manual annotation of the signals, the labels for the
BioZ signals were binarized, considering 1 and 2 as clean, while
three and four were considered as noisy. Majority voting among
annotators was performed to create a single label per signal,
finding that the annotators fully agreed (4 annotators) on the
58.50% of the signals and the majority (3 annotators) agreed on
the 28.09%. The Fleiss Kappa obtained for the labeling process
was κ = 0.58, which suggested that the agreement was moderate
and not at random. The segments in which no majority voting
was achieved (13.41%) and the ones for which the majority voting
resulted in label 5 (8.99% of the majority voting) were removed

from further analysis. After this procedure, a total of 1,471 and
2,298 segments for the COPD and the BS datasets, respectively,
remained.

2.4 Data Augmentation
It has been shown that when using machine learning
approaches, the size of the train and test sets has an impact
on the performance of the algorithm. The larger the training
set the better the generalization of the model (Salamon and
Bello, 2017; Lei et al., 2019). However, in many applications,
especially those dealing with physiological data, collecting and
labeling a large amount of data is not viable for various
reasons, such as time limitations, ethical restrictions, or
less population presenting a particular condition. One
solution to this issue is to use DA (Simard et al., 2003).
The principle behind DA is to generate synthetic data,
using characteristics from the available data. Note that for
supervised machine learning algorithms, the labels of the
original data need to be preserved when generating the new
data (Um et al., 2017).

FIGURE 1 | Location of the electrodes of the wearable device (A) Electrode placement for the COPD dataset. The electrodes were placed symmetrically from the
midsternal line and only the right side is represented (B) Electrode placement for the bariatric surgery dataset.

FIGURE 2 | Controlled breathing protocol followed by a BS patient. Each of the breathing types are specified as: spontaneous (Sp), chest (Ch), shallow (Sh),
abdominal (Ab), slow (Sl) and fast (Fa) (a.u.) stands for arbitrary units.
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In this study, four augmentation methods were applied to the
BioZ signals after labeling, in order to maintain the same quality
level that was originally assigned to them. The first
augmentation was done by mirroring (flipping) the signal
with respect to the x-axis and the y-axis. In this way, from
one original signal, two new signals were obtained. This
approach can be seen as an emulation of different
placements of the electrodes in the skin, and does not affect
the labels of the data.

The second augmentation was done by modulating the
amplitude of the signals. For this, a sinusoidal modulating
signal was defined with a period equal to twice the length of
the original signal. In this way, the original data is modified in
a way in which towards the both ends of the signal the
amplitude is lower than the one at the center of the signal.
In this case, when changing only the amplitude of the signal
its general shape is maintained, which does not alter the
labeling.

For the third method, the goal was to obtain a signal
representing a slower breathing rate. To achieve this effect, the
10% of the points (5% at each end) of the original signal were
removed. The time scale of the resulting segment was then
assumed to be the same as the one for the original signal,
meaning that if the original signal had a duration of 1 minute,
the new segment was also supposed to be 1-min long.
Considering this, and the fact that the new segment had less
data points than the original one, it was assumed that it had a
lower sampling frequency. Afterwards, it was resampled to the

original sampling frequency (16 Hz), which results in a signal
with a slower breathing rate. This transformation does not affect
the labels of the data, given that in the guidelines for annotating
the respiratory signals presented in (Moeyersons et al., 2021), the
critical time frame to consider a signal of average or bad quality is
the 16.6% (i.e. 10 and 5 s for the COPD and BS signals,
respectively) of its length.

The goal of the final augmentation method was to obtain a
signal representing a faster breathing rate. For this, two signals
with the same label and from the same recording were
concatenated. The resulting segment was assumed to have the
same time scale than the original data but sampled at a higher
frequency. Afterwards, this segment was resampled to the original
sampling frequency obtaining a signal that corresponds to a faster
breathing rate. The labeling of the signals is not altered, given that
the concatenated signals had the same label and their general
form was not altered.

In Figure 4, an example of the methods used for DA is
presented.

The previous DA methods were applied to all the signals from
the quality class with less data, while they were only applied to a
randomly selected number of signals of the other class.

Considering that one of the goals of this study was to analyze
the effect of the characteristics of the different breathing
patterns on the performance of the classifiers, for the BS data
only the first two augmentations were applied. In this way, it was
possible to still discriminate between the different respiratory
patterns.

FIGURE 3 | Example of different labels for quality annotation (A) Label 1—Excellent signal quality (B) Label 2—Good signal quality (C) Label 3—Average signal
quality (D) Label 4—Bad signal quality (E) Label 5—Bad reference quality. In all plots, black line corresponds to the bio-impedance signal and the gray line to the
reference signal (a.u.) stands for arbitrary units.
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FIGURE 4 | Example of the data augmentation methods. Each row presents one method (A) Original signal (B)Mirrored signal with respect to y axis (C)mirrored
signal with respect to x axis. (D) Modulating signal used for the second method (E) normalized modulated signal (F) Resulting segment after removing the 10% of the
points (shaded areas at each end of the signal) (G) resampled signal with slower breathing rate (H) Second original signal to be concatenated to the first one (I) resampled
signal with faster breathing rate. In (B) (C) (E) and (G), the gray line shows the original signal. In (I) the dashed gray line corresponds to the point in which the signals
are concatenated; the left side corresponds to the signal in (A), the right side to the signal in (H) (a.u.) stands for arbitrary units.
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2.5 Classification
The two machine learning approaches that were evaluated in this
study are described below. The input of both classifiers
corresponded to the normalized signals, after subtracting the
mean and dividing by the standard deviation.

2.5.1 SVM
The first model was a feature-based SVM classifier. This classifier
used a radial basis function kernel and its hyperparameters
(i.e., box constraint and kernel scale) were selected with a
Bayesian optimization technique along with five-fold cross-
validation method, using the training data. The best pair of
hyperparameters is obtained when the cross-validation loss is
its lowest, and these are then used to train the optimal
SVM model.

The features used with this model were computed from the
whole segment and for 15-s sub-segments. In the case of the
COPD data, the segments had a length of 60 s, while for the BS
data the length of the signals was 30 s. The sub-segments of
the COPD data were obtained without overlap. In contrast,
the sub-segments of the BS data were obtained with a 10-s
overlap.

The features were calculated from the auto-correlation
function (ACF): amplitude of the first peak (Ap1), amplitude
of the second peak (Ap2) and ratio between these two peaks
(Ap1/Ap2); and from the power spectral density (PSD):
bandwidth, frequency of the lower (flow) and upper (fup)
bounds of the bandwidth, and the normalized power in this
band. The five more informative features, common to all the
signals, were selected as in (Moeyersons et al., 2021), using a
maximum relevance minimum redundancy (MRMR) algorithm.
From the ACF, the most relevant features were the Ap1 of the
whole segment and the standard deviation of the Ap1 of the sub-
segments. From the PSD, the most relevant features were: the flow
of the whole segments, the mean bandwidth of the sub-segments
and the mean normalized power of the sub-segments.

More information on this model can be found in (Moeyersons
et al., 2021).

2.5.2 CNN
The second classifier was a 1-dimensional CNN. The architecture
of the network consisted of two blocks, each with two
convolutional layers, followed by a global average pooling and
ending with a fully-connected output layer with a softmax
activation function.

Each of the two convolutional layers of the first block had 10
filters with a kernel size of 32 samples. The stride of these filters
was of two samples and the padding in the borders was defined as
the same end values. These layers had a ReLU activation function.

The output of the first block was then passed to the second
block. The two convolutional layers of this block had the same
hyperparameters of the ones from the previous block, but with
only five filters instead of 10. This was done to ensure a resulting
feature map with five features, analogous to the SVM approach.

This feature map was received by the average global pooling
layer, which was used to generate a single feature vector by
averaging the map over the temporal axis. Along with the

characteristic behaviour of the convolutional layers, the
robustness of this layer allowed to use the network with input
signals of different sizes.

Finally, the feature vector was fed to the fully-connected layer,
obtaining as output the classification probabilities for the two
classes.

For more information regarding the architecture of this model,
please refer to (Moeyersons et al., 2021).

2.6 Transfer Learning
One of the main assumptions of machine learning algorithms
used for classification problems is that both the training and
testing data have the same distribution and the same feature
space. These assumptions, however, do not always hold in real life
applications. An alternative to tackle this issue is TL (Weiss et al.,
2016). With TL, a new classification problem is solved by using as
a starting point an existing solution from a similar problem. Thus,
the new classification problem requires less training data to
obtain a robust solution.

In this study, the TL approach described in (De Cooman
et al., 2020) was used for the SVM classifier. In this approach,
an adapted model is generated by modifying the objective
function of the SVM. For this, the classification error of the
new data (BS signals) is minimized, as well as the dissimilarity
between the original and the adapted models. One
assumption of this approach is that the same features used
for training the original model with the original data also
describe the new data in which the adapted model is going to
be applied. Considering this, the same features that were
found to be the most relevant for the COPD data were
computed and used with the BS data. Moreover, TL was
applied to the original model in order to optimize the
SVM for each breathing type.

For the CNN, the same principle presented in (Nanni et al.,
2020) was used. In this approach, the adapted model is
generated by copying the architecture and the weights of
the pre-trained CNN. In a first step, the weights of all
layers apart from the actual classification layer are fixed and
then the classification layer is retrained. After, a fine-tuning
(FT) step is added. In this step, the previously fixed weights are
un-fixed and all the weights of the adapted model are retrained.
The retraining is done setting a low learning rate and a small
number of epochs to prevent modifying significantly the
weights of the model. The only assumption of this approach
is that the signals from the training and testing datasets should
have the same sampling frequency. TL including FT was
applied to the original CNN to obtain an adapted model for
each breathing type.

2.7 Performance Evaluation
The models were tested with a cross-validation approach. The
division was done by taking all the segments of the 70% of the
recordings of the BS data for the training step of TL. The
remaining 30% was used for testing the models. In order to
assess the generalization capability of the models, this division
was done 10 times at random. The same splits were used for both
models with and without TL.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8067617

Rozo et al. DA and TL for Respiratory Quality Assessment

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


The area under the ROC curve (AUC) was used as the metric
to evaluate and compare the performance of the models.

Significant differences between the models were evaluated
with a Wilcoxon signed rank test (significant if p < 0.05) to
assess the utility of TL and DA for the BS dataset.

2.8 Training and Testing
The classifiers were pre-trained with two strategies. The first one
was to train the classifiers with all the available segments from the
COPD data without DA. The second one was to train the
classifiers with all the segments from the COPD data
including DA.

The models obtained with these two strategies were tested on
the BS data. Then, TL was applied to the models pre-trained with
the COPD data with DA, using the BS with DA. This was done to
ensure that when re-training the models during TL, the new data
was sufficient for the task.

In this way, for each breathing type, three results were
obtained, further referenced as Original (model pre-trained
with COPD data without DA), DA (model pre-trained with
COPD data including DA) and TL + DA (model pre-trained
with COPD data including DA and TL).

3 RESULTS

The total number of segments after labeling and removing the
ones with bad reference quality, for each dataset, is presented
on the left side of Table 1. As can be observed, for the COPD
there were more clean segments available, while for all the
breathing types of the BS dataset there were more
noisy segments. On the right side of the table the total
number of segments for each data group after applying DA
is presented.

The results obtained with both classification approaches are
presented in Table 2. Results are indicated as median AUC [25th
percentile - 75th percentile]. The values that are in bold
correspond to the best results obtained with each classifier for
each breathing type. The best results were defined as the ones with
the higher AUC, which presented a significant (p < 0.05)
improvement compared to the original results. In case of non-
significant differences, the results with the smaller interquartile
range were preferred. In Figures 5, 6, the median of the ROC
curves are presented for each of the classifiers, for the different
breathing types. The original model is presented in black, the DA
model in dark gray, and the TL + DA model in light gray. For the
SVM, in all the breathing types it was observed that the DAmodel
presented a worse behavior than the other models, and that the
TL + DAmodel showed a similar behavior to the Original one. In
contrast, for the CNN, the models DA and TL + DA showed a
better behavior than the Original one, but they were similar to
each other.

In the case of the SVM, in order to compare the results
obtained with all the models, it was assumed that the best five
features selected for the pre-training of the Original model were
still the best for the new models. However, it can be seen that the

performance of the DA model decreased in comparison to the
Original one. Nevertheless, it can be noted that TL + DA
improved significantly (p < 0.05) the performance compared
to the DA model for all the breathing types.

In contrast, in the case of the CNN the performance of the DA
and TL + DA models improved significantly (p < 0.05) with
respect to the Original model, with the only exception of Sh
breathing. However, TL showed a significant improvement of the
performance compared with the DA model only for the Sh
breathing.

A comparison with the heuristic model presented by Charlton
et al. (2021) was also performed to evaluate the advantages that
using machine learning methods supposes when assessing the
quality of respiratory signals. Charlton’s signal quality index
classify segments into high or low quality based on the
variation on breath duration, the definition of peaks and
troughs, and the similarity of the morphology of the breaths.
The comparison of the accuracy, sensitivity and specificity of the
classification of each breathing type are presented in Tables 3–5,
respectively. Results are indicated as median [25th
percentile—75th percentile]. The values that are in bold
correspond to the best results obtained with each classifier for
each breathing type, that were also higher than the
heuristic model.

4 DISCUSSION

In this study, the performance of two pre-trained machine
learning classifiers for the quality assessment of respiratory
signals was evaluated on a dataset obtained from patients
performing a respiratory protocol in which different breathing
rates were imposed. To improve the performance of the
classifiers, two techniques were used, namely Transfer
Learning (TL) and Data Augmentation (DA).

It was noted that for the Slow (Sl) and Fast (Fa) breathing rates
there were not as many data as for the other breathing types. In a
first instance, there were less Fa data due to variations in the
length of the raw data, which affected the segmentation of the last
part of the signals, making it more difficult to obtain 30-s
segments of the last breathing type. Second, for these two
types of breathing the annotators found it more difficult to

TABLE 1 | Overview of the datasets, indicating the number of segments in each
class. The suffix corresponds to the type of breathing imposed during the
respiratory protocol. On the left, the total number of segments before data
augmentation (DA). On the right, the segments after DA.

Group Before DA After DA

Clean Noisy Total Clean Noisy Total

COPD 1,118 353 1,471 2072 2081 4,153
BS-Sp 202 240 442 808 807 1,615
BS-Ch 181 317 498 724 722 1,446
BS-Sh 181 305 486 724 722 1,446
BS-Ab 208 256 464 832 832 1,664
BS-Sl 83 216 299 332 330 662
BS-Fa 26 83 109 104 104 208
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FIGURE 5 | ROC of the SVM models for each of the sub-groups of the BS dataset (A) Spontaneous breathing (Sp) (B) Chest breathing (Ch) (C) Shallow breathing
(Sh) (D) Abdominal breathing (Ab) (E) Slow breathing (Sl) (F) Fast breathing (Fa). The curves present the median ROC for eachmodel, in black the original, in dark gray the
SVM-DA and in light gray the SVM-TL + DA. The dotted line corresponds to the random guess. It is observed that in all the breathing types the DA model presents a
worse behavior than the other models, and that the TL + DA model shows a similar behavior to the Original one.

TABLE 2 | Performance of the machine learning models for each of the sub-groups of the BS dataset. The results are presented as median AUC (25th percentile—75th
percentile) (%). On the left side, the results for the SVM. On the right side, the results for the CNN. The best results (i.e., higher AUC) for eachmodel for each breathing type
are in bold.

— SVM CNN

Original DA TL + DA Original DA TL + DA

Sp 91.03 66.92 93.58++ 93.43 98.32*** 97.92**,*
[88.29–93.10] [63.35–70.41] [91.03–94.85] [92.49–93.81] [96.69–98.81] [97.24–98.21]

Ch 84.80 70.84 89.32++ 90.56 96.12*** 96.10***
[83.24–91.88] [67.31–73.18] [86.51–91.40] [89.54–93.08] [95.94–96.70] [95.68–96.29]

Sh 79.68 52.18 84.75++ 83.86 84.84 90.22**,+

[73.89–83.04] [49.47–59.64] [79.34–88.06] [80.06–89.73] [82.88–89.45] [87.89–92.82]
Ab 81.70 47.90 84.80++ 91.74 94.74** 95.13*

[77.78–86.18] [43.55–51.21] [83.45–87.77] [91.07–93.92] [93.01–96.23] [93.5–97.25]
Sl 85.65 71.73 81.29++ 78.12 90.54** 89.26**

[79.41–86.46] [66.52–74.34] [79.20–83.92] [72.89–86.83] [87.77–93.51] [87.23–93.05]
Fa 69.09 61.25 74.05+ 73.02 84.65* 83.41*

[59.64–75.69] [45.86–70.56] [65.71–76.64] [71.82–77.78] [83.00–87.50] [74.74–92.85]

Breathing patterns: Sp, spontaneous; Ch, chest; Sh, shallow; Ab, abdominal; Sl, slow; Fa, fast.
Significant results compared to the Original model, *p < 0.05, **p < 0.01, ***p ≪ 0.01.
Significant results compared to the DA, model, +p < 0.05, ++p ≪ 0.01.
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reach an agreement in the labeling (κ = 0.49 for Sl, and κ = 0.36 for
Fa). Besides, the quality of the reference signals was not good
enough in the 18.97 and 32.30% of the data for which the majority

voting was obtained for the Sl and Fa, respectively. The low
quality of the reference signal was due to disconnection of the
spirometer and breath holding periods during the protocol. This

FIGURE 6 | ROC of the CNNmodels for each of the sub-groups of the BS dataset (A) Spontaneous breathing (Sp) (B) Chest breathing (Ch) (C) Shallow breathing
(Sh) (D) Abdominal breathing (Ab) (E) Slow breathing (Sl) (F) Fast breathing (Fa). The curves present the median ROC for eachmodel, in black the original, in dark gray the
CNN-DA and in light gray the CNN-TL + DA. The dotted line corresponds to the random guess. It is observed that the models DA and TL + DA exhibit a better behavior
than the Original one, while behaving similar to each other.

TABLE 3 | Performance of the machine learning models for each of the sub-groups of the BS dataset. The results are presented as median accuracy (25th percentile—75th
percentile) (%). On the left side, the results for the SVM. On the middle, the results for the CNN. On the right side, the results using the heuristic method in Charlton et al.
(2021). The best results of each model that performed better than the heuristic approach for each breathing type are in bold.

— SVM CNN Heuristic

Original DA TL + DA Original DA TL + DA

Sp 83.13 65.63 87.23 87.41* 81.21 92.41* 84.03
[81.82–84.91] [58.57–70.59] [85.64–89.53] [86.33–88.1] [79.43–84.35] [91.61–93.20] [82.35–86.32]

Ch 82.10 66.25 83.55 85.72* 73.20 89.06* 80.97
[80.60–84.55] [64.08–68.37] [81.87–85.20] [82.43–87.41] [71.59–74.88] [88.32–89.68] [79.05–83.58]

Sh 80.18 70.31 77.71 74.66 65.01 82.60 79.26
[69.88–84.21] [59.04–77.68] [71.78–83.26] [71.33–79.47] [61.00–66.43] [80.04–85.00] [71.08–87.50]

Ab 72.21 61.13 75.57 85.61* 70.62 87.33* 76.51
[69.49–76.79] [57.63–66.27] [72.00–76.76] [83.46–87.23] [69.12–73.01] [85.66–89.62] [68.18–79.52]

Sl 80.19* 72.76 69.93 76.79 63.02 82.96* 73.82
[77.33–85.14] [67.39–82.43] [67.26–72.48] [73.03–80.21] [60.98–66.50] [79.07–86.19] [72.55–78.57]

Fa 72.67 69.62 72.35 80.33 52.42 75.39 69.62
[61.90–87.50] [61.90–83.33] [68.35–76.92] [71.43–89.29] [42.11–61.70] [63.89–83.64] [61.90–83.33]

Breathing patterns: Sp, spontaneous; Ch, chest; Sh, shallow; Ab, abdominal; Sl, slow; Fa, fast.
Significant results compared to the Heuristic method, *p < 0.05.
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might represent a challenge to future wearable monitoring
developments, in particular if they are meant to be used in
space and in early prediction of health deterioration, as they
should ensure the good quality of signals with a wide range of
breathing rates.

It was also observed that the distributions of noisy and clean
segments in the BS and COPD datasets were different. While the
BS dataset contained more noisy than clean signals, the opposite
was observed in the COPD dataset. This behavior could be related
with three factors. First, the higher BMI in the BS dataset has an
impact in the impedance of the thorax making the signals more
noisy. Second, the respiratory protocols followed by the patients
could have an impact in this distribution. Third, as was shown in
Figure 1, the electrode placement was different for each group,
which could also affect the measurement of the impedance.
However, it is suggested to investigate further the cause of
these distributions differences as it can help to design a more
robust device for vital signs monitoring.

When pre-training the models with the COPD data
without using DA, it was found that for the Sh and Fa
breathing types, the performance of the SVM was worse
than for the other breathing types (median AUC <80%).
In the case of the CNN, the performance was worse
(median AUC <80%) for the Sl and Fa types. The reasons
behind this behavior could be the different distribution of the
classes in the training and testing sets, and the combination of
morphological characteristics with the different breathing
rates of the signals in the testing set in comparison with
the training data. This is more evident when comparing the
results obtained in the present study with the ones presented
in (Moeyersons et al., 2021). In the latter, the SVM and CNN
were trained and tested in the same COPD dataset. The
average AUC obtained in that case is comparable to the
results obtained for Sp, Ch and Ab data, which present a
more similar breathing rate to the COPD data (normal
breathing rate between 8 and 14 breaths per minute).

TABLE 4 | Performance of the machine learning models for each of the sub-groups of the BS dataset. The results are presented as median sensitivity (25th percentile—75th
percentile) (%). On the left side, the results for the SVM. On the middle, the results for the CNN. On the right side, the results using the heuristic method in Charlton et al.
(2021). The best results of each model that performed better than the heuristic approach for each breathing type are in bold.

— SVM CNN Heuristic

Original DA TL + DA Original DA TL + DA

Sp 63.92 13.42 83.48 76.32 61.26 91.69p 85.90
[61.11–68.75] [8.57–19.44] [80.43–89.42] [71.43–76.81] [57.65–67.86] [89.13–93.37] [81.58–91.30]

Ch 55.72 9.29 85.87p 68.07 48.12 89.86p 64.17
[46.67–59.52] [6.82–11.11] [80.00–88.89] [63.64–74.14] [40.00–49.60] [87.22–90.69] [57.78–70.37]

Sh 35.61 2.17 81.41p 46.49 34.45 81.57p 52.78
[33.33–47.22] [0.00–5.56] [74.22–87.14] [41.94–48.48] [31.05–35.00] [74.48–86.57] [45.71–66.67]

Ab 42.64 10.91 78.84p 77.62* 46.50 86.46p 62.50
[40.91–43.75] [0.00–12.50] [71.88–81.58] [74.32–82.09] [44.64–49.32] [84.33–90.82] [55.56–64.00]

Sl 34.31 8.69 64.99p 35.57 24.55 79.56p 39.09
[28.57–42.86] [0.00–17.65] [58.33–68.75] [33.33–42.11] [18.42–28.41] [76.14–83.62] [33.33–41.18]

Fa 21.11* 5.00 77.68p 35.42 10.36 61.88p 10.56
[14.29–33.33] [0.00–13.33] [75.00–100.00] [28.57–40.00] [10.00–12.50] [47.50–84.38] [0.00–14.29]

Breathing patterns: Sp, spontaneous; Ch, chest; Sh, shallow; Ab, abdominal; Sl, slow; Fa, fast.
Significant results compared to the Heuristic method, *p < 0.05.

TABLE 5 | Performance of the machine learning models for each of the sub-groups of the BS dataset. The results are presented as median specificity (25th percentile—75th
percentile) (%). On the left side, the results for the SVM. On the middle, the results for the CNN. On the right side, the results using the heuristic method in Charlton et al.
(2021). The best results of each model that performed better than the heuristic approach for each breathing type are in bold.

— SVM CNN Heuristic

Original DA TL + DA Original DA TL + DA

Sp 95.81p 100.00 88.37* 97.10* 99.57p 93.72* 84.98
[91.89–98.33] [100.00–100.00] [84.62–94.62] [96.30–97.59] [99.29–99.61] [92.53–95.24] [78.13–85.42]

Ch 97.40p 100.00 81.60 94.44* 98.86p 90.35 90.98
[96.88–98.39] [100.00–100.00] [79.75–84.38] [93.91–96] [98.47–100.00] [87.94–93.51] [88.71–92.19]

Sh 99.43p 100.00 70.54 96.74* 99.08p 87.33 89.53
[95.00–100.00] [98.73–100] [67.57–74.32] [95.71–97.41] [98.9–99.62] [85.61–88.5] [88.68–92.31]

Ab 98.44p 100.00 72.53 91.15* 98.87p 87.62* 83.68
[96.30–100.00] [100.00–100.00] [70.10–77.65] [90.16–94.20] [97.17–99.61] [86.57–90.71] [81.25–88.89]

Sl 98.01p 100.00 74.26 91.48 100.00 87.17 89.29
[97.14–100.00] [100.00–100.00] [68.82–81.82] [89.58–93.90] [100.00–100.00] [83.53–89.36] [88.24–95.24]

Fa 100.00 100.00 55.84 100.00 100.00 85.52 100.00
[100.00–100.00] [100.00–100.00] [50.00–73.91] [96.30–100.00] [100.00–100.00] [78.26–92.59] [100.00–100.00]

Breathing patterns: Sp, spontaneous; Ch, chest; Sh, shallow; Ab, abdominal; Sl, slow; Fa, fast.
Significant results compared to the Heuristic method, *p < 0.05.
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To overcome these challenges, it was decided to pre-train the
models with the COPD data after using DA. The models then
were tested in the original BS dataset. With this, the amount of
clean and noisy signals in the COPD data was balanced, and
different characteristics were included (different breathing rates
and changes in amplitude). In this case, it was found that for the
SVM, the performance of all breathing types decreased in
comparison with the Original model. As mentioned before, the
five more relevant features obtained from the original dataset
were used as well for this analysis. However, the inclusion of the
synthetic data to the training set could have altered the relevance
of all the features and the best ones could have changed. The effect
of changing the selection of the best five features was not explored
in this study, and it is proposed as future research. The selection
of the best features for the SVM classifier is a critical design
variable in the development of decision support systems, as it can
impact the performance of the model. It is also worth mentioning
that in this study only five features were selected, however, as was
shown in (Moeyersons et al., 2021), selecting more or less features
also have an impact on the performance of the SVM. This effect
should be also investigated further when working with TL, DA
andmore importantly with different types of signals for vital signs
monitoring applications in extreme and remote environments.

In contrast, the performance of the CNN for the pre-training
with the COPD data after DA improved significantly. It is known
that the performance and the generalization capabilities of
machine learning models are highly dependent on the quantity
of data available for training (Salamon and Bello, 2017; Lei et al.,
2019; Iwana and Uchida, 2021). In the case of the CNN, it
performs an automatic feature selection based on the input
signals, which implies that if a larger and more diverse set is
available, the selection of the relevant features will be improved
and the performance will be better. The notable difference
between the SVM-DA and the CNN-DA is explained by the
way in which the features for the classification are selected, being
pre-defined for the SVM and automatically for the CNN.

As a final step to help improve the performance of the
classifiers, TL was applied to the pre-trained models with the
COPD data with DA. To ensure that the re-training set for TL was
balanced, the BS data with DA were used. In this case, it was
found that the performance after applying TL was consistently
better than for the DA model for all the respiration types for
SVM. However, it did not improve significantly with respect to
the Original model. This could also be explained by the fact that
when including synthetic data in the BS groups, the feature space
changes and alters the selection of the best features. For CNN, the
performance improved significantly compared with the Original
model, but not compared with the DA model. One explanation
for this could be that after including the DA in the training set, the
inclusion of the DA in the BS data does not provide new and
better information for the classification.

The effect of these two approaches is more noticeable when
compared to the results presented by Rozo et al. (2021), where TL
was applied to the models pre-trained with the COPD data
without DA. In that case, SVM presented a higher
improvement than CNN. The results obtained in the present
study show that the inclusion of DA before applying TL reduces

the improvement of performance in the SVM. In contrast, the
inclusion of DAwith and without applying TL have a bigger effect
in the performance of the CNN, than only using TL.

In general, it could be seen that DA is a good alternative to
improve the performance of machine learning models in which
the features selection is done automatically. In contrast, when the
features are computed a-priori and the best ones to be used are
hand-picked, the best alternative could be the use of TL.
Nevertheless, it is still important to research more in depth
the dependencies of the performance of the classifier on DA
and TL, as in this study only a limited patient population
was used.

Despite the general improvement of both classifiers after using
DA and TL, it could be seen that the specific performance for Sh,
Ab, Sl and Fa breathing types is lower compared to Sp and Ch.
This could be due to the fact that the changes of morphology and
breathing rates included in the pre-training set after DA, were not
enough to characterize the new signals in which the models were
tested. More research is needed to characterize correctly the
combinations of morphology and variation of breathing rates
that consistently challenge the performance of the classifiers. In
this way, it will be possible to have a better performance with a
wider range of respiratory signals obtained with wearable devices
for different applications. However, it is important for the model
to achieve a balance between generalization capabilities and good
performance, to fulfill the goal of using it with any new data. For
this, it is proposed to collect and study a more diverse cohort of
data in terms of length of the segments and protocols followed by
the patients, to ensure that the models presented in this
manuscript for the quality assessment of respiratory signals
are sufficiently robust and general.

In addition, the performance of the machine learning models
was compared with the performance of the heuristic method for
signal quality index proposed by Charlton et al. (2021). It was
found that, in general, the machine learning models presented a
better performance, and it was improved even further when using
DA and TL. This findings are in line with the comparison
presented by Moeyersons et al. (2021), where it was found
that for the COPD data quality assessment, the machine
learning models performed significantly better than the
heuristic model. This could serve as a basis for the selection of
machine learning models over heuristic models when assessing
the quality of respiratory signals obtained from wearable devices.

5 CONCLUSION

In this work, the quality assessment of respiratory signals
obtained from wearable sensors was studied. The results
presented in this study showed that with pre-trained machine
learning classifiers in conjunction with data augmentation and
transfer learning, it is possible to properly identify clean and noisy
respiratory BioZ signals. CNN performed overall better than
SVM when using DA, but the effect of TL was more
noticeable in SVM.

For both classifiers, however, the results showed a lower
performance for the breathing types whose morphology and
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imposed breathing rates differed the most from the spontaneous
breathing of the patients in which the models were pre-trained.

These findings could be beneficial for the steps of data
processing and connection with decision support systems when
designing new bio-monitoring devices for space exploration.
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