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ABSTRACT 

 

In sample surveys and most research work non-response is often a major problem, this means, 

sometimes the required data are not obtained for all elements that are selected for observation, and 

this leads to missing data. Missingness can occur in cross-sectional, longitudinal or multivariate 

studies. Different imputation methods are available and have been used to fill-in the missing data 

(either response or covariates) and the produced data is expected, under certain conditions, to lead to 

valid inference. This study explores efficiency of several imputation methods in cross-sectional data, 

including parametric and nonparametric, in estimating the effect of covariates in linear models. Simple 

and advanced imputation methods, such as multiple imputations were considered. Since our data was 

from a cross-sectional study, univariate patterns and behaviors of missingness were used. Two main 

scenarios were considered, including a case where the missingness is in the response variable and when 

the missingness occurs in the covariate. An approach followed was that, a new data was generated, 

missingness was invocated using different types of missingness models depending on the assumed 

mechanism, and then imputation was employed to the missing values. Assessment of the accuracy was 

done by comparing results with the true estimates, which were obtained from original generated data. 

The focus was in the regression model parameters estimates (with their SE) and the variability 

introduced in the response values. To evaluate the efficiency of methods and variability of parameters 

of interest, simulation studies were done. With the runs obtains, MASE values were calculated for each 

method and compared. Parametric methods for imputation were found to be not adequate, especially 

when the missing proportion in the response is high. Results from nonparametric methods were good 

despite slight over or underestimation of the variability in the data. For the case of missingness in the 

covariate, unbiased results were obtained under MCAR and MAR and biased results under MNAR. 

However, in this case, single parametric methods seem to perform better than multiple imputation 

methods or nonparametric ones. It was observed that missingness mechanism could be influenced by 

the magnitude of the effect of covariate in the fitted model or in the missingness model involved. In 

other words, one can say that, the strength of the relationship between covariates and the response 

variable plays a role in manipulating the missingness mechanism. These results were observed using 

simple exploration hence more research is needed to provide more support.  

 

Keywords: transport, traffic, missingness, imputation, parametric, nonparametric, simulation study.  
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1. INTRODUCTION AND BACKGROUND 

 

Transport or transportation is the movement of people and goods from one place to another. 

The term is derived from the Latin trans ("across") and portare ("to carry"). The field of 

transport has several aspects: these include infrastructure, vehicles, and operations. 

Infrastructure includes the transport networks (roads, railways, airways, waterways, canals, 

pipelines, etc.) that are used, as well as the nodes or terminals (such as airports, railway 

stations, bus stations and seaports). The vehicles generally ride on the networks, such as 

automobiles, bicycles, buses, trains and aircrafts. The operations deal with the way the 

vehicles are operated on the network and the procedures set for this purpose including the 

legal environment (Laws, Codes, Regulations, etc.) Policies, such as how to finance the 

system (e.g., use of tolls or gasoline taxes) may be considered part of the operations.  

 

Road safety continues to be one of the nation's most serious public health issues—it affects 

everyone, whether you drive, walk or cycle. Road traffic accidents kill or injure thousands of 

people every day. Most of developed and developing countries do not have national road 

safety programmes. Lack of these programmes results to less efficient follow up of what is 

happening in the traffic and transport field, which leads to less road safety for the population 

involved. Thousand of pages have been written on the problem of road safety, and it has been 

identified as a worldwide problem. It causes a lot of consequences in public health, social life 

and economic prosperity of the country. The number of people killed in road traffic crashes 

each year is estimated to be around 1.2 million and with increased efforts, this number is 

expected to rise by 65% between 2000 and 2020 (WHO report, April 2007) 

 

Most countries experienced enough of these tragedies, hence, to reduce the statistics, a range 

of laws, regulations, penalties and initiatives on the road users are placed. These include 

things like speed cameras, road-side drug testing, audible line markings on roads, double 

demerit points for repeat speed offenders, vehicle impoundment and alcohol ignition 

interlocks for repeat drink drivers. In addition, in other countries reduction of the road toll 

was targeted through new licensing rules, regulations and better education for young 

drivers. For the European Union, transport is one of the community's earliest common 

policies and has focused on removing obstacles at the borders between Member States so as 

to facilitate the free movement of persons and goods. The last White Paper on transport 

policy constitutes a genuine action plan aimed at improving the quality and efficiency of 

European transport. The ultimate objective is to shift the balance between the various modes 

of transport by 2010 through an active policy to revitalize the railways, promote transport by 

sea and inland waterway and develop intermodality (Activities of the European Union, 

2005). 
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It is very clear that, despite the efforts done, most of the users are still not following the 

rules and hence contributing to the high statistics of crashes and accidents reported. 

Therefore, provision and increasing of knowledge and skill on safety is vital and this can 

bring a need to establish an on-going monitor of public perception and attitudes towards road 

safety issues. Regular surveys on transport field might help to evaluate the effectiveness of 

public education campaigns, as well as identify areas requiring further attention. 

 

Cross sectional studies are commonly used in traffic/transport surveys. The setup is good for 

descriptive studied and when one wants to estimate the burden at a specific place and at one 

specified moment in time. The results of these kind of studies may lead to hypothesis 

generation, which could be tested by, e.g., intervention studies, or more formally by random 

control study. Like other studies traffic/transport surveys face same problems like high cost, 

low response rate, unrealistic responses and most of time missing data. Therefore, in most 

cases, modeling traffic/transport data involves modeling incomplete data (Jesson, 2001).  

 

Missing data may occur for several reasons, for instance errors in the data, inadequate data 

collection process, refusal from participants in providing data for reasons such as fatigue or 

the sensitive nature of the information or insufficient sampling. However, sometimes issues 

of underreporting due to settlements between drivers without any registration of accident 

occurrence or insurance-related non-reporting are likely to occur. Ignoring these and work on 

what was brought in the desk of a statistician can results in missing the targeted goals 

(Hawthorne and Elliott, 2005).  

 

Missing or incomplete data is a common and an important problem in many fields of 

research, and there are various ways to deal with it. Incomplete datasets may lead to results 

that are different from those that would have been obtained from a complete dataset, hence 

is important to handle it careful. Different reasons for missing data give rise to different 

types of missingness. Generally, there are two important types described by Little and Rubin 

(1987) and Schafer (1997) as ignorable and non-ignorable. Non-ignorable is where the 

probability of a missing datum is dependent upon its value (i.e. cannot be reliably predicted 

from other dataset variables) and ignorable missing data is where the probability of a 

missing datum is not dependent upon its value and inference about the measurement 

mechanism can be made without addressing missingness. Even if the ‘true’ ignorability 

status of intermittent missing data is unknown, most missing data can be recoverable 

through several methods like imputation. Imputation is a method to fill in missing data with 

plausible values to produce a complete data set. 
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Key concepts of missingness differ according to how the missingness occurs. Few missingness 

mechanisms include Missing Completely at Random (MCAR), Missing at Random (MAR) and 

Missing Not at Random (MNAR). In details, MCAR occurs when the probability of an 

observation being missing is independent of both unobserved and observed data. This 

assumes that the probability of response for a variable of interest, say y, is the same for all 

units in the population. MAR is the most general condition under which a valid analysis can 

be done by using only the observed data. It occurs if, conditional on the observed data, the 

mechanism for missingness does not depend on the unobserved. In this case the probability 

of response to a variable of interest is related to covariates only. Lastly, MNAR occurs where 

neither MCAR nor MAR hold. This means even after accounting for all the data in hand, the 

reason for the observation being missing still depends on what was not observed. MCAR and 

MAR are ignorable while MNAR is non-ignorable (Molenberghs and Verbeke, 2005).  

 

Nevertheless, in most practices missingness issue is ignored and most researchers 

concentrate only on complete case analysis, by applying a method referred to as “list-wise 

deletion”. List-wise deletion is the simplest procedure and is the default in many statistical 

packages and this removes a case from an analysis if a datum is missing for case i on any 

variable that is included in the analysis. The shortcomings of this strategy have been well 

documented. It ignores possible systematic differences between complete cases and in-

complete cases, standard errors will generally be large in the reduced sample because less 

information is utilized and biased estimates will be obtained if the reduced sample is not a 

random sub-sample of the original sample (Little and Rubin, 1987). If the discarded cases 

form a representative and relatively small portion of the entire dataset, then case deletion 

approach may be reasonable. However, it leads to valid inferences in general only when 

missing data are MCAR. 

 

Other approaches to deal with missing data are those of single-imputation, where missing 

values are filled in by a plausible estimate such as the mean or median for that variable on 

other participants, or stratify and sort by a key covariates then replace missing data from 

another record in the same strata. However, these methods cannot provide valid standard 

errors and confidence intervals, since ignores the uncertainty implicit in the fact that the 

imputed values are not the actual values (Little and Rubin, 1987; Molenberghs and Verbeke, 

2005). 

 

To improve the single imputation mentioned above, a conditional mean imputation (CMI) 

can be done. This can be done by replacing the missing values with predicted values from a 

fitted model (say regression model). The method might be very efficient for point estimation; 

however, the inference can be seriously distorted (Rubin 1987).  
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On recent, much research on missing data analysis has focused on multi-imputation 

techniques for addressing the issues arise in single, conditional and single random 

imputation procedures, (Little et al. 1987; Zhang 2003). Little et al. (1987) proposed a 

multiple imputation procedure to replace each missing value with a set of plausible values 

that represent the uncertainty about the right value to impute. Actually the procedure uses 

Monte Carlo simulation to produce a number (say 10) of complete datasets derived from the 

initial dataset with missing values. The multiple-imputed-data sets are then analyzed using 

a standard procedure for complete data and combining the results from these analyses to 

produce means and confidence intervals which reflect the uncertainty from the missing data 

in the original dataset. The method requires MAR or MCAR assumption. 

 

However, it should be noted that, a naive inappropriate imputation method might creates 

more problems than those it can solve (Little and Rubin, 1987). If not well implemented, 

even the multiple imputation method can be a vague procedure despite all the positive 

stories about it. Most applied multiple imputation techniques are parametric hence 

implemented by stating several strong assumptions about both the distribution of the data 

and about underlying regression relationships. But, if such parametric assumptions do not 

hold, the multiply imputed data are not appropriate and might produce inconsistent 

estimators and thus misleading results.  

 

Due to uncertainty that might occur when applying different methods of imputation, 

parametrically, a simple nonparametric method was applied. Generalized additive model 

(GAM) with integrated smoothness estimation was used and the missing values were 

replaced by the predicted values from this model. GAMs represent a method of fitting a 

smooth relationship between two or more variables through a scatterplot of data points. 

These models are useful when the relationship between the variables is expected to be of a 

complex form, not easily fitted by standard models or one wants the data to suggest the 

appropriate functional form. One of the main reasons for using GAMs is that they do not 

involve strong assumptions about the relationship that is implicit in standard parametric 

models like regression. 

 

In this report, results of model parameter estimates (or/and other parameters of interest) 

based on the data filled-in using parametric (single and/or multiple) imputation methods and 

nonparametric methods are compared and discussed. 
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2. OBJECTIVE 

To explore the effect of missingness in estimation of regression relationship between 

variables in a cross sectional study. 

 

2.1. Specific objectives 

o Explore missingness in the data on transport under well specified mechanism. 

o Apply methods to correct for missingness focusing on the effect of using parametric 

imputation over nonparametric methods. 

o Use simulation studies to evaluate stability of parameters estimated and assess accuracy 

of different imputation methods used. 

o Explore the effect of the magnitude of parameter estimate in the missingness 

mechanism. 



__________________________________________________________________ 6

3. MATERIALS AND METHODS 

 
3.1. The dataset 

The data were collected in Flanders from January 2000-January 2001 using individual 

questionnaire and an activity-diary. People were asked to write down for two consecutive 

days, activities they conducted, where, when, with whom, time spent and type of  transport 

mode used to arrive at the location of the activity. The survey based on a random sample of 

2823 households, including 7638 people who were more than 6 years old. Most of the 

interviewees were students and workers. It contains about 40 covariates and 2 main 

response variables that have information on the transport and traveling behaviors of the 

population in Flanders. Some of the variables in the dataset explores type of mode/equipment 

used for traveling/moving from one place to another, distance covered say from place of 

residence to where a mean of transport can be obtained, or from the stop (bus, train, …) to 

the designated destination (considering school and/or place of work), etc. Other information 

collected were on driving license, specifically on its availability and time from when it was 

obtained. Demographical and other personal information like age, sex, occupation, level of 

income, level of education, profession of the individual, marital status, number of people in 

the household, name and type of municipality of residence, availability of transport modes, 

were also collected (Moons and Wets, 2007). List of all variables with their descriptions can 

be seen in Table A, Appendix.  

 

3.2. Exploration 

To be able to select variables to be used for this study, the amount of missingness in each of 

the variable was observed, the correlation between variables was checked and some 

summary statistics were done. Figures and tables presenting some patterns, trends and 

important features from the data were provided. For few variables, cross tabulations were 

done to see frequency distribution and obtained results were summarized. 

 

The univariate regression models were done between each covariate and responses and to 

quantify the relationship, a value of Coefficient of Determination was observed. Later, a 

multiple regression model was fitted with few selected variables (see next section). Since our 

main objective is to study missingness, the response variable with the highest proportion of 

missingness was used.  
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3.3. Multiple Regression Analysis 

A regression model was fitted and estimates were obtained. Due to the large number of 

covariates, backward and stepwise automatic model selection procedures were applied. 

However, available information from the literatures on the factors that can influence travel 

distances were considered. The covariates selected include age, sex, level of education, use of 

bicycle (as a mode of transport), number of members in the household younger than 6 years 

and average number of trips made.  The response used was the Total Distance travelled by a 

specific individual. The regression model fitted with p-1 covariates has the form: 

1122110 ...]|[ −−++++= ppii XXXXYE ββββ  

where si 'β  are the parameter estimates and sX i '1  are the covariates. 

 

3.4. Data generation and analysis of original data 

Using the obtained conditional mean ][YE  (from the multiple regression model) and the 

variance of the response variable from the available data, 
2σ , new response values (say *Y ) 

were randomly generated from a normal distribution, i.e., )],[(~ 2* σYENY . This new data 

will be referred to this report as original data and will be used to attain study objectives. No 

generation of covariates was done rather the original data from the survey was used. 

 

From the original data, a multiple regression model was fitted and parameter estimates 

with their standard errors and 95% Confidence Intervals (CI) were obtained. This model is 

referred to as model from Original Data. To simplify the exercise, model fitted here used 

fewer variables than the previous model. Variables used here were Age, Sex and Average 

number of trips made by an individual (abbrv. AVERP).  

 

3.5. Invoking missingness 

For the given data, nYYYY ,...,,, 321 of size n , assume that the indicator for missingness is 

defined as follows: 





=
otherwise

dis observeYif
R

i

i
0

1
 

 

Then one can assume ),1(~ πBR  where π  is a missingness probability and can be defined 

as a function of covariates only, covariates and/or the response variable, or none of them 

depending on the assumed mechanism of missingness.  
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Specifically for each mechanism of missingness and with l number of covariates, π  was 

defined in a ‘missingness model’ as, 

)((x) 0ϕπ expit=       for MCAR, 

)...((x) 22110 ll XXXexpit ϕϕϕϕπ ++++=    for MAR,  

and  )...((x) 22110 YXXXexpit jll ϕϕϕϕϕπ +++++=   for MNAR 

where     
)(1

)(
)(

xexp

xexp
xexpit

+
=   

To produce a specific missingness level in the original data (like 30%, 50%, …or an 

approximate), values of si 'ϕ  were randomly selected, then substituted in the missingness 

model (choice differs for each mechanism).  

 

3.5.1. Missingness models 

In missingness generation, two scenarios that differ by type of missingness models used were 

considered. In the first scenario, two missingness models were combined. The process went 

like this; probability for missingness for each individual was generated from two different 

models. 

)( 41331221111011 yXXXexpitP ϕϕϕϕϕ ++++=   

and    )( 42332222121022 yXXXexpitP ϕϕϕϕϕ ++++=  

N.B: Components in the model change according to the corresponding missingness mechanism 

 

Then, two sets of missingness indicators, 1R  and 2R were generated respectively from each 

function (model). Now each observation in the dataset has two indicators for missingness, i.e.  

one from each set. The combination of the results was done in such away that, an observation 

with missing indicator value 1=iR  in both 1R  and 2R  was taken as missing. In the second 

scenario only one function (model) was considered.  

)( 433221101 yXXXexpitP ϕϕϕϕϕ ++++=  

 

The two scenarios are expected to generate different missingness patterns hence allow to 

study the effect of missingness model and missingness pattern in the estimation of model 

parameters.  
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3.6. Analyses methods 

After invoking missingness in the data, the following methods/analyses were done, 

o Complete Cases (CC) 

o Single Mean Imputation (SMI) 

o Condition Mean Imputation (CMI) 

o Multiple Imputation (MI) 

o Single Imputation using Generalized Additive Model (GAM) 

o Multiple Imputation using GAM 

The parameter estimates for each covariate, standard errors and their 95% CI were 

calculated for each component and compared with the ones obtained from original data.  

 

3.7. Description of imputation methods 

As the main objective of the study mentioned, the statistical part of this report focused on 

different ways of dealing with missing data and doing imputation for the missing values. 

Short descriptions of different algorithms to conduct parametric and nonparametric 

imputations are presented here: 

 

3.7.1. Mean Imputation 

This is a single imputation method and was done by replacing missing values with the 

arithmetic (unconditional) mean of the observed data.  

 

3.7.2. Conditional Mean Imputation, using regression model 

Let )(θµ  be the vector with elements ;),( misii ∈θµ  that is 

),,|()( θθµ obsmis YXYE=  

The approach seeks to fill in the missing data with one set of “best” values might 

choose )ˆ(θµ has been referred to as conditional mean imputation.  

 

Models used for the conditional mean imputation were as follows: 

AVERPSexAVERPAgeSexYE *][ 43210 βββββ ++++=  ……………for the first scenario 

 
3

5

2

43210][ AgeAgeAVERPAgeSexYE ββββββ +++++= …………for the second scenario 

After fitting the specified regression models, the missing values were then replaced by the 

predicted values estimated from the model. Different models were defined for each case to 

explore the effect of the imputation model used. 
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3.7.3. Single Imputation using PMM 

The imputation method used here is based on the normal-theory linear regression which 

assumes existence of a linear relationship between covariates and the response. During the 

process, the linear regression model is fitted to the complete cases and parameter estimates 

si 'β and variability in the data σ are obtained by drawn from their posterior distribution, 

then given the drawn values, a set of imputes for missing values were drawn using 

Predictive Mean-Matching (PMM) method (Lazzeroni, L.C. et al). PMM refers to, for each 

incomplete case, a random case is drawn from a set of complete cases having conditional 

predictive means close to that of the incomplete case and imputed to the missing value. In 

this report, this method will be referred to as PMM-I 

 

3.7.4. Multiple Imputation using PMM 

The procedure is similar to what was explained in the Single Imputation using PMM, rather 

here the process is done in a multiple way. The number of imputations, m considered were 5. 

Results of the models fitted from the 5 sets of imputed data were averaged taking into 

account between and within variability of the estimates and SEs. The method will be 

referred to as PMM-II. 

 

Let Q  be the estimate of the parameter for a given covariate, iQ̂  and iÛ be the point and 

variance estimates from the 
th

i imputed dataset. Then the point estimates for Q  from 

multiple imputations is the average of the m complete-data estimates: 

∑
=

=
m

i

iQ
m

Q
1

ˆ1
 

Let U be the within-imputation variance, which is the average of the m  complete-data 

estimates 

∑
=

=
m

i

iU
m

U
1

ˆ1
 

 

and the between-imputation variance B  is calculated as  

 

∑
=

−
−

=
m

i

i QQ
m

B
1

2)ˆ(
1

1

 
 

Then the variance estimate associated with Q is the total variance 

B
m

UT )
1

1( ++=
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The test statistics calculated to check significance of the estimates is approximately to follow 

a t-distribution with modified degrees of freedom. To check the efficiency of the imputation, 

the fraction of missing information about Q  was assessed. For 5 imputations, a fraction of 

missingness of up to 50% reported to produce estimates with efficiency of above 90% (Rubin, 

1987).  

 

3.7.5. Single Imputation with Generalized Additive Model 

Generalized Additive Model works by replacing the coefficients found in parametric models 

by a smoother. A smoother(s) is a tool for summarizing the trend of a response variable (Y) as 

a function of one or more predictors ),...,( 1 pXX . The model fitted has a general form, 

1122110 ...)]|[( −−++++= ppii XsXsXssXYEg  

By applying a smoother, is , the model produces an estimate of the trend that is less variable, 

i.e. smoother than original Y. Smoothing takes place by local averaging, that is averaging the 

Y-values of observations having predictor values close to a target value. Prediction was done 

based on the obtained model and the predicted values were used to fill-in the missing ones. 

The method is referred to as GAM-I in this report. 

 

3.7.6. Multiple Imputation with Generalized Additive Model 

In this case, GAM was fitted and the predicted value for each observation was obtained. 

Using the conditional mean for each observation and the variance of the data based on the 

complete cases, for each observation, random values were generated from a normal 

distribution and the missing values were replaced 5 times using generated values.  Following 

the procedure of multiple imputations (section 3.7.4), 5 models were fitted and the results 

were averaged to obtain final model. The method is referred to as GAM-II in this report. 

 

3.8. Missingness data pattern 

For all the mentioned methods, this study consider univariate missing data pattern where at 

first, is a situation where some of the variables (say all covariates) are fully observed and 

some involve missing measurements (say only the response variable), and second, a situation 

where there is missingness in a covariate (Figure 1).  

 

X1 X2 … Xp Y   X1 X2 … Xp Y 
            

            

            

            
Figure 1: Missing data patterns considered in sample 
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The parameter of interest is the regression relationship between a partially observed 

response variable and fully observed covariates and the variability within the response 

variable or relationship between fully observed response with partially observed covariate 

where other covariates are full observed. 

 

3.9. Simulation study  

To illustrate and compare the performance of imputation methods used simulation studies 

were carried out. This allows evaluation of the variability of the results obtained from the 

methods explained above using single sequence data. For the first scenario, a total of 1000 

runs were done while for the second scenario 200 runs were used. Each run is expected to 

produce a slight different pattern of missingness of same proportion hence allow to study the 

variation and stability of the estimates. For each simulation, means of parameter 

estimates µ̂ , for each variable were computed, estimated standard error )ˆ(µS  and a 95% 

confidence interval, i.e. )ˆ(96.1ˆ µµ S±  were calculated. Average length of the CI was also 

calculated. Boxplots for the estimates and SEs were plotted to assess distribution. 

 

3.10. General assessment of the accuracy of imputation 

Imputation methods explained might be well-known approach to treat non-response in 

surveys. However, they can have a number of impacts on data and other processes, but more 

importantly, on estimates produced from the ‘filled-in’ data. It is therefore important to 

assess the accuracy of the imputation method used. Among the best approaches that have 

been suggested is the calculation of the variance under imputation. These can be done either 

based on the model or check variability in the imputed data. For our study the accuracy of 

the imputations used were assessed using two main measures.  

 

First, after generation of missingness, for all models fitted using simulated data (i.e. CC, 

SMI, CMI, PMM,…), the Mean Averaged Squared Error (MASE) values were calculated and 

compared. Depends on the imputation method used, MASE was calculated as follows:  

∑
=

−=
nn

i

OD

i

M

i
nn

MASE
1

2)(
1

µµ  

where 
M

iµ are fitted values obtained from models using CC or augmented data obtained from 

different imputation method, M , i.e. SMI, CMI, PMM,…, OD

iµ  are fitted values from the 

model fitted with original data, OD , and nn  is the number of simulation runs.  
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Since the same regression model was used for all cases, fluctuations in the MASE values can 

tell the difference between the mean curve estimated from the original data and that 

obtained from the augmented data, hence quantify the accuracy of the imputation method 

used and stability of parameter estimates. The worse imputation method is expected to have 

high MASE value, which implies that the difference between the two curves is large.  

 

To support information reported by MASE, the bias-variance decomposition of the ASE based 

on all models/analyses done was also reported. This is defined as: 

2)),ˆ(()ˆ()ˆ( θθθθ BiasVarASE +=  

where Bias is defined as   )ˆ( θθ −E  

For the case of this study θ  were fitted values obtained from the OD and θ̂  were fitted 

values obtained from the CC or augmented data.   

 

In addition, for all sets of data, the variance (and standard deviation) of the response values 

was calculated and compared to that obtained from the original data. Data with very 

low/high variance was taken as badly imputed data. This was done only for the case that 

missingness was in the response variabel since for the case where missingness was invoked 

in covariate, response values from OD were used. 

 



__________________________________________________________________ 14

3.11. Scheme of simulation 

The flow chart in Figure 2 summarizes the scheme of simulation described.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scheme of Simulation used for Data on Transport 

Original Data 
(Normally generated using conditional mean and 

variance from the survey data) 

Missingness: 30% and 50% with different mechanisms 

MCAR 

Compare results between 

models and with original results 

Simulation study: 

1. Evaluate accuracy and variability of results 
2. Assess accuracy of the imputation (use of MASE 

and variance of the response) 

MNAR MAR 

Imputation methods and Analyses 
1. CC 

2. SMI 

3. CMI 

4. PMM 

5. …… 

Fit model with Original data to get True Estimates 
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3.12. Use and dissemination of results 

Whenever possible the results obtained from this study can be shared to others through local 

and international communication such as report, publication and presentation in meeting 

and conferences. No specific results will be provided to individuals involved in the study.  

 

3.13. Tools and software 

The SAS software and R program were used. Data manipulations were done in SAS while 

the actual analysis was done in R. Specifically in R, the packages mice which stands for 

‘Multivariate Imputation by Chained Equations’, mitools which stands for ‘tools for multiple 

imputation of missing data’, mgcv which is a package for smoothness estimation were used. 

All the tests were done at 5% level of significance. Selected codes and programs used for 

analysis are attaches in Appendix. 
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4. RESULTS  

 

4.1. Study population 

A total of about 6059 individuals were involved in the study, among those 51.75% were males 

while females were 48.25% Mean age was almost the same for each sex and was about 39.3 

years (SD=18.65). Most of the respondents were married (58.1%), followed by unmarried 

individuals (32.30%). Other marital status with small proportions includes living together, 

divorced and widow/widower. More than half of the individuals include students and 

employees/workers. About 51.7% of the interviewed people mentioned to have income 

between 501 and 1250 euros a month while 37.5% had income between 1251 and 2500 euros 

a month. Very low proportion had income below 500 euros (women attributes 87.3% of this) 

or above 2500 euros (men attributes 90.7% of this) a month. About 25% of respondents 

attained higher education and university level, 43% had secondary education plus other 

general or technical education while the remaining proportion had at most primary 

education. Men were observed to attain higher education more than women. For instance 

among those with university degree, men were 63.6% while women were only 36.6% 

 
On traveling and driving information, it was observed that, on average most people travel 

for about 43.5 km. Male individuals covered higher average distance (50.7km) than females 

(35.7km). Among respondents used modes that requires licence, 72.5% mentioned to own a 

driving license while few (27.5%) had no license. The average shortest distance to the place 

where transport can be obtained was 500 – 999 meters. Main means of transport mentioned 

were cars (self drive or as a passenger), train, tram or metro, transport arranged by 

company or school, bus, motor, bike and on foot. The proportion of travellers with and 

without license on the number of passengers carried was observed to be the same (Figure 3). 

 
It was noted that most of travellers without 

license are those of young age (less than 20 

years) and with low education level (at most 

secondary education). It was also observed that 

the proportion of people with no license 

decreases as the level of income increases.  

 

 
 

Figure 3: Proportion of travellers with or without license and number of passengers carried 
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4.2. Multiple regression analysis 

To obtain the conditional mean for generation of the data to be used for the study (OD), a 

multiple regression model was fitted with selected variables. Results of the model fitted are 

summarized in Table 1. 

 

Table 1: Parameter Estimates for the regression model with Total distance from field data 

Variable Parameter Estimate Standard Error P-value 

Intercept -13.8892 3.9005 0.0004 

AVERP 4.4647 0.4830 <0.0001 

Age -0.1422 0.0551 0.0099 

DIPLOMA 5.3451 0.4285 <0.0001 

Sex (M=1) 15.8271 1.8726 <0.0001 

Use of Bicycle 3.5771 0.7595 <0.0001 

Member < 6yrs -5.2593 1.9140 0.0060 

M= males 

For a quick look, it can be observed that total travel distance is highly significant associated 

with age of the person, gender, type of mode used, and average number of trips made. The 

distance decreases as age increases and males individuals have higher distances as 

compared to females.  

 

The parameter estimates obtained from this model were used to define the mean of the 

distribution of the original data, which was used for the whole exercise. The variance of the 

available cases was 4595.48 that make a standard error of 67.79.  

 

Generation of missingness was done in the original data to obtain missingness of 30% and 

50% levels under different missingness mechanisms. Multiple regression analysis was then 

done for complete cases, single mean imputed data, conditional mean imputed data, single 

and multiple PMM imputed data and, single and multiple GAM imputed data. 

 

Results from the whole exercise are presented in three parts based on the scenario of 

missingness models used and pattern described in the methodology. First part includes a 

scenario where missingness assumed to occur only in response and when a combined 

missingness model was used. Second part reports results when only a single missingness 

model was used and missingness occurred in response. The third part includes results when 

missingness is in covariate. Lastly, results on the effect of magnitude of coefficient of 

varaible (in missingness and fitted models) in missingness mechanism are reported.  
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4.3. Part I: Combined missingness models: Missingness in response 

This part summarizes results obtained from the missingness generated using the first 

scenario where two missingness models were combined. Overall missingness models with 

their corresponding vector of missingness indicators that were considered are as follows:  

)( 41312111011 yAVERPAgeSexexpitP ϕϕϕϕϕ ++++=  with )1,1(~ 11 PBR −  

 

and  )( 42322212022 yAVERPAgeSexexpitP ϕϕϕϕϕ ++++=  with )1,1(~ 22 PBR −  

 

The two vectors of missingness indicators, 1R and 2R  were combined (summed up) and the 

missing values were taken to the observation with value of 1=iR  in both vectors.  

 

Values of coefficients used in the missingness models described above for all mechanisms 

are reported in Table 2. 

  
Table 2: Values of coefficients used in the missingness models-1st scenario 

Mechanism Level Parameters model 1 Parameters model 2 

  
01ϕ  11ϕ  21ϕ  31ϕ  41ϕ  02ϕ  12ϕ  22ϕ  32ϕ  42ϕ  

MCAR 30% -1.5 -- -- -- -- 0.5 -- -- -- -- 

 50% 1.5 -- -- -- -- -0.45 -- -- -- -- 

MAR 30% -90.5 5 3 0.5 -- 47 37 -45.5 2 -- 

 50% -110.5 -9 2.85 0.5 -- 55 14 -40.5 2 -- 

MNAR 30% 1 21 4 1 -2 3 1 1 1 -3 

 50% 0.9 1 2 1 -2 -0.2 14.45 3 2 -3 

 

4.3.1. Analysis of the Original Data 

Results of the parameter estimates from the regression model fitted using the original data 

are presented in Table 3.  

 

Table 3: Parameter estimates, SE and 95% CI of the estimate for the Original Data 

Parameter Estimate SE LL UL LCI 

Intercept  15.444 3.0059 9.5525 21.3356 11.7831 

Sex (M=1) 13.775 1.8830 10.0843 17.4657 7.3814 

Age      0.015 0.0515 -0.086 0.1160 0.2020 

AVERP      5.9478 0.4772 5.0126 6.8831 1.8705 
 

From Table 3 it can be seen that, sex and average trips significantly increase the total 

travel distance of an individual. Age was found to be not significant.  

 

Since for this model complete data was used, these results will be referred to as true 

estimates. The variance of the response variable from the original data is 69.77, which is 

very similar to the one from the survey data.  



__________________________________________________________________ 19

4.3.2. Analysis after generation of missingness and apply imputation: Parametric 

methods 

Results of models fitted under each missingness mechanism and for each proportion of 

missingness are presented in Table 4, Table 5 and Table 6 and respective plots of 

probability of missing with covariates involved are presented in Figure 3 and Figure 4. 

 

i. MCAR 

Table 3a summarizes results of estimates from model using CC for 30% and 50% 

missingness level. For all variables, results of CC for the 30% missingness are quite close to 

those of the original data while those under 50% are different, which might indicate the 

effect of level of missingness in data (Table 4a). 

 
Table 4a: Parameter estimates, SE and CI for MCAR mechanism for CC-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL Estimate SE LL UL 

Intercept  14.791 3.5724 7.7891 21.793 17.9541 4.3056 9.5152 26.3932 

Sex (M=1) 13.79 2.2665 9.3476 18.2324 12.6192 2.6692 7.3877 17.8507 

Age      0.0215 0.0622 -0.1003 0.1434 0.0046 0.0739 -0.1403 0.14941 

AVERP      6.0878 0.5667 4.9771 7.1984 5.4769 0.6714 4.1610 6.7928 

 

For both levels (i.e. 30% and 50%) the SE were overestimated hence results to wider CI. CC 

analysis is easy to apply but the loss of information can results into bias results.  

 

After imputing the missing values, worse results were obtained when the missing values 

were replaced by the mean of the observed ones (Table 4b).  

 
Table4b: Parameter estimates, SE and CI for MCAR mechanism for SMI and PMM-II,-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL Estimate SE LL UL 

 SMI 

Intercept  22.8944 2.5223 17.9507 27.838 31.0857 2.1247 26.9214 35.2501 

Sex (M=1) 9.9032 1.5801 6.8063 13.0001 6.0696 1.3310 3.4609 8.6783 

Age      0.0215 0.0433 -0.0633 0.1063 -0.0023 0.0364 -0.0737 0.0692 

AVERP      4.3873 0.4004 3.6025 5.1720 2.7286 0.3373 2.0675 3.3897 

 CMI 

Intercept  16.1692 2.9396 10.4075 21.9309 15.7629 2.4698 10.9220 20.6037 

Sex (M=1) 11.2868 3.2262 4.9635 17.6101 16.6922 2.7106 11.3795 22.0049 

Age      0.0197 0.0430 -0.0647 0.1041 0.0070 0.0362 -0.0639 0.0779 

AVERP      5.7192 0.5719 4.5983 6.8401 6.0612 0.4805 5.1194 7.0029 

 PMM-II 

Intercept  12.5855 3.2066 6.2727 18.8984 19.0560 3.1644 12.8367 25.2752 

Sex (M=1) 12.8570 2.0244 8.8674 16.8467 10.9665 2.6023 5.4935 16.4395 

Age      0.0279 0.0563 -0.0833 0.1391 -0.0048 0.0587 -0.1216 0.1120 

AVERP      6.4711 0.4807 5.5289 7.4134 5.5636 0.5191 4.5391 6.5882 
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The parameter estimates and SEs are very small as compared to the true ones due to that 

confidence intervals for the estimates are very narrow and even lie between ones obtained 

from analysis of original data. Results from conditional mean imputation were better as 

compared to the SMI but there was overestimation of SEs for some covariates. Results of 

the MI method under 30% level were the best for this case, since estimates and SEs were 

closer to the true estimates than other methods, but this was not the case for the 50% level 

(Table 4b). Simulation study will be done to evaluate stability of these estimates. 

 

ii. MAR 

For the case of MAR mechanism, in the CC analysis, the estimates for other covariates 

except Age were close to the true ones for both levels of missingness. Estimates for age were 

overestimated (in magnitude) and even the significance status changes. This makes the CI 

far different from that of the original data (Table 5a) 

   

Table 5a: Parameter estimates, SE and CI for MAR mechanism for CC-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL Estimate SE LL UL 

Intercept  35.8340 5.4484 25.1552 46.5127 38.6119 8.1796 22.5798 54.6440 

Sex (M=1) 13.9963 2.2361 9.6136 18.3789 13.4138 2.6925 8.1364 18.6912 

Age      -0.3756 0.0909 -0.5537 -0.1975 -0.4371 0.1337 -0.6993 -0.1750 

AVERP      5.7447 0.5603 4.6466 6.8429 6.0169 0.6939 4.6568 7.3769 

 

Table 5b presents results of the estimates after employing different imputation methods to 

the missing values for both 30% and 50% levels of missingness.  

 
Table 5b: Parameter estimates, SE and CI for MAR mechanism for SMI, CMI and PMM-II,-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL Estimate SE LL UL 

 SMI 

Intercept  30.7252 2.4952 25.8347 35.6158 30.8805 2.1334 26.6991 35.0620 

Sex (M=1) 9.9735 1.5631 6.9099 13.0371 6.4923 1.3364 3.8728 9.1117 

Age      -0.1629 0.0428 -0.2467 -0.0790 -0.0820 0.0366 -0.1537 -0.0103 

AVERP      4.5670 0.3961 3.7907 5.3434 3.2555 0.3387 2.5917 3.9193 

 CMI 

Intercept  34.6982 2.9053 29.0039 40.3926 36.8752 2.4703 32.0334 41.7171 

Sex (M=1) 15.8711 3.1885 9.6217 22.1205 16.1774 2.7111 10.8636 21.4911 

Age      -0.3733 0.0425 -0.4566 -0.2899 -0.4323 0.0362 -0.5032 -0.3614 

AVERP      6.0283 0.5652 4.9205 7.1361 6.4466 0.4806 5.5047 7.3886 

 PMM-II 

Intercept  32.0028 7.4121 13.5901 50.4155 25.5148 14.3799 -13.0506 64.0803 

Sex (M=1) 13.9287 2.3035 9.2343 18.6230 11.8990 3.9449 2.5340 21.2640 

Age      -0.3210 0.1042 -0.5684 -0.0737 -0.2925 0.2504 -0.9649 0.3799 

AVERP      6.0479 0.6290 4.7367 7.3591 7.6313 0.7991 5.8531 9.4096 
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It can be seen that, for SMI method, the estimates and SEs were underestimated, different 

from what was observed in CC analysis. The underestimation was worse in the case of 50% 

level of missingness, which was the same case for MCAR. Since the estimates and the SEs 

are small, narrow CI was obtained. 

 

To improve results from SMI a conditional mean imputation was done. As one can see from 

Table 5b, the results were better compared to those obtained under SMI but there is still a 

problem in the estimation of Age parameters. However, compared the results with those 

obtained from OD, the SEs were overestimated for some of the variables like Sex. Though 

the underestimation of variability was reduced by use of CMI method, the method is still 

doing single imputation hence does not acknowledge the variability between possible values 

of the missing values. To correct for that multiple imputation method was employed.  

 

For the case of 30% missingness, the results for some of the estimates were close to those in 

the OD. Surprisingly, though best results were expected from this method, estimates for age 

are still different and highly overestimated. The SEs for this method were slightly higher 

than those under CC (Table 5b).  

 

Conditional probabilities of missingness for 30% and 50% were plotted with the respective 

covariates used to generate missingness and presented in Figure 4.  
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Figure 4: Probability of missingness by covariates under MAR -1st scenario 

 

From the plots it can be observed that, for age, the probability is very low at the lower ages 

and increases sharply at a certain age level. Actually, the pattern generated here shows 

that, almost all people with low ages (say up to 40 years) have a very high chance of being 

missing hence missing in our dataset. Almost the same kind of pattern is seen for the 

average trips. The patterns were similar for both levels of missingness. These patterns 

could be reasons for some of bad estimates obtained. 
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iii. MNAR 

Results obtained under MNAR were different as compared to other mechanisms. Estimates 

deviate from the true ones from CC analysis, which was not the case for other mechanisms.  

 

Results of all four models fitted and for both levels of missingness are presented in Table 6.  

 
Table 6: Parameter estimates, SE and CI for MNAR mechanism-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL Estimate SE LL UL 

 CC 

Intercept  -37.9590 2.8564 -43.5574 -32.3605 -47.4157 2.7803 -52.8652 -41.9663 

Sex (M=1) 10.8289 1.6925 7.5115 14.1462 6.3348 1.6770 3.0478 9.6217 

Age      0.7888 0.0467 0.6972 0.8804 0.5892 0.0448 0.5014 0.6769 

AVERP      3.5079 0.4557 2.6147 4.4011 2.8677 0.4703 1.9458 3.7896 

 SMI 

Intercept  -19.4319 1.9218 -23.1986 -15.6652 -27.4436 1.3590 -30.1073 -24.7799 

Sex (M=1) 7.7417 1.2039 5.3821 10.1013 3.4163 0.8513 1.7477 5.0850 

Age      0.5424 0.0330 0.4778 0.6070 0.3079 0.0233 0.2622 0.3536 

AVERP      2.1596 0.3051 1.5616 2.7575 1.1559 0.2157 0.7331 1.5788 

 CMI 

Intercept  -40.1496 2.2167 -44.4943 -35.8050 -48.4190 1.5613 -51.4791 -45.3589 

Sex (M=1) 14.8005 2.4327 10.0324 19.5686 8.2610 1.7134 4.9026 11.6193 

Age      0.7921 0.0325 0.7285 0.8557 0.5907 0.0229 0.5459 0.6355 

AVERP      4.1110 0.4312 3.2657 4.9562 3.1522 0.3037 2.5569 3.7475 

 PMM-II 

Intercept  -39.1002 2.8016 -44.8443 -33.3561 -48.1016 2.3510 -52.9169 -43.2862 

Sex (M=1) 10.7444 1.5836 7.5854 13.9035 5.8977 1.2496 3.4349 8.3604 

Age      0.8273 0.0391 0.7506 0.9040 0.6174 0.0404 0.5346 0.7002 

AVERP      3.4080 0.4445 2.4970 4.3191 2.9594 0.4505 1.9795 3.9393 

 

As it can be seen from Table 6, in all methods except CMI, estimates and SEs were either 

over or underestimated, with the worse situation occurred when mean was used to fill the 

missing values and when the proportion of missingness is large. Estimates of CMI are 

larger compared to other models but still not close to the true ones. No better results were 

obtained even when multiple imputation method was applied.  

 

The conditional probabilities for missingness were plotted with the covariates and the 

response values (Figure 5). The same pattern was observed for both 30% and 50% level.  
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Figure 5: Probability of missingness for each covariate under MNAR -1st scenario 

 

Almost the same pattern was observed for age and average trips, but now with some random 

trends for middle values. For the response, the probability is high at higher values and 

decreases sharply for lower ones. 

 

4.3.3. Simulation study: Parametric Imputation 

To evaluate the accuracy of the imputation procedures mentioned before, a simulation study 

was done with a total of 1000 runs. Summary results obtained for each of the missingness 

mechanism and for each level of missingness are presented in this section.  

 

i. MCAR  

Results of the estimates and SE obtained under simulation study for MCAR under 30% level 

of missingness are presented in Table 7a. Results are summarized for all methods. 

 

Table 7a: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MCAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  15.4963 3.6164 8.4081 22.5845 14.1764 24.3605 2.5137 19.4337 29.2873 9.8536 

Sex (M=1) 13.7184 2.2657 9.2776 18.1593 8.8817 9.4897 1.5747 6.4034 12.5761 6.1727 

Age      0.0151 0.0620 -0.1064 0.1367 0.2431 0.0105 0.0431 -0.0740 0.0950 0.1690 

AVERP      5.9364 0.5742 4.8111 7.0618 2.2507 4.1041 0.3990 3.3220 4.8863 1.5642 

 CMI PMM-II 

Intercept  14.9015 2.9291 9.1605 20.6425 11.4821 15.0487 3.3776 8.3183 21.7791 13.4608 

Sex (M=1) 14.8093 3.2146 8.5087 21.1099 12.6012 13.7003 2.1135 9.4895 17.9110 8.4215 

Age      0.0158 0.0429 -0.0682 0.0999 0.1681 0.0182 0.0578 -0.0969 0.1332 0.2301 

AVERP      6.0960 0.5698 4.9791 7.2129 2.2338 6.0398 0.5250 4.9984 7.0812 2.0828 

 

As it was observed under single analysis, results of the CC and SMI differ enormously for 

almost all covariates. The estimates and SE were lower for the case of SMI than in CC and 

the CI of SMI is almost within that of CC. Comparing the results with those of original data, 
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estimates of CC are much closer while estimates and SEs of SMI were underestimated. 

Estimates from CMI and PMM-II were good but the SEs were over estimated.  

 

In the CC scenario, the MASE value obtained was 5858.6 and the average variance of the 

response was 68.48, which is low compared to the one of the original data, which was 69.77. 

For the case of single mean imputation, the MASE value was 98,777.9, which is much higher 

than that of CC. The variance of the response was 57.26, which seems to be even lower than 

that obtained from CC. Moreover, for the cases of CMI and PMM-II the MASE values were 

11,263 and 11,640 respectively. The values are very close to each other and surprising higher 

than that of the CC. Despite the same values of estimates for other variables observed, the 

high values of MASE could be influenced by the underestimation of the estimates of the 

intercept observed hence shifted the fitted curve. This resulted to a new fitted curve of the 

same shape as that of OD but in different position hence makes the difference between the 

fitted values.   

 

The variance of response was 56.9 for CMI and 63.7 for PMM-II case. The implication of 

these results will be discussed later. For all samples, the average percentage of missingness 

was 30.89%.  

 

For the case of 50% missingness, the results obtained for the CC, CMI and PMM-II are 

almost similar to that of 30% missingness level (Table 7b). For the case of SMI estimates and 

SE are lower than those in 30% and much lower as compared to the ones obtained in the 

original data analysis. 

 
Table 7b: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MCAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  15.4118 4.2468 7.0880 23.7356 16.6476 29.8079 2.1465 25.6008 34.0150 8.4142 

Sex (M=1) 13.8219 2.6607 8.6069 19.0369 10.4300 6.9185 1.3446 4.2830 9.5540 5.2710 

Age      0.0155 0.0728 -0.1272 0.1583 0.2855 0.0079 0.0368 -0.0642 0.0801 0.1443 

AVERP      5.9524 0.6745 4.6303 7.2745 2.6442 2.9783 0.3407 2.3104 3.6462 1.3357 

 CMI PMM-II 

Intercept  14.8420 2.4915 9.9587 19.7254 9.7667 14.8755 3.5760 7.6396 22.1114 14.4718 

Sex (M=1) 14.8623 2.7343 9.5030 20.2216 10.7186 13.6332 2.2511 9.0694 18.1969 9.1275 

Age      0.0162 0.0365 -0.0553 0.0877 0.1430 0.0212 0.0614 -0.1032 0.1457 0.2489 

AVERP      6.1051 0.4847 5.1551 7.0551 1.9001 6.1043 0.5634 4.9663 7.2423 2.2760 

 



__________________________________________________________________ 25

MASE values for these models were 9,760; 250,505; 25,339; and 26,475 for CC, SMI, CMI, 

and PMM-II respectively. As it can be observed, MASE value for SMI is extremely high, 

showing poor performance of this method. Again for this case, the MASE values for CMI and 

PMM-II are very similar. The variance of the response variable for CC, SMI, CMI and PMM-

II data were 68.4, 48.9, 48.4 and 60.4 respectively. One can then see that, single imputation 

methods seriously underestimate variability in the data. For all samples, the average 

percentage missingness was 49.92%.  

 

ii. MAR  

Results summarized from the simulation study under MAR mechanism are reported in Table 

8a and 8b. There are clear differences between these results and those obtained under MCAR 

mechanism. In the case of 30% level of missingness, for some of covariates like age, the 

estimates are low and significant which was not the case in MCAR. For other covariates the 

results were almost similar as MCAR.  

 

When results were compared to those from original data, under CC and PMM-II, the 

estimates for age and average trips were very close though the SEs were overestimated. As it 

was seen in previous analysis, SMI still underestimates SEs and produces low estimates. A 

lot of fluctuation is still observed for estimates for Age. 

 

Table 8a: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  36.0270 5.4493 25.3464 46.7077 21.3613 30.8416 2.4970 25.9475 35.7357 9.7881 

Sex (M=1) 13.8182 2.2382 9.4314 18.2050 8.7736 9.8080 1.5642 6.7421 12.8738 6.1317 

Age      -0.3761 0.0910 -0.5544 -0.1978 0.3565 -0.1619 0.0428 -0.2458 -0.0780 0.1678 

AVERP      5.7262 0.5608 4.6271 6.8253 2.1982 4.5442 0.3964 3.7673 5.3211 1.5538 

 CMI PMM-II 

Intercept  34.8318 2.9075 29.1332 40.5305 11.3973 35.9916 6.8570 19.2656 52.7177 33.4521 

Sex (M=1) 15.7931 3.1909 9.5390 22.0472 12.5082 13.3860 2.8253 7.2134 19.5586 12.3452 

Age      -0.3735 0.0426 -0.4570 -0.2901 0.1669 -0.3714 0.1142 -0.6482 -0.0946 0.5536 

AVERP      6.0236 0.5656 4.9149 7.1322 2.2173 5.7478 0.7009 4.2275 7.2681 3.0407 

 

MASE values for CC, SMI, CMI and PMM-II were 88477.4, 124733.6, 378068.3 and 381980.9 

respectively. Based on the variability in the response value, the lowest SD obtained was  

56.5, which was under CMI. 
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For the case of 50%, similar trend of results was observed (Table 8b).  

 
Table 8b: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  40.6360 8.1456 24.6705 56.6014 31.9309 31.2899 2.1328 27.1097 35.4700 8.3604 

Sex (M=1) 13.7254 2.6864 8.4600 18.9908 10.5308 6.5909 1.3360 3.9722 9.2095 5.2373 

Age      -0.4684 0.1333 -0.7296 -0.2072 0.5224 -0.0862 0.0366 -0.1579 -0.0145 0.1434 

AVERP      5.9396 0.6926 4.5821 7.2971 2.7151 3.2298 0.3386 2.5662 3.8934 1.3272 

 CMI PMM-II 

Intercept  38.8822 2.4690 34.0429 43.7215 9.6786 41.2894 10.5349 13.8740 68.7047 54.8307 

Sex (M=1) 16.5212 2.7097 11.2102 21.8322 10.6220 14.3206 3.8010 5.3257 23.3155 17.9898 

Age      -0.4635 0.0361 -0.5343 -0.3926 0.1417 -0.5186 0.1756 -0.9742 -0.0630 0.9112 

AVERP      6.3728 0.4803 5.4314 7.3143 1.8829 6.5173 0.9234 4.3548 8.6798 4.3249 

 

Despite that MI method was expected to perform better, it showed to have the highest MASE 

value. The lowest MASE value was obtained under CC analysis (69845.65). However, the 

MASE values for CMI (617759.1) and that of PMM-II (854484.7) were very close. These 

results bring doubts on the imputation model used under MI method and/or influence of the 

missingness pattern. MASE value for SMI was 244573.9.  

 

iii. MNAR  

The same analysis was done for MNAR mechanism. For the 30% level of missingness, same 

results were obtained as it was observed for the single analysis (ref. Table 6). There was no 

clear trend on the estimates or the standard errors. Compared to the true estimates, in CC, 

SMI and PMM-II, the estimates for Sex and Average trips were underestimated while 

overestimated in the case of CMI. The estimates for Age were overestimated in all methods. 

Results for 30% level of missingness are summarized in the Table 9a.  

 

Table 9a: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MNAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  -37.9056 2.8571 -43.5056 -32.3056 11.1999 -19.3977 1.9243 -23.1693 -15.6260 7.5432 

Sex (M=1) 10.4657 1.6934 7.1466 13.7848 6.6381 7.5414 1.2055 5.1787 9.9041 4.7254 

Age      0.7915 0.0468 0.6998 0.8833 0.1835 0.5442 0.0330 0.4795 0.6089 0.1293 

AVERP      3.5368 0.4557 2.6436 4.4300 1.7864 2.1826 0.3055 1.5838 2.7813 1.1975 

 CMI PMM-II 

Intercept  -40.0630 2.2197 -44.4136 -35.7124 8.7012 -39.6721 2.4988 -44.6602 -34.6839 9.9763 

Sex (M=1) 14.3877 2.4360 9.6131 19.1624 9.5493 10.3195 1.5462 7.2415 13.3975 6.1560 

Age      0.7948 0.0325 0.7311 0.8585 0.1274 0.8448 0.0419 0.7616 0.9281 0.1665 

AVERP      4.1307 0.4318 3.2843 4.9770 1.6928 3.4364 0.4115 2.6069 4.2659 1.6591 
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Concerning MASE values, as it was expected, very high values were obtained for all analysis 

with the highest value obtained under PMM-II method (7296185). As it was the case for 

other mechanisms, the MASE value of CMI (7104445 ) and that of PMM-II were very close. 

MASE values for CC and SMI were 4124429 and 5868876 respectively. Variability in the 

response variable was checked using its standard deviation, this value was observed to be 

low for all methods. The highest was 51.53 and it was obtained under CC analysis, however, 

this was low compared to the original standard deviation. On average, the percentage of 

missingness was 29.9%. 

 

Things were worse for the 50% level of missingness. These results might be influenced by the 

too much missingness in the data together with the pattern (Table 9b).  

 
Table 9b: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from CC, SMI, CMI and PMM-II analysis under MNAR-1st scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 CC SMI 

Intercept  -47.8935 2.7834 -53.3491 -42.4380 10.9111 -27.6362 1.3592 -30.3002 -24.9721 5.3281 

Sex (M=1) 6.4562 1.6776 3.1680 9.7443 6.5763 3.4870 0.8515 1.8181 5.1559 3.3378 

Age      0.5957 0.0448 0.5080 0.6835 0.1756 0.3109 0.0233 0.2652 0.3565 0.0914 

AVERP      2.8989 0.4699 1.9779 3.8200 1.8421 1.1679 0.2158 0.7450 1.5908 0.8458 

 CMI PMM-II 

Intercept  -48.8002 1.5608 -51.8593 -45.7411 6.1182 -47.7576 2.4396 -52.8485 -42.6666 10.1820 

Sex (M=1) 8.1827 1.7129 4.8254 11.5400 6.7145 6.1945 1.4157 3.3099 9.0792 5.7693 

Age      0.5971 0.0229 0.5523 0.6419 0.0896 0.6053 0.0387 0.5265 0.6840 0.1576 

AVERP      3.1559 0.3036 2.5608 3.7510 1.1903 2.9756 0.4359 2.0313 3.9199 1.8886 

 

As it can be seen from Table 9b, for some covariates, SEs were highly underestimated 

especially when SMI was used. It was noticed that, even results from PMM-II were very 

different from the true ones in terms of parameters estimates for all covariates. 

Overestimation of the estimate for Age was real high. On the MASE values and the 

variability in the data, similar pattern as for the 30% level of missingness was obtained. 

Values were 7587264, 16109453, 17052868 and 16684080 for CC, SMI, CMI and PMM-II 

respectively. The average percentage of missingness for all samples was 50.2%.  

 



__________________________________________________________________ 28

4.3.4. Analysis after generation of missingness and apply imputation: 

Nonparametric method 

It can be observed that most of results obtained from parametric imputation methods were 

not very promising. There might be possibilities of misspecification of imputation models 

based on the data in hand or could be the effect of the observed pattern of missingness 

probabilities with some covariates. It was decided to apply single imputation in a 

nonparametric way to allow data to select the best model. Results of the GAMs, which are 

developed in a non-parametric way, are presented for each of the missingness mechanism 

(Table 10). 

 
Table 10: Estimates, SE, CI and LCI obtained from GAM study for 30% and 50% levels of missingness 

for all mechanisms-1st scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 MCAR 

Intercept  14.5371 2.5152 9.6072 19.4670 9.8597 15.9613 2.1280 11.7905 20.1322 8.3417 

Sex (M=1) 13.9560 1.5757 10.8678 17.0443 6.1766 13.0847 1.3331 10.4719 15.6975 5.2256 

Age      0.0200 0.0431 -0.0645 0.1046 0.1691 0.0169 0.0365 -0.0546 0.0884 0.1430 

AVERP      6.1481 0.3993 5.3655 6.9307 1.5652 5.8243 0.3378 5.1622 6.4864 1.3242 

 MAR 

Intercept  21.9941 2.4824 17.1285 26.8596 9.7311 38.2090 2.1114 34.0707 42.3473 8.2766 

Sex (M=1) 13.9113 1.5551 10.8633 16.9593 6.0960 13.3165 1.3227 10.7241 15.9089 5.1848 

Age      -0.1354 0.0426 -0.2189 -0.0520 0.1669 -0.4415 0.0362 -0.5124 -0.3705 0.1419 

AVERP      6.0880 0.3941 5.3156 6.8604 1.5448 6.2390 0.3352 5.5821 6.8960 1.3139 

 MNAR 

Intercept  -40.8651 1.8975 -44.5842 -37.1459 7.4383 -48.0488 1.3410 -50.6772 -45.4205 5.2567 

Sex (M=1) 10.8433 1.1887 8.5135 13.1732 4.6596 6.1419 0.8400 4.4954 7.7884 3.2930 

Age      0.8505 0.0325 0.7867 0.9143 0.1275 0.6103 0.0230 0.5652 0.6554 0.0901 

AVERP      3.6121 0.3012 3.0217 4.2025 1.1808 2.9281 0.2129 2.5108 3.3453 0.8345 

 

As it can be seen from Table 10, at the MCAR and MAR cases, the estimates for Sex and 

Average trips were very similar to the true ones. It was noticed that results were almost the 

same for both levels of missingness. As it was expected, no improvement on the estimates 

was observed when GAM was applied under MNAR mechanism.  

 

Figure 6 illustrates the values of MASE for each model fitted in MCAR and MAR 

missingness mechanism. It can be observed from the figures that, under MCAR, the CMI is 

doing worse as compared to other methods at both levels of missingness. The GAM has the 

best results followed by the CC. As it was seen before, performance of CMI and PMM-II were 

very similar (Figure 6). 
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a.       b.  

Figure 6: Plots of MASE to assess the accuracy of the imputation method used under a) 

MCAR and b) MAR-1st scenario 

 

For the case of MAR, the results were different. In this case, CMI and PMM-II methods had 

very bad results. GAM was doing well for the 30% missingness but not good when the 

missingness level is around 50%. Under this scenario, the CC analysis seems to be the best 

when the missingness is high (Figure 6).  

 

Plots of generated values and original data with covariates were plotted under MCAR and 

MAR mechanisms (Figure A, Appendix). For large values of Age, almost similar pattern was 

observed for both mechanisms but clearly a difference was seen for low values of Age in the 

imputed data in the MAR mechanism. From the plot of the fitted curve by Age, different 

curves were obtained for the smoothed model (GAM) and the linear model (Figure B, 

Appendix). From these plots it can be observed that, allowing the data to estimate the 

appropriate model, some of the patterns existing in the data that were not seen by 

parametric models were captured. 
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4.4. Part II: Single missingness model: missingness in response variable 

For this section the same exercise was repeated using the data with missingness generated 

from the second scenario. In this scenario single missingness model was used and it was 

defined as:  

)(expit 43210 yAVERPAgeSexP ϕϕϕϕϕ ++++=  

N.B: Components in the model change according to the corresponding missingness mechanism 

 

The vector of missingness indicators was then generated from )1,1(~ PBR − . Using this 

model different missingness patterns were obtained (as compared to ones in the first 

scenario) and it was our expectation to observe differences in the results obtained from 

different analyses performed.  

 

Values of coefficients used in the missingness model described above for all mechanisms are 

reported in Table 11. 

  
Table 11: Values of coefficients used in the missingness model-2nd scenario 

Mechanism Level Model parameters  

  
0ϕ  1ϕ  2ϕ  3ϕ  4ϕ  

MCAR 30% 0.89 -- -- -- -- 

 50% 0.005 -- -- -- -- 

MAR 30% 2.95 -0.005 -0.05 -0.005 -- 

 50% 1.97 -0.055 -0.05 0.005 -- 

MNAR 30% 1.5 2.05 2.15 0.02 -1 

 50% 1.5 2.05 1.05 0.02 -1 

 

Results of models fitted after employing different methods of imputation to the missing 

values together with the trend of Average Squared Error are reported here.  

 

i. MCAR 

Results of the complete cases analysis for the case of 30% level of missingness are presented 

in Table 12a.  

 

Table 12a: Estimates, SE, CI and LCI obtained for 30% and 50% levels of missingness from CC analysis 

under MCAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 30% missingness 50% missingness 

Intercept  14.7274 3.5770 7.7164 21.7384 14.0220 16.1553 4.2826 7.7613 24.5492 16.7880 

Sex (M=1) 12.8817 2.2424 8.4866 17.2768 8.7902 15.1438 2.6934 9.8648 20.4228 10.5581 

Age      0.0541 0.0613 -0.0660 0.1743 0.2403 0.0458 0.0730 -0.0973 0.1888 0.2862 

AVERP      5.8226 0.5715 4.7024 6.9427 2.2404 5.6715 0.6813 4.3360 7.0069 2.6709 
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Results of CC analysis under 30% level were very close to the true ones as it was a case for 

the 1st scenario. Slight overestimation of SE for the parameter Sex was observed. The same 

pattern of results was obtained for the case of 50% level of missingness. Value of ASE for CC 

was 2862.14 and was observed to be lower compared to those obtained after imputations. 

 

Tables 12b and 12c presents summary results of estimates obtained after imputing data 

using different imputation methods for 30% and 50% levels of missingness respectively. 

 
Table 12b: Estimates, SE, CI and LCI obtained for 30% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MCAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  23.6538 2.5177 18.7190 28.5885 9.8695 14.9728 2.5138 10.0457 19.9000 9.8542 

Sex (M=1) 9.0046 1.5772 5.9132 12.0959 6.1827 12.8938 1.5748 9.8072 15.9803 6.1731 

Age      0.0392 0.0432 -0.0455 0.1238 0.1692 0.0502 0.0431 -0.0343 0.1346 0.1690 

AVERP      4.0255 0.3997 3.2421 4.8089 1.5667 5.8092 0.3991 5.0270 6.5913 1.5643 

 PMM-I GAM-I 

Intercept  13.2903 3.0178 7.3754 19.2051 11.8296 15.0397 2.5136 10.1131 19.9663 9.8532 

Sex (M=1) 12.1341 1.8905 8.4288 15.8394 7.4106 12.8943 1.5746 9.8081 15.9806 6.1725 

Age      0.0687 0.0517 -0.0327 0.1702 0.2028 0.0506 0.0431 -0.0339 0.1351 0.1690 

AVERP      6.2092 0.4791 5.2702 7.1481 1.8779 5.7833 0.3990 5.0012 6.5654 1.5642 

 PMM-II GAM-II 

Intercept  14.4757 3.5924 7.2392 21.7122 14.4729 14.4096 5.3582 3.9075 24.9117 21.0041 

Sex (M=1) 12.0394 2.0337 8.0291 16.0498 8.0207 12.9766 3.4779 6.1599 19.7933 13.6334 

Age      0.0576 0.0588 -0.0596 0.1748 0.2344 0.0621 0.0736 -0.0822 0.2064 0.2885 

AVERP      5.9160 0.5286 4.8693 6.9628 2.0936 5.8249 0.7772 4.3016 7.3482 3.0466 

 

Results obtained under MCAR for 30% level of missingness under this scenario do not differ 

much from ones obtained under the 1st scenario. Except for SMI, which still presents worse 

results by underestimating estimates and SE, performance of other single imputation 

methods (i.e. CMI, PMM-I and GAM-I) is quite similar and good (estimates close to the true 

ones). However, there is slightly underestimation of SE for the case of CMI and GAM-I. 

Results of both multiple imputation methods (PMM-I and GAM-II) were very similar with 

good estimates though the SEs were overestimated for the case of GAM-II. ASE values SMI, 

CMI, PMM-I, PMM-II, GAM-I and GAM-II were 106922.7, 3599.8, 9501.9, 7479.9, 3838.9 

and 5064.9 respectively. It can be seen that, highest ASE value was obtained under SMI and 

the ASE values under parametric methods were lower than those under nonparametric ones.  

 

The same pattern of results was obtained for the case of 50% level of missingness, for both 

analyses after filling-in the data (Table 12c). There is still underestimating of parameters 
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and SEs when SMI was used. Other single methods were performing well though there was a 

slight underestimation of SEs. 

 

Table 12c: Estimates, SE, CI and LCI obtained for 50% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MCAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  30.8390 2.1666 26.5924 35.0857 8.4932 16.8266 2.1621 12.5889 21.0643 8.4754 

Sex (M=1) 7.7774 1.3573 5.1171 10.4376 5.3205 15.3446 1.3544 12.6900 17.9993 5.3093 

Age      0.0208 0.0372 -0.0520 0.0936 0.1456 0.0378 0.0371 -0.0348 0.1105 0.1453 

AVERP      2.8805 0.3439 2.2063 3.5546 1.3483 5.6379 0.3432 4.9652 6.3106 1.3454 

 PMM-I GAM-I 

Intercept  16.5797 3.0158 10.6686 22.4907 11.8221 16.2055 2.1628 11.9664 20.4446 8.4783 

Sex (M=1) 16.3435 1.8892 12.6406 20.0464 7.4058 15.3044 1.3549 12.6488 17.9600 5.3111 

Age      -0.0002 0.0517 -0.1015 0.1012 0.2027 0.0346 0.0371 -0.0381 0.1073 0.1454 

AVERP      5.8857 0.4787 4.9474 6.8241 1.8767 5.8736 0.3433 5.2006 6.5465 1.3459 

 PMM-II GAM-II 

Intercept  14.9151 4.0893 6.3709 23.4593 17.0885 15.5667 5.4321 4.9198 26.2136 21.2938 

Sex (M=1) 14.4181 1.9922 10.5028 18.3335 7.8307 15.3878 3.5258 8.4772 22.2984 13.8211 

Age      0.0778 0.0744 -0.0807 0.2363 0.3170 0.0462 0.0747 -0.1002 0.1926 0.2928 

AVERP      5.9394 0.6231 4.6540 7.2249 2.5709 5.9157 0.7879 4.3714 7.4600 3.0886 

 

ASE values have similar pattern. Values were 10240.2, 254314.6, 27545.5, 23525.8, 34100.7, 

26515, and 28040.6 for CC, SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II respectively. 

 

ii. MAR 

Results obtained under MAR are much better compared to ones obtained under the 1st 

scenario. For this case, estimates were closer to the true ones and same significance status 

was obtained for Age. Results of CC analysis for both levels are presented in Table 13a.  

  

Table 13a: Estimates, SE, CI and LCI obtained for 30% and 50% levels of missingness from CC analysis 

under MAR-2nd scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  12.6057 3.5061 5.7337 19.4776 13.7439 12.1372 4.1333 4.0359 20.2385 16.2026 

Sex (M=1) 13.8753 2.2833 9.4001 18.3505 8.9504 16.3314 2.7416 10.9578 21.7049 10.7471 

Age      0.1191 0.0674 -0.0131 0.2512 0.2643 0.1636 0.0817 0.0033 0.3238 0.3205 

AVERP      5.8386 0.5750 4.7117 6.9656 2.2538 5.0682 0.6868 3.7221 6.4143 2.6922 

 

From Table 13a, it can be seen that estimates for the case of 30% were closer to the true ones 

than those of 50% level, which were bit larger. There was more over estimation of SEs for the 

case of 50% level hence wider CI. ASE value for 30% was 12225.1 and for 50% was 29814.5.  

Results obtained after applying imputations to the missing values using different methods 

for 30% level, are summarized in Table 13b.  
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Table 13b: Estimates, SE, CI and LCI obtained for 30% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  21.5922 2.5415 16.6109 26.5736 9.9627 14.8832 2.5343 9.9160 19.8503 9.9343 

Sex (M=1) 9.5164 1.5921 6.3959 12.6369 6.2410 13.9765 1.5876 10.8649 17.0882 6.2233 

Age      0.0883 0.0436 0.0028 0.1737 0.1708 0.0468 0.0435 -0.0384 0.1319 0.1703 

AVERP      4.1307 0.4035 3.3399 4.9215 1.5815 5.7900 0.4023 5.0015 6.5785 1.5770 

 PMM-I GAM-I 

Intercept  10.9939 3.0259 5.0632 16.9246 11.8614 14.8939 2.5334 9.9284 19.8594 9.9310 

Sex (M=1) 14.7323 1.8955 11.0171 18.4476 7.4305 14.0294 1.5870 10.9188 17.1400 6.2212 

Age      0.1298 0.0519 0.0281 0.2315 0.2034 0.0348 0.0434 -0.0504 0.1199 0.1703 

AVERP      5.8193 0.4803 4.8779 6.7608 1.8829 5.8987 0.4022 5.1104 6.6869 1.5765 

 PMM-II GAM-II 

Intercept  12.4538 3.7839 4.7565 20.1511 15.3945 14.2553 5.4303 3.6119 24.8987 21.2868 

Sex (M=1) 14.0027 2.2573 9.4705 18.5348 9.0642 14.1127 3.5247 7.2043 21.0211 13.8168 

Age      0.1032 0.0623 -0.0221 0.2285 0.2506 0.0464 0.0746 -0.0998 0.1926 0.2924 

AVERP      5.9816 0.5136 4.9714 6.9917 2.0203 5.9408 0.7876 4.3971 7.4845 3.0874 

 

It can be observed from Table 13b that, SMI still had worse performance with low estimates 

and Ses, and highest value of ASE (103213.5). Other single imputation methods performed 

quite well with best results obtained under GAM-I procedure. ASE values for other methods 

were 2773.2, 25725.1, 16472.2, 1047.3 and 2134.5 for CMI, PMM-I, PMM-II, GAM-I and 

GAM-II respectively. Similarly, comparing results obtained under MI methods, the best 

results were obtained when nonparametric method was used.  

 

Some differences were observed for the case of 50% level of missingness. The obtained results 

are summarized in Table 13c.  

 

Table 13c: Estimates, SE, CI and LCI obtained for 50% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  27.8769 2.1925 23.5795 32.1743 8.5947 18.2592 2.1914 13.9641 22.5542 8.5901 

Sex (M=1) 7.8006 1.3735 5.1086 10.4927 5.3841 16.5246 1.3728 13.8340 19.2152 5.3812 

Age      0.0741 0.0376 0.0004 0.1477 0.1474 -0.0338 0.0376 -0.1074 0.0399 0.1473 

AVERP      2.5643 0.3481 1.8821 3.2465 1.3644 5.0681 0.3479 4.3863 5.7499 1.3636 

 PMM-I GAM-I 

Intercept  12.9152 3.1048 6.8299 19.0005 12.1706 17.5686 2.1913 13.2737 21.8636 8.5899 

Sex (M=1) 15.3798 1.9449 11.5677 19.1919 7.6242 16.6794 1.3727 13.9888 19.3699 5.3811 

Age      0.0935 0.0532 -0.0108 0.1979 0.2087 -0.0330 0.0376 -0.1067 0.0406 0.1473 

AVERP      5.6076 0.4929 4.6415 6.5736 1.9320 5.2554 0.3479 4.5736 5.9372 1.3636 

 PMM-II GAM-II 

Intercept  13.4046 4.3496 4.1940 22.6152 18.4211 16.9211 5.5079 6.1256 27.7166 21.5910 

Sex (M=1) 17.0660 2.7918 11.1070 23.0250 11.9180 16.7639 3.5750 9.7569 23.7709 14.0140 

Age      0.0502 0.0856 -0.1394 0.2399 0.3793 -0.0213 0.0757 -0.1697 0.1271 0.2967 

AVERP      5.6762 0.6830 4.2349 7.1175 2.8825 5.2981 0.7990 3.7321 6.8641 3.1321 
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As it was observed for other cases, SMI method had very low estimates and SEs as compared 

to the true ones. The CMI, PMM-I and GAM-I results were better than SMI though there 

was still underestimation of SEs in some of the methods. Performance of both multiple 

imputation methods was good (Table 13c).  

 

Almost similar pattern was obtained in terms of ASE values as it was a case under 30% 

level. For SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II the ASE values were 290897.2, 

32345.6, 18053.0, 18899.6, 26795.5 and 24785.7 respectively. 

 

The conditional missingness probabilities were plotted with age and average trips (by 

gender) and the plots are presented in Figure 7.   

 

As it can be seen from Figure 7, the 

probability changes gradually with 

Age and is not as steep as the one 

obtained under the 1st scenario. This 

pattern could influence the 

performance of imputation methods 

used as it was reflected in the results. 

Same pattern was obtained for both 

missingness levels. 

 

Figure 7: Plots for conditional probability with covariates for MAR-2nd scenario 

 

For the stability of the estimates, simulation study will be performed. 

 

iii. MNAR 

In this section results obtained under MNAR mechanism are presented. As it was the case in 

the 1st scenario, results were worse from the CC analysis for both levels. Most of the 

estimates and SEs were very low as compared to the true ones (Table 14a).  

 
Table 14a: Estimates, SE, CI and LCI obtained for 30% and 50% levels of missingness from CC analysis 

under MNAR-2nd scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  -37.1589 2.8997 -42.8424 -31.4755 11.3669 -47.1470 2.8069 -52.6486 -41.6454 11.0032 

Sex (M=1) 6.2805 1.7123 2.9243 9.6367 6.7124 5.0356 1.6879 1.7274 8.3439 6.6165 

Age      0.8434 0.0478 0.7498 0.9370 0.1872 0.6261 0.0451 0.5376 0.7145 0.1768 

AVERP      3.3161 0.4631 2.4084 4.2239 1.8155 2.5072 0.4774 1.5716 3.4428 1.8712 

2 0 4 0 6 0 8 0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A g e

c
o

n
d

it
io

n
a

l 
m

is
s
in

g
 p

ro
b

a
b

il
it
y

5 1 0 1 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A ve ra g e  tr ip s

c
o

n
d

it
io

n
a

l 
m

is
s
in

g
 p

ro
b

a
b

il
it
y



__________________________________________________________________ 35

Generally for all cases, very high values of ASE were obtained. The lowest values were  

obtained under CC analyses, which were 4131147 for 30% level and 7549357 for 50% level. 

This indicates poor performance of all methods under this missingness mechanism.  

 

Tables 14b and 14c summarize results obtained after imputing the missing values for 30% 

and 50% level respectively. All methods produced estimates that were very different (low) 

when compared to the true ones and SE were underestimated. 

 
Table 14b: Estimates, SE, CI and LCI obtained for 30% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MNAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -18.1424 1.9372 -21.9393 -14.3455 7.5939 -40.9173 1.9160 -44.6726 -37.1620 7.5106 

Sex (M=1) 4.9846 1.2135 2.6060 7.3631 4.7571 6.2552 1.2002 3.9027 8.6077 4.7050 

Age      0.5681 0.0332 0.5030 0.6332 0.1302 0.9266 0.0329 0.8622 0.9910 0.1288 

AVERP      1.9958 0.3075 1.3930 2.5985 1.2055 3.3814 0.3042 2.7853 3.9776 1.1923 

 PMM-I GAM-I 

Intercept  -38.4622 2.2236 -42.8205 -34.1039 8.7166 -40.9021 1.9145 -44.6544 -37.1497 7.5047 

Sex (M=1) 6.6485 1.3930 3.9182 9.3787 5.4604 6.3124 1.1993 3.9618 8.6630 4.7012 

Age      0.8831 0.0381 0.8084 0.9578 0.1495 0.9223 0.0328 0.8580 0.9867 0.1287 

AVERP      3.2245 0.3530 2.5327 3.9164 1.3837 3.4245 0.3039 2.8288 4.0201 1.1913 

 PMM-II GAM-II 

Intercept  -39.5711 2.3807 -44.2621 -34.8802 9.3819 -41.3818 4.0815 -49.3815 -33.3821 15.9995 

Sex (M=1) 6.0217 1.5439 2.9622 9.0811 6.1189 6.3750 2.6491 1.1828 11.5672 10.3845 

Age      0.9102 0.0420 0.8272 0.9933 0.1661 0.9311 0.0561 0.8211 1.0411 0.2199 

AVERP      3.2372 0.3609 2.5293 3.9451 1.4157 3.4561 0.5921 2.2956 4.6166 2.3210 

 

Underestimation of the estimates and SEs was extremely high for the case of 50% level of 

missingness (Table 14c).  

 

Table 14c: Estimates, SE, CI and LCI obtained for 50% levels of missingness from SMI, CMI, PMM-I, 

PMM-II, GAM-I and GAM-II analysis under MNAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -27.1151 1.3640 -29.7884 -24.4417 5.3467 -48.1423 1.3436 -50.7759 -45.5088 5.2671 

Sex (M=1) 2.8164 0.8544 1.1417 4.4911 3.3494 4.8764 0.8417 3.2267 6.5262 3.2995 

Age      0.3256 0.0234 0.2797 0.3714 0.0917 0.6537 0.0230 0.6086 0.6989 0.0903 

AVERP      0.9795 0.2165 0.5552 1.4039 0.8488 2.5784 0.2133 2.1603 2.9964 0.8361 

 PMM-I GAM-I 

Intercept  -44.7976 1.8666 -48.4560 -41.1391 7.3170 -47.9423 1.3437 -50.5761 -45.3086 5.2675 

Sex (M=1) 3.8186 1.1693 1.5268 6.1105 4.5837 4.8761 0.8418 3.2262 6.5260 3.2998 

Age      0.6117 0.0320 0.5489 0.6744 0.1255 0.6507 0.0230 0.6055 0.6958 0.0903 

AVERP      2.3030 0.2963 1.7223 2.8838 1.1615 2.5613 0.2133 2.1432 2.9794 0.8362 

 PMM-II GAM-II 

Intercept  -47.5519 2.0833 -51.6891 -43.4146 8.2744 -48.3426 -48.3426 -55.0101 -41.6751 13.3351 

Sex (M=1) 5.2504 1.3209 2.6206 7.8802 5.2596 4.9284 4.9284 0.6005 9.2563 8.6558 

Age      0.6387 0.0416 0.5526 0.7247 0.1721 0.6580 0.6580 0.5665 0.7495 0.1831 

AVERP      2.6750 0.3807 1.8905 3.4595 1.5690 2.5877 2.5877 1.6206 3.5548 1.9341 
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In terms of ASE, the highest values were obtained from CMI and nonparametric methods 

implying poor performance. Actual ASE values for all methods under 30% level of 

missingness were SMI (5925395), CMI (7723129), PMM-I (7456308), PMM-II (7666275), 

GAM-I (7692435) and GAM-II (7713957) while those under 50% level were  SMI (16135365), 

CMI (17208642), PMM-I (17078522), PMM-II (16839854), GAM-I (17192571) and GAM-II 

(17201508). For better assessment simulation study will be performed.  

 

Plots of missingness probabilities with covariates and response, are presented in Figure 8. 
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Figure 8: Plots for conditional probability with covariates for MNAR-2nd scenario 

 

As it can be observed from Figure 8, there is a clear pattern of missingness as far as the 

response and age are concerned. For instance for the response, individuals with low values 

have higher chance to be missing as compared to those who had high values.  

 

Table 15 presents values of variance and bias2 decomposed from ASE under the 2nd scenario, 

for all methods, mechanisms and both levels of missingness. 

 
Table 15: Bias-variance decomposition based on the CC and imputation methods used – 2nd scenario 

Estimate % Miss CC SMI CMI PMM-I PMM-II GAM-I GAM-II 

  MCAR 

Variance  170.16 82.54 171.11 185.38 170.86 169.97 172.61 

Bias2 
30% 

0.0084 0.015 0.0018 0.0007 0.0975 0.0024 0.0017 

Variance  184.2 46..85 180.4 199.15 188.0 190.5 193.2 

Bias2 
50% 

2.72 2.74 3.96 2.72 4.98 4.23 4.26 

  MAR 

Variance  184.37 89.74 177.34 187.72 188.17 182.44 185.08 

Bias2 
30% 

0.167 0.141 0.052 0.0064 0.4861 0.033 0.036 

Variance  170.57 41.74 166.77 181.07 195.98 175.5 177.58 

Bias2 
50% 

0.196 0.11 0.62 0.028 0.0064 0.49 0.48 

  MNAR 

Variance  270.34 126.64 331.86 304.02 317.97 330.43 336.70 

Bias2 
30% 

854.9 929.9 1134.04 1107.24 1127.10 1132.10 1131.69 

Variance  159.78 40.42 169.62 144.93 166.01 168.01 171.75 

Bias2 
50% 

2675.2 2881.1 3039.7 3020.5 2981 3037.7 3037.2 
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It can be observed from Table 15 that, under MCAR mechanism PMM-I method had the 

lowest bias in both levels of missingness while the highest bias was observed under PMM-II 

method. The SMI method still present lowest variance estimate for both missigness levels. 

Meanwhile, for the case of MAR the method with highest variability was PMM-II for both 

missingness levels, and PMM-II had lowest bias for the case of 50% level. In MNAR 

mechanism, CC and SMI analyses had better results in terms of bias, though high values of 

bias obtained suggest poor perfromance. 

 

4.4.1. Simulation study: second scenario 

To assess the stability of the results obtained under single analysis, a simulation study was 

done. A total of 200 runs were obtained for each of the analysis/ imputation method used and 

the results were averaged. To assess the efficiency of the imputation method used, the values 

of MASE obtained from each analysis were plotted and compared. Results are presented for 

each of the missingness mechanism. These results reported the average of estimates and SE 

over all simulations.  

 

i. MCAR 

Table 16a summarizes results of the CC analysis obtained from simulation study for both 

levels of missingness.  

 

Table 16a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MCAR-2nd scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  15.6643 3.5729 8.6613 22.6672 14.0060 15.4371 4.2515 7.1041 23.7700 16.6658 

Sex (M=1) 13.7338 2.2379 9.3476 18.1201 8.7725 13.7643 2.6631 8.5447 18.9839 10.4393 

Age      0.0118 0.0613 -0.1083 0.1319 0.2402 0.0186 0.0729 -0.1243 0.1615 0.2858 

AVERP      5.9397 0.5672 4.8281 7.0513 2.2232 5.9170 0.6746 4.5948 7.2391 2.6443 

 

Results obtained under CC analysis were very similar for both cases and estimates were very 

close to the true ones. However, the SEs were over estimated for both cases.  
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Results obtained after imputing the missing values using different methods are presented in 

Table 16b and 16c for the case of 30% level and 50% level respectively. 

 
Table 16b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MCAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  23.9970 2.5434 19.0120 28.9821 9.9702 15.6537 2.5368 10.6816 20.6259 9.9443 

Sex (M=1) 9.7396 1.5933 6.6167 12.8625 6.2457 13.7259 1.5892 10.6112 16.8407 6.2295 

Age      0.0082 0.0436 -0.0773 0.0937 0.1710 0.0122 0.0435 -0.0730 0.0975 0.1705 

AVERP      4.2073 0.4038 3.4160 4.9987 1.5827 5.9384 0.4027 5.1490 6.7277 1.5786 

 PMM-I GAM-I 

Intercept  15.2805 3.0033 9.3940 21.1669 11.7729 15.5245 2.5370 10.5520 20.4970 9.9450 

Sex (M=1) 13.7149 1.8814 10.0274 17.4024 7.3750 13.7482 1.5893 10.6332 16.8632 6.2300 

Age      0.0161 0.0515 -0.0849 0.1170 0.2019 0.0124 0.0435 -0.0729 0.0976 0.1705 

AVERP      6.0476 0.4768 5.1131 6.9820 1.8689 5.9728 0.4027 5.1834 6.7621 1.5787 

 PMM-II GAM-II 

Intercept  15.1416 3.3545 8.5668 21.7164 13.1496 14.8914 5.3822 4.3423 25.4405 21.0982 

Sex (M=1) 13.7893 2.1083 9.6571 17.9215 8.2644 13.8308 3.4935 6.9836 20.6780 13.6944 

Age      0.0166 0.0572 -0.0955 0.1288 0.2242 0.0239 0.0740 -0.1211 0.1688 0.2899 

AVERP      6.0469 0.5284 5.0113 7.0825 2.0712 6.0145 0.7806 4.4845 7.5446 3.0601 

 

It can be seen from Table 16b that, SMI underestimate the estimates and the SEs for the 

parameters. Other single imputation methods perform well though there was a slight 

underestimation of SE when CMI and GAM-I were used. For MI methods, the best results 

were obtained under PMM-II. Estimates under GAM-II were very close to the true ones but 

the SEs were overestimated. Moreover, SMI, CMI and GAM methods underestimate the 

variability in the response. Similar pattern of results was obtained for the case of 50% level 

of missingness (Table 16c).  

 
Table 16c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MCAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  29.8184 2.1479 25.6086 34.0283 8.4197 15.4501 2.1433 11.2493 19.6509 8.4017 

Sex (M=1) 6.8789 1.3455 4.2417 9.5161 5.2745 13.7808 1.3426 11.1492 16.4123 5.2631 

Age      0.0095 0.0368 -0.0627 0.0817 0.1444 0.0187 0.0368 -0.0534 0.0907 0.1441 

AVERP      2.9648 0.3410 2.2965 3.6331 1.3366 5.9115 0.3402 5.2446 6.5784 1.3337 

 PMM-I GAM-I 

Intercept  15.0643 3.0016 9.1811 20.9475 11.7664 15.1955 2.1433 10.9946 19.3964 8.4018 

Sex (M=1) 13.4647 1.8803 9.7792 17.1501 7.3709 13.8165 1.3427 11.1849 16.4481 5.2632 

Age      0.0196 0.0515 0.0812 0.1205 0.2018 0.0190 0.0368 -0.0530 0.0910 0.1441 

AVERP      6.0863 0.4765 5.1524 7.0203 1.8679 5.9797 0.3402 5.3128 6.6466 1.3337 

 PMM-II GAM-II 

Intercept  14.9821 3.6042 7.9179 22.0463 14.1284 14.5623 5.3830 4.0115 25.1130 21.1015 

Sex (M=1) 13.5791 2.2485 9.1721 17.9861 8.8140 13.8991 3.4940 7.0508 20.7474 13.6966 

Age      0.0218 0.0616 -0.0989 0.1425 0.2413 0.0305 0.0740 -0.1145 0.1755 0.2899 

AVERP      6.0716 0.5590 4.9760 7.1672 2.1912 6.0214 0.7808 4.4912 7.5517 3.0606 
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One shouldn’t rely on the averaged values but rather study distribution of estimates and 

standard errors obtained under the simulation for better comparison of the imputation 

methods. For this case boxplots were plotted for each parameter (Figure 9). True estimates 

(SE) for sex, age and AVERP were 13.78 (1.88), 0.015 (0.05) and 5.95 (0.48) respectively.  
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Figure 9: Boxplots of simulated estimates and SE for each parameter under MCAR- 2nd 

scenario 

 

It can be seen that, SMI performs worse in terms of estimates and GAM-II is doing bad in 

terms of SE of the estimates. The performance in the SEs might be influenced by the 

fluctuation (increase) of the variability in the multiple imputed response values.  

 

For assessment of the accuracy of the imputation methods, plot of MASE values obtained for 

each analysis were plotted (Figure 10). 
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Figure 10: MASE values for different analysis under MCAR- 2nd scenario 
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It can be seen from Figure 10 that SMI performs poorly compared to other methods. Despite 

bad performance of GAM-II in terms of SEs for the estimates, its performance in terms of 

MASE is quite well. This tells us that the difference between the filled-in values (under 

GAM-II) and their corresponding mean is quite similar to that of OD (recall calculations of 

coefficients in regression model) thus makes the estimates similar hence closer fitted curve. 

Boxplots of simulated MASE-values for the different methods can be seen in Figure C, 

Appendix. 

 

ii. MAR 

Results obtained under MAR for different analysis done are presented in Tables 17a, 17b and 

17c.  

 
Table 17a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MAR-2nd scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  12.7951 3.4681 5.9977 19.5926 13.5949 10.3488 3.9704 2.5668 18.1308 15.5640 

Sex (M=1) 13.8973 2.2630 9.4619 18.3328 8.8709 14.0288 2.6690 8.7976 19.2601 10.4626 

Age      0.1176 0.0658 -0.0114 0.2466 0.2580 0.2008 0.0804 0.0432 0.3585 0.3152 

AVERP      5.7761 0.5693 4.6603 6.8918 2.2315 5.6999 0.6691 4.3885 7.0114 2.6229 

 

Again for CC results were quite similar for both levels of missingness. Except for Age, 

estimates for other covariates were close to the true ones though SEs were overestimated 

(Table 17a).  

 

There was a lot of improvement on the estimation of parameters for Age after imputing the 

missing values compared to CC analysis. Results for both levels are summarized in Tables 

17b and 17c.  

 
Table 17b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  21.7989 2.5250 16.8500 26.7478 9.8978 15.9520 2.5176 11.0175 20.8866 9.8692 

Sex (M=1) 9.4248 1.5817 6.3246 12.5250 6.2004 13.9044 1.5772 10.8132 16.9956 6.1824 

Age      0.0898 0.0433 0.0049 0.1746 0.1697 0.0148 0.0432 -0.0698 0.0994 0.1692 

AVERP      4.0785 0.4008 3.2929 4.8641 1.5712 5.7980 0.3997 5.0146 6.5813 1.5667 

 PMM-I GAM-I 

Intercept  14.7496 3.0044 8.8610 20.6383 11.7773 15.9389 2.5177 11.0042 20.8736 9.8694 

Sex (M=1) 13.6963 1.8821 10.0074 17.3852 7.3778 13.9327 1.5772 10.8414 17.0240 6.1826 

Age      0.0374 0.0515 -0.0636 0.1384 0.2019 0.0101 0.0432 -0.0745 0.0948 0.1692 

AVERP      5.9804 0.4769 5.0456 6.9152 1.8696 5.8470 0.3997 5.0636 6.6303 1.5667 

 PMM-II GAM-II 

Intercept  14.7228 3.3317 8.1928 21.2528 13.0601 15.3052 5.3888 4.7431 25.8673 21.1242 

Sex (M=1) 13.7012 2.1121 9.5616 17.8409 8.2793 14.0154 3.4977 7.1598 20.8710 13.7111 

Age      0.0406 0.0618 -0.0805 0.1618 0.2423 0.0217 0.0741 -0.1235 0.1668 0.2903 

AVERP      5.9666 0.5304 4.9270 7.0062 2.0792 5.8888 0.7816 4.3568 7.4208 3.0640 
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As it can be seen from Table 17b, SMI still presents worse results with very low estimates 

and SEs as compared to the true ones and even changes the significance status for Age. 

Other single imputation methods were performing well with very similar results obtained 

between CMI and GAM-I. Multiple imputation methods perform best in terms of both, 

estimates and SEs.  

 

Few differences were observed under 50% level. Underestimation of SEs under single 

imputation methods was a bit high as compared to 30% level.  

 

Table 17c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  26.3429 2.1549 22.1193 30.5665 8.4472 15.8234 2.1496 11.6103 20.0366 8.4263 

Sex (M=1) 6.7440 1.3499 4.0981 9.3898 5.2917 14.0661 1.3466 11.4268 16.7054 5.2786 

Age      0.1018 0.0370 0.0294 0.1743 0.1448 0.0201 0.0369 -0.0522 0.0923 0.1445 

AVERP      2.9582 0.3421 2.2877 3.6287 1.3410 5.7442 0.3412 5.0754 6.4130 1.3376 

 PMM-I GAM-I 

Intercept  13.3912 3.0064 7.4987 19.2837 11.7850 15.8196 2.1500 11.6057 20.0336 8.4279 

Sex (M=1) 13.4574 1.8833 9.7661 17.1487 7.3826 14.0995 1.3468 11.4597 16.7393 5.2796 

Age      0.0870 0.0516 -0.0140 0.1881 0.2021 0.0119 0.0369 -0.0604 0.0841 0.1445 

AVERP      5.9657 0.4772 5.0303 6.9011 1.8708 5.8263 0.3413 5.1573 6.4952 1.3379 

 PMM-II GAM-II 

Intercept  13.2758 3.6219 6.1768 20.3747 14.1979 15.1853 5.3937 4.6136 25.7570 21.1434 

Sex (M=1) 13.4803 2.3409 8.8920 18.0686 9.1765 14.1823 3.5009 7.3206 21.0441 13.7235 

Age      0.0910 0.0712 -0.0485 0.2306 0.2790 0.0234 0.0741 -0.1219 0.1687 0.2905 

AVERP      5.9651 0.5839 4.8208 7.1095 2.2888 5.8681 0.7823 4.3347 7.4015 3.0668 

 

Similarly, MI methods had better results with best estimates obtained under nonparametric 

method (i.e. GAM-II). For clear evaluation of the performance of methods used, Figure 11 

presents the distribution of parameter estimates and SEs obtained for each analysis in the 

simulation runs. 
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Figure 11: Boxplots of simulated estimates and SE for each parameter under MAR- 2nd 

scenario 

 

Estimates from SMI were very different from other methods and the SEs from 

nonparametric multiple imputation method were higher than those from other methods. 

Figure 12 shows the MASE values for the different methods used. 
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Figure 12: MASE values for different analysis under MAR- 2nd scenario 

 

Performance of all methods except SMI was quite well under 30% level of missingness but 

differs when the level of missingness increases. Boxplots of MASE-values can be seen in 

Figure D, Appendix. 
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iii. MNAR 

As it was observed in the single analysis, results obtained under MNAR case were not very 

promising. The estimates and SEs were biased from the CC analysis. Summarize results are 

presented in Table 18a, 18b and 18c.  

  

Table 18a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MNAR-2nd scenario 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  -37.2121 2.8955 -42.8873 -31.5370 11.3503 -47.4749 2.8058 -52.9743 -41.9755 10.9989 

Sex (M=1) 6.1717 1.7113 2.8174 9.5259 6.7085 4.9220 1.6875 1.6145 8.2295 6.6150 

Age      0.8412 0.0477 0.7477 0.9347 0.1870 0.6272 0.0451 0.5389 0.7155 0.1767 

AVERP      3.3705 0.4624 2.4641 4.2768 1.8127 2.5696 0.4759 1.6368 3.5025 1.8656 

 

In both missingness levels, there was a highly overestimation of Age parameters and Sex, 

while parameters for AVERP were underestimated.  

 

Even after imputing the missing values, no improvement was seen rather the results were 

still poor. The estimates and SEs were still very low for all methods for both levels of 

missingness (Table 18b and 18c) 

 

Table 18b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MNAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -18.2426 1.9360 -22.0371 -14.4481 7.5890 -40.8957 1.9146 -44.6483 -37.1430 7.5054 

Sex (M=1) 4.9477 1.2128 2.5706 7.3247 4.7540 6.1379 1.1994 3.7871 8.4887 4.7017 

Age      0.5672 0.0332 0.5022 0.6323 0.1301 0.9233 0.0328 0.8590 0.9877 0.1287 

AVERP      2.0303 0.3073 1.4280 2.6327 1.2047 3.4311 0.3039 2.8354 4.0268 1.1914 

 PMM-I GAM-I 

Intercept  -39.3324 2.2138 -43.6714 -34.9933 8.6781 -40.8859 1.9131 -44.6356 -37.1361 7.4995 

Sex (M=1) 5.8875 1.3868 3.1693 8.6057 5.4363 6.1925 1.1985 3.8435 8.5415 4.6980 

Age      0.9020 0.0380 0.8276 0.9764 0.1488 0.9189 0.0328 0.8546 0.9832 0.1286 

AVERP      3.3097 0.3514 2.6209 3.9985 1.3776 3.4774 0.3037 2.8821 4.0726 1.1905 

 PMM-II GAM-II 

Intercept  -39.3365 2.5074 -44.2511 -34.4219 9.8292 -41.3653 4.0791 -49.3604 -33.3703 15.9901 

Sex (M=1) 5.9068 1.5308 2.9065 8.9071 6.0007 6.2551 2.6475 1.0659 11.4442 10.3783 

Age      0.9032 0.0422 0.8204 0.9859 0.1655 0.9276 0.0561 0.8177 1.0375 0.2198 

AVERP      3.2858 0.4107 2.4809 4.0907 1.6098 3.5090 0.5917 2.3492 4.6688 2.3195 

 

All methods underestimate the variability of the response values to almost 50% less. Plot of 

all standard deviations obtained for all analysis from MCAR to MNAR case can be seen in 

Figure E, Appendix. 
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Table 18c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MNAR-2nd scenario 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -27.2845 1.3614 -29.9528 -24.6161 5.3366 -48.3713 1.3406 -50.9990 -45.7436 5.2553 

Sex (M=1) 2.7358 0.8528 1.0642 4.4073 3.3431 4.7543 0.8398 3.1082 6.4003 3.2922 

Age      0.3256 0.0233 0.2798 0.3713 0.0915 0.6530 0.0230 0.6079 0.6980 0.0901 

AVERP      1.0059 0.2161 0.5823 1.4295 0.8472 2.6368 0.2128 2.2197 3.0539 0.8343 

 PMM-I GAM-I 

Intercept  -47.2626 1.8521 -50.8927 -43.6326 7.2601 -48.2737 1.3402 -50.9005 -45.6469 5.2536 

Sex (M=1) 4.5979 1.1602 2.3239 6.8719 4.5480 4.7581 0.8396 3.1126 6.4037 3.2911 

Age      0.6384 0.0318 0.5762 0.7007 0.1245 0.6512 0.0230 0.6062 0.6963 0.0901 

AVERP      2.5989 0.2940 2.0227 3.1752 1.1525 2.6271 0.2128 2.2101 3.0441 0.8340 

 PMM-II GAM-II 

Intercept  -47.2583 2.3566 -51.8773 -42.6394 9.2379 5.2536 3.3982 -55.3340 -42.0132 13.3208 

Sex (M=1) 4.5480 1.4295 1.7462 7.3498 5.6036 3.2911 2.2058 0.4870 9.1336 8.6466 

Age      0.6384 0.0387 0.5624 0.7143 0.1519 0.0901 0.0467 0.5670 0.7500 0.1830 

AVERP      2.6051 0.4193 1.7833 3.4269 1.6436 0.8340 0.4928 1.6876 3.6194 1.9319 

 

Boxplots of the estimates and standard errors obtained under each analysis and plot of 

MASE values can be seen in Figure 13 and Figure 14 respectively. 
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Figure 13: Boxplots of simulated estimates and SE for each parameter under MNAR- 2nd 

scenario 

 

For the distribution, similar pattern was observed for both levels of missingness. It can be 

seen, the variability of the estimates and SEs within runs is not very high in all covariates 

but the estimates under SMI were very different compared to other methods 
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Figure 14: MASE values for different analysis under MNAR- 2nd scenario 

 

It can be seen from Figure 14 that performance of CC is more reliable than any of the 

imputation method. Boxplots for the MASE values are present in Figure F, Appendix 
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4.5. Part III: Missingness in covariates 

The same exercise was repeated for the case where the missingness is in a covariate (Age). 

As it has been said before, missingness model of a 2nd scenario (single function) was used to 

generate missingness probabilities then the missingness indicators for each observation 

(similar to what is explained in part II). Results presented in here reports average of the 

estimates and SEs for all models fitted from the simulation runs for each of the missingness 

mechanism.  

 

i. MCAR 

Results of the CC analysis obtained from simulation study for both levels of missingness are 

summarized in Table 19a. Generally, values of MASE were very small as compared to the 

situation when missingness was in response, which implies better performance of the 

methods used. 

 
Table 19a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MCAR-missing in covariate 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  15.6643 3.5729 8.6613 22.6672 14.0060 15.6062 4.2501 7.2759 23.9365 16.6605 

Sex (M=1) 13.7338 2.2379 9.3476 18.1201 8.7725 13.5376 2.6635 8.3172 18.7580 10.4408 

Age      0.0118 0.0613 -0.1083 0.1319 0.2402 0.0151 0.0729 -0.1278 0.1579 0.2858 

AVERP      5.9397 0.5672 4.8281 7.0513 2.2232 5.9627 0.6748 4.6401 7.2853 2.6452 

 

As it can be observed from Table 19a, results from CC analysis were very close to the true 

ones for both levels of missingness. There was just a little overestimation of SEs for the 50% 

level. For the case of MASE values, CC reported the highest value.  

 

Results obtained after imputing the missing values using different methods are presented in 

Table 16b and 16c for the case of 30% level and 50% level respectively. 

 
Table 19b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MCAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  15.5797 3.2731 9.1644 21.9950 12.8305 15.4555 3.0074 9.5611 21.3500 11.7889 

Sex (M=1) 13.7855 1.8826 10.0956 17.4753 7.3797 13.7754 1.8830 10.0847 17.4662 7.3815 

Age      0.0117 0.0612 -0.1082 0.1317 0.2400 0.0147 0.0516 -0.0864 0.1158 0.2023 

AVERP      5.9441 0.4769 5.0093 6.8789 1.8696 5.9477 0.4772 5.0124 6.8829 1.8705 

 PMM-I GAM-I 

Intercept  15.7702 3.0126 9.8655 21.6750 11.8095 15.3662 3.2882 8.9214 21.8109 12.8896 

Sex (M=1) 13.7896 1.8827 10.0996 17.4796 7.3800 13.7739 1.8836 10.0821 17.4656 7.3835 

Age      0.0069 0.0516 -0.0942 0.1080 0.2022 0.0169 0.0612 -0.1030 0.1368 0.2398 

AVERP      5.9434 0.4772 5.0081 6.8786 1.8705 5.9489 0.4775 5.0129 6.8848 1.8719 

 PMM-II GAM-II 

Intercept  15.7608 3.2881 9.3161 22.2055 12.8894 14.0125 3.1856 7.7688 20.2562 12.4875 

Sex (M=1) 13.7889 1.8833 10.0975 17.4802 7.3827 13.7316 1.8838 10.0394 17.4238 7.3844 

Age      0.0071 0.0610 -0.1123 0.1266 0.2389 0.0503 0.0575 -0.0625 0.1630 0.2255 

AVERP      5.9436 0.4775 5.0077 6.8795 1.8718 5.9672 0.4775 5.0314 6.9031 1.8716 
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Different from what has been observed in previous parts of this report, single imputation 

methods performs very well this time. Both estimates and covariates were very similar to the 

true ones.  Results from the multiple imputation methods were also very good.  

 

Table 19c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MCAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  15.4647 3.6165 8.3764 22.5531 14.1768 14.8372 3.6515 7.6802 21.9942 14.3140 

Sex (M=1) 13.7862 1.8823 10.0969 17.4755 7.3786 13.7532 1.8844 10.0597 17.4467 7.3870 

Age      0.0147 0.0728 -0.1279 0.1574 0.2853 0.0301 0.0729 -0.1127 0.1729 0.2856 

AVERP      5.9435 0.4767 5.0091 6.8779 1.8688 5.9555 0.4779 5.0188 6.8922 1.8734 

 PMM-I GAM-I 

Intercept  15.6611 3.0113 9.7590 21.5632 11.8042 14.9291 3.6437 7.7874 22.0708 14.2834 

Sex (M=1) 13.7916 1.8825 10.1020 17.4813 7.3793 13.7571 1.8844 10.0636 17.4506 7.3870 

Age      0.0095 0.0516 -0.0916 0.1106 0.2021 0.0278 0.0726 -0.1145 0.1701 0.2846 

AVERP      5.9454 0.4771 5.0103 6.8806 1.8703 5.9545 0.4779 5.0178 6.8911 1.8734 

 PMM-II GAM-II 

Intercept  15.5825 3.6535 8.4217 22.7434 14.3218 13.9355 3.1840 7.6949 20.1761 12.4812 

Sex (M=1) 13.7865 1.8839 10.0940 17.4789 7.3849 13.7266 1.8841 10.0338 17.4194 7.3856 

Age      0.0115 0.0723 -0.1302 0.1531 0.2833 0.0523 0.0575 -0.0605 0.1650 0.2255 

AVERP      5.9462 0.4780 5.0093 6.8830 1.8738 5.9676 0.4775 5.0318 6.9034 1.8716 

 

There was a slight overestimation of the SEs for the case of 50% level both parametric and 

nonparametric methods, nevertheless the results were more less similar to the true ones 

(Table 19c).  

 

To assess the accuracy of the imputations done, plot of comparison of MASE values obtained 

from different methods is presented in Figure 15.   
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Figure 15: MASE values for different analysis under MCAR- missing in covariate 
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It can be seen that, CC analysis in doing worse as compared to other methods. Actually, 

looking at the MASE values, single methods for imputation are performing better than the 

multiple imputation methods (Figure 15). Boxplots of the MASE values for all methods under 

MCAR can be seen in Figure G, Appendix. Also, those of estimates and SE obtained under 

each analysis for 30 and 50% levels of missingness are presented in Figure H, Appendix. 

 

ii. MAR 

This part reports results obtained under MAR mechanism. Table 20a showed results from 

the CC analysis for both 30% and 50% levels of missingness. It was observed that, results of 

other covariates except Age were close to the true ones. Estimates for Age were over 

estimated in almost all methods and the significance status was distorted.  

  

Table 20a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MAR-missing in covariate 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  12.7951 3.4681 5.9977 19.5926 13.5949 10.5477 3.9658 2.7747 18.3207 15.5459 

Sex (M=1) 13.8973 2.2630 9.4619 18.3328 8.8709 14.0264 2.6663 8.8004 19.2524 10.4519 

Age      0.1176 0.0658 -0.0114 0.2466 0.2580 0.1997 0.0803 0.0423 0.3570 0.3147 

AVERP      5.7761 0.5693 4.6603 6.8918 2.2315 5.6681 0.6687 4.3574 6.9788 2.6214 

After imputation, similar results were obtained for almost all methods. The estimates for Age 

were overestimated for about ten (10) times more as compared to the true estimates, but the 

SE were well estimate (Table 20b).  

 

Table 20b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  11.9782 3.1395 5.8247 18.1316 12.3069 10.2473 3.1358 4.1011 16.3936 12.2925 

Sex (M=1) 13.7249 1.8814 10.0373 17.4125 7.3752 13.6503 1.8813 9.9630 17.3376 7.3746 

Age      0.1179 0.0656 -0.0108 0.2465 0.2573 0.1683 0.0656 0.0397 0.2969 0.2572 

AVERP      5.9468 0.4762 5.0134 6.8802 1.8668 5.9534 0.4761 5.0203 6.8866 1.8663 

 PMM-I GAM-I 

Intercept  12.4038 2.8772 6.7644 18.0431 11.2788 10.2944 3.1361 4.1478 16.4411 12.2933 

Sex (M=1) 13.7099 1.8814 10.0223 17.3974 7.3751 13.6532 1.8813 9.9659 17.3406 7.3746 

Age      0.1056 0.0546 -0.0015 0.2127 0.2142 0.1667 0.0655 0.0383 0.2952 0.2569 

AVERP      5.9478 0.4762 5.0145 6.8812 1.8667 5.9543 0.4761 5.0211 6.8875 1.8663 

 PMM-II GAM-II 

Intercept  12.1905 3.1195 6.0763 18.3047 12.2283 10.5965 3.0591 4.6007 16.5924 11.9918 

Sex (M=1) 13.7047 1.8820 10.0161 17.3934 7.3773 13.6645 1.8842 9.9714 17.3575 7.3860 

Age      0.1115 0.0646 -0.0151 0.2381 0.2532 0.1578 0.0613 0.0378 0.2779 0.2401 

AVERP      5.9506 0.4763 5.0171 6.8842 1.8672 5.9528 0.4767 5.0185 6.8872 1.8687 
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Similar pattern of the results was observed for the case of 50% level of missingness. 

Nevertheless, the overestimation of the estimate for Age is more. In addition, for this case, 

performance of single nonparametric methods had the worse results (Table 20c).  

 

Table 20c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  9.8014 3.3208 3.2927 16.3101 13.0174 3.8112 3.2868 -2.6309 10.2533 10.2533 

Sex (M=1) 13.7540 1.8805 10.0682 17.4399 7.3717 13.6240 1.8775 9.9441 17.3039 17.3039 

Age      0.1991 0.0800 0.0422 0.3559 0.3137 0.3955 0.0798 0.2391 0.5519 0.5519 

AVERP      5.9221 0.4761 4.9889 6.8553 1.8664 5.8694 0.4754 4.9375 6.8012 6.8012 

 PMM-I GAM-I 

Intercept  10.6003 2.7976 5.1170 16.0837 10.9667 3.9764 3.2851 -2.4624 10.4151 12.8775 

Sex (M=1) 13.7310 1.8799 10.0464 17.4156 7.3693 13.6321 1.8776 9.9521 17.3122 7.3601 

Age      0.1748 0.0565 0.0640 0.2856 0.2216 0.3896 0.0796 0.2336 0.5457 0.3121 

AVERP      5.9153 0.4760 4.9824 6.8483 1.8659 5.8717 0.4754 4.9398 6.8036 1.8638 

 PMM-II GAM-II 

Intercept  10.4941 3.2080 4.2064 16.7819 12.5755 8.6040 2.9743 2.7743 14.4337 11.6594 

Sex (M=1) 13.7290 1.8819 10.0405 17.4175 7.3770 13.6978 1.8865 10.0002 17.3954 7.3953 

Age      0.1787 0.0756 0.0305 0.3269 0.2964 0.2402 0.0635 0.1158 0.3646 0.2489 

AVERP      5.9120 0.4765 4.9780 6.8459 1.8679 5.8965 0.4771 4.9615 6.8315 1.8701 

 

Looking at the distribution of the estimates and SEs of covariates, using boxplots, it was 

seen that only estimates for Age had some variability, but estimates for other covariates 

were very similar between simulation runs. 

  

For graphical assessment of the accuracy of the imputation method used, the plot of MASE 

values is given in Figure 16 and their distributions can be viewed using boxplots in Figure I, 

Appendix. 
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Figure 16: MASE values for different analysis under MAR- missing in covariate 
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iii. MNAR 

In general, very poor estimates were obtained under MNAR and this was for all methods and 

for both levels of missingness. Summarized results are presented in Table 21a, 21b and 21c 

for CC analysis, imputation at 30% level and imputation at 50% level, respectively. 

  

Table 21a: Estimates, SE, CI and LCI obtained from the simulation study for 30% and 50% levels of 

missingness from CC analysis under MNAR-missing in covariate 

 30% missingness 50% missingness 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

Intercept  -37.2121 2.8955 -42.8873 -31.5370 11.3503 -47.4602 2.8065 -52.9609 -41.9596 11.0013 

Sex (M=1) 6.1717 1.7113 2.8174 9.5259 6.7085 4.9316 1.6875 1.6241 8.2392 6.6151 

Age      0.8412 0.0477 0.7477 0.9347 0.1870 0.6270 0.0451 0.5386 0.7153 0.1767 

AVERP      3.3705 0.4624 2.4641 4.2768 1.8127 2.5642 0.4760 1.6312 3.4972 1.8660 

 

 

Table 21b: Estimates, SE, CI and LCI obtained from the simulation study for 30% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MNAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -21.2438 3.4487 -28.0032 -14.4844 13.5188 -64.3729 3.2062 -70.6571 -58.0887 12.5683 

Sex (M=1) 12.2825 1.8521 8.6525 15.9126 7.2600 8.4548 1.7307 5.0626 11.8470 6.7844 

Age      0.8496 0.0617 0.7287 0.9705 0.2419 1.7557 0.0549 1.6482 1.8633 0.2152 

AVERP      6.2832 0.4687 5.3644 7.2019 1.8374 6.5874 0.4366 5.7316 7.4431 1.7114 

 PMM-I GAM-I 

Intercept  -68.4682 2.8749 -74.1031 -62.8334 11.2697 -84.1028 2.6262 -89.2502 -78.9553 10.2948 

Sex (M=1) 5.9526 1.6670 2.6853 9.2199 6.5346 5.3259 1.5431 2.3014 8.3503 6.0489 

Age      1.8108 0.0460 1.7206 1.9010 0.1803 2.1578 0.0418 2.0759 2.2396 0.1637 

AVERP      6.6078 0.4194 5.7857 7.4299 1.6442 5.6739 0.3885 4.9125 6.4354 1.5229 

 PMM-II GAM-II 

Intercept  -69.2348 3.8966 -76.8721 -61.5976 15.2745 -65.3797 3.9402 -73.1026 -57.6569 15.4457 

Sex (M=1) 6.4325 1.7677 2.9678 9.8972 6.9294 6.8748 1.9977 2.9593 10.7902 7.8308 

Age      1.8115 0.0703 1.6738 1.9493 0.2755 1.7556 0.0530 1.6518 1.8595 0.2077 

AVERP      6.7544 0.4751 5.8231 7.6856 1.8625 5.7087 0.4859 4.7564 6.6611 1.9047 

 

Estimates for Age were very biased (extremely large compared to the true ones) for both, 

single and multiple imputation methods. The boxplots for the estimates and SEs obtained 

from the simulation runs are given in Figure J, Appendix. Similar pattern was observed for 

both levels of missingness.  
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Table 21c: Estimates, SE, CI and LCI obtained from the simulation study for 50% levels of missingness 

from SMI, CMI, PMM-I, PMM-II, GAM-I and GAM-II analysis under MNAR-missing in covariate 

Parameter Estimate SE LL UL LCI Estimate SE LL UL LCI 

 SMI CMI 

Intercept  -11.9184 3.7718 -19.3112 -4.5256 14.7856 -98.7407 3.2590 -105.1284 -92.3530 12.7754 

Sex (M=1) 13.0432 1.8691 9.3798 16.7067 7.3269 6.2426 1.6294 3.0490 9.4362 6.3873 

Age      0.6395 0.0708 0.5008 0.7782 0.2774 2.3625 0.0549 2.2548 2.4701 0.2153 

AVERP      6.1480 0.4733 5.2204 7.0757 1.8553 6.8688 0.4107 6.0639 7.6738 1.6099 

 PMM-I GAM-I 

Intercept  -100.2339 2.5670 -105.2652 -95.2027 10.0625 -89.5526 1.5193 -92.5304 -86.5748 5.9556 

Sex (M=1) 2.0748 1.4646 -0.7957 4.9454 5.7411 0.7979 1.0352 -1.2310 2.8269 4.0579 

Age      2.1618 0.0362 2.0909 2.2328 0.1419 1.8979 0.0170 1.8646 1.9313 0.0667 

AVERP      7.3323 0.3683 6.6106 8.0541 1.4436 3.4220 0.2614 2.9097 3.9343 1.0246 

 PMM-II GAM-II 

Intercept  -102.0603 3.7430 3.7430 -94.7241 14.6725 -74.9029 2.8442 -80.4774 -80.4774 11.1492 

Sex (M=1) 2.5578 2.3228 2.3228 7.1106 9.1056 2.5576 1.6631 -0.7022 -0.7022 6.5194 

Age      2.1862 0.0606 0.0606 2.3051 0.2377 1.6358 0.0251 1.5866 1.5866 0.0984 

AVERP      7.1852 0.9086 0.9086 8.9660 3.5616 3.7553 0.3923 2.9864 2.9864 1.5379 

 

The values of ASE for the models fitted from simulated data were very large, with largest 

values obtained under single nonparametric methods followed by the PMM method. The SMI 

had the lowest values of ASE. For pictorial presentation of the imputation accuracy, the plot 

of MASE values by missingness level is given in Figure 17.  
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Figure 17: MASE values for different analysis under MAR- missing in covariate    
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4.6. Effect of coefficient of missingness model and fitted model on the 

MAR mechanism 

The idea is to explore if the magnitude of the coefficient (effect) for the covariate in the fitted 

model and/or in the missingness model can influence the probability of missingness hence 

influence the missingness mechanism. Age is used for this exercise.  

 

From the missingness model under MAR which is defined as: 

)...(..............................).........( 3210 iAVERPAgeSexexpitP ϕϕϕϕ +++=   

and the fitted model defined as 

 

)....(..................................................ˆ
3210 iiAVERPbAgebSexbbY +++=    

where the sbi ' are unbiased estimators. Hence: 

00}{ β=bE , 11}{ β=bE , 22}{ β=bE  and 33}{ β=bE  

 

From model )(ii , one can equate Age as 

)ˆ(
1

310

2

AVERPbSexbbY
b

Age −−−=  

Substituting this in equation )(i , we have 

 

)........().........))ˆ(( 3310

2

2
10

*
iiiAVERPAVERPbSexbbY

b
SexexpitP ϕ

ϕ
ϕϕ +−−−








++=  

 

Now, lets assume the probabilities for missingness, )1(* == RPP , are generated from model 

)(iii , where R  is the missingness indicator. We would like to explore the change in the 

missingness pattern as a function of the ratio 22 / bϕ . After generating individual 

missingness probabilities, the average was taken over the whole sample and plotted against 

the ratio 22 / bϕ . Two scenarios were considered: In the first scenario, the value of 2ϕ was 

kept constant and values for 2b  were changed while in the second scenario the vise versa 

was done. The original data was used and for the value of 2b the parameter estimate for Age 

obtained from the regression model fitted using OD (ref. Table 2) was taken while 2ϕ  was 

the coefficient for Age used in the missingness model for generating 30% level under MAR. 

 

For the first case, when 2ϕ  was fixed, the value of 2b  was changes by multiplying with the 

sequence of numbers from 0.4 to 1.3 with the interval of 0.1, which gives a total of 10 points. 
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For the 2nd case, 2b  was kept constant and 2ϕ was changed by multiplying with a sequence of 

numbers from 0.8 to 1.7 with the same interval of 0.1. It should be noted that, no any criteria 

was used for the selection of the interval, rather was just a random selection.  

 

Figure 18 showed plots of 
*P with the fraction 22 / bϕ  for both cases. 
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Figure 18: Fraction of the coefficient with the probability for missingness 

 

It can be seen from the plots that, for both cases, the probability for missingness increases as 

the magnitude of the ratio increases. Plots of missingness probabilities obtained were plotted 

with Age and the following patterns were observed.  
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a.      b.  

Figure 19: Pattern of missingness probabilities with Age with a) fixed 2ϕ and b) fixed 2b  
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Plots were done following the order of the sequence (increasing from left to right). Looking 

careful in the patterns, one can see that, within a specified case, as the value of either 2ϕ  or 

2b changes, there is a tendency of change in mechanism either from MAR to MNAR or the 

vise versa. These patterns suggest that, additional effect which is brought by the covariate 

(age) from the fitted values (or from the response) to the missingness model influences the  

original mechanism of missingness. Also, suggest that, magnitude of the effect of the 

covariate into the response (one can relate to collinearity between a covariate and a 

response) can possibly modify the missingness mechanism. 
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5. DISCUSSION AND CONCLUSION 

 

Researchers are often faced with non-response problems and most are not familiar with 

statistical analysis methods that address the missing data problem adequately. However, a 

key focus of the research is not the non-response itself, but rather proper estimation of model 

parameters, that’s why sometimes is ignored. A major issue with missing data relates to its 

status. If variables of interest are related to the non-response rate, then dealing with the 

missing values might be difficult and is important to apply adequate methods to obtain valid 

results. This study explore different methods of handling missing data in a cross sectional 

data with main focus in the effect on parameters estimated from models fitted using 

augumented data obtained from different imputation method. One major problem with 

missing data is that it is usually unknown how non-response for each variable is generated, 

i.e. the mechanism. In our study missingness was generated using a pre-specified model, 

hence assumed that the mechanism is known. This simplifies evaluation of the results.  

 

Despite the simplicity in fitting models using complete cases, results from this type of 

analysis should be handled careful due to the ignorance on the possible systematic difference 

between the complete cases and incomplete cases due to the information lost. Lack of this 

knowledge might results in inference that may not be applicable to the population of all 

cases, especially when only a small number of complete cases were used. If one is lucky, for 

complete cases analysis with MCAR data, the group means and variances are likely to stay 

the same since it is assumed the missing values to be just random values and not depend on 

anything unobserved or observed. But if this is not the case, then one will be in trouble. It 

was observed from this study that, the mechanism and the level of missingness available in 

the data determine the accuracy of complete case analysis (Little and Rubin, 2002). 

 

Use of simple single imputations like filling missing values with mean, median, or 

conditional mean can sometimes be more dangerous than the complete cases analysis. For 

instance, mean substitution is conservative because the sample mean does not change and 

the variance is underestimated. The approach treats missing values as if they were known in 

the complete-data analyses. Single imputation does not reflect the uncertainty about the 

predictions of the unknown missing values, and the resulting estimated variances of the 

parameter estimates will be biased toward zero. However, for complete cases analysis with 

MCAR data the group means and variances are likely to stay the same hence it not 

surprising that the method perform better. Results of mean imputation applied to this 

dataset, showed poor performance for all scenarios and all missingness mechanisms, hence 

not recommended.  
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Conditional mean imputation is known to work best when one has missingness in covariates, 

since the idea behind it is to develop regression model to predict missing covariates from the 

observed one. However, the method does not functioning well when level of missingness is 

high. Under CMI, regression imputation that uses the relationship between two or more 

variables was used. In that way a missing value of response is estimated from the overall 

relationship between response and other covariates present in the dataset that reduces 

residual variance. Potential disadvantage of regression imputation is that the method may 

be sensitive to model misspecification of the regression model (Schenker and Taylor, 1996, 

Little and Rubin, 2002). Nonparametric method can be used to address some of these issues. 

In this study, performance conditional mean imputation was questionable especially in the 

case of MAR and MNAR when the missingness was in the response. However, as it has been 

mentioned most references, the performance was better in the case of missing in covariate 

and when the level of missingness is small. When the imputation model was improved better 

estimates were obtained. This shows that for better and accurate estimate of parameters of 

interest, choice of imputation model is crucial. Nevertheless, use of nonparametric method 

like generalized additive model, shows to be worthwhile since in most of the analysis done 

when missingness was in response, these methods resulted in best estimates. This was not 

the case, when missingness was in the covariate.  

 

One of the known best imputation methods is multiple imputation. Actually what happened 

in this method is not estimating each missing value through simulated values but rather to 

represent a random sample of the missing values. In most cases, this procedure results in 

valid statistical inferences that properly reflect the uncertainty due to missing values; for 

example, valid confidence intervals for parameters. However, for this study several concerns 

raised on its application. Different patterns of the missingness probability with covariates 

was observed to influence accuracy of this method. For instance if all individuals of low ages 

(as a covariate) were missing from the study, then there will be no data to be used to make 

up the imputation, for this case the method performs poorly. Also if the imputation model 

used is not rich enough to capture the relationship existing between covariates and response 

the poor imputation will occur. The effect is serious when the fraction of missing information 

is high and the sample size is large. 

 

Predictive-Mean-Matching method was used to perform multiple imputations in our study. 

This method imputes the missing value using conditional predictive means close to that of 

incomplete case. Is the best method among those defined in most of the statistical software 

that can perform MI but some studies reported increase of bias for this method when applied 

to big datasets (Lazzeroni, L.C. et al). PMM can be seen as a semi-parametric method since it 
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combines elements of regression, nearest-neighbour and hot deck imputation and is also 

assumed to be less sensitive to misspecifications of the underlying model than for example 

regression imputation (Schenker and Taylor, 1996). Results of PMM method obtained under 

MCAR and MAR were good when the missingness was in response and when a moderate 

probability pattern was used (from the 2nd scenario) and especially when the level of 

missingness is low. The method showed to perform well even when a single imputation is 

used. Moreover, under MNAR, PMM showed poor results, in both levels of missingness and 

all scenarios.  

 

It is quite clear that existence of software that facilitates its use requires the analyst to be 

careful about the verification of missingness assumptions, the robustness of imputation 

models, and the appropriateness of inferences to be able to obtain accurate results (Nicholas 

and Stuart, 2001). So, for anyone who would like to perform imputation of either type should 

make a note that if the imputation model is seriously flawed in terms of capturing the 

missing data mechanism, then so will be any analysis based on such imputations. This 

problem can be avoided by carefully investigating each specific application, by making the 

best use of knowledge and data about the missing-data mechanism, and by performing 

various model checking procedures (Barnard and Meng, 1999).  

 

It is not enough to rely on information on parameters computed from a single data sequence 

since barely reproduce true values of parameters of interest. It is therefore necessary to 

study any variation available in the estimates, due to this simulation studies have become of 

great use. For all cases and scenarios, results obtained from simulation studies matches well 

with what was obtained under single data sequence. However, age had a very low estimate 

which was also not significant. It was noted that, there was higher variation of age estimates  

and SEs within simulation runs compared to other significant estimates (sometimes even 

turn to  be significant). It might be possible that, if the number of simulation runs used is not 

large enough, the estimates can be easly distorted during averaging. This could be the 

influence of the filled-in data that are assumed to vary between each run.  

 

This study explores the relationship between the strength of the covariate effect on the 

response and the missingness mechanism. It was surprising to see there is a possibility of 

change in mechanism from MAR to MNAR as the strength of the effect increases or 

decreases, i.e. indirect MNAR. These results might explain why for some datasets even the 

best imputation methods can produce unexpected results. It might be therefore necessary to 

explore the relationship between variables in the dataset prior to imputing missing ones to 

avoid vague assumptions which might lead to bias results.  
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In conclusion, it was observed that, parametric methods for imputing missing values do not 

always perform well as most of researchers assume. It is then a high time to explore the use 

nonparametric methods especially when the missingness is available in the response 

variable. When the missingness is in covariates only and the variability in the data is not 

high, single imputation methods showed good performance, which helps avoiding use of 

complicated algorithms to do imputation. It was also observed that missingness mechanism 

could be influenced by the magnitude of the effect of the covariate in the fitted model or the 

missingness model involved. However, results from this study should not be generalized in 

data with other settings than cross sectional to avoid invalid conclusion. 
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6. RECOMMENDATIONS 

 

o In every research work, effort should be made to collect full and complete datasets to 

avoid complications of dealing with missing data. 

o Assessment of the imputation model used for imputation should be done before applying 

imputations. Whenever necessary, this model can be constructed manually instead of 

depending on the built-in models from software/programs. 

o Application of other nonparametric methods for doing single or multiple imputations 

should be emphasized, especially when some of the assumptions used by parametric 

methods are not fulfilled. 

o More research is needed on the observed indirect influence of models parameters and the 

relationship between covariates and response on the missingness mechanism of the data. 
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8. APPENDIX 

 
Table A: Summary statistics and percentage of missingness for all variables  

Variable Label N Mean Std Dev % missing 

ABTMH Kortste afstand thuis - bus,tram,metro 5691 2.756 1.728 6.466 

ALIJN Afstand halte lijnbus tot werk of school 3653 3.083 2.138 65.864 

ALIJNH Afstand bushalte 5691 2.797 1.764 6.466 

AMETRO Afstand halte metro tot werk of school 3653 6.588 1.269 65.864 

ATRAM Afstand halte tram tot werk of school 3653 6.237 1.712 65.864 

ATRAMH Afstand tramhalte 5691 6.419 1.513 6.466 

ATREIN Afstand halte trein tot werk/school 3653 5.165 1.635 65.864 

ATREINH Afstand station 5691 5.137 1.453 6.466 

AVERP Average number of trips 6059 3.471 1.953 0.000 

BESTELA Aantal bestelwagens 5691 0.071 0.309 6.466 

BROMA Aantal bromfietsen 5691 0.080 0.310 6.466 

DIPLOMA Hoogst behaald diploma 5803 5.513 2.340 4.412 

FIETSA Aantal fietsen 5385 3.273 1.984 12.516 

GACAR Gebruik van de autocar 5486 2.577 1.917 10.445 

GAUTO Gebruik van de auto 5793 2.353 0.702 4.592 

GBRSNOR Gebruik van brom- en snorfiets 6036 1.141 0.632 0.381 

GFIETS Gebruik van de fiets 5847 3.062 1.261 3.626 

GLIJN Gebruik van de lijnbus 5672 2.531 1.795 6.823 

GMOTOR Gebruik van de motor 6048 1.130 0.638 0.182 

GTAXI Gebruik van de taxi 5796 1.436 1.241 4.538 

GTRAM Gebruik van de tram 5463 2.305 1.790 10.910 

GTREIN Gebruik van de trein 5593 3.316 1.876 8.332 

GVLIEG Gebruik van het vliegtuig 5467 2.651 1.960 10.829 

HVMWERK  Hoofdvervoermiddel naar werk/school 3519 3.816 3.466 72.180 

INKCAT Gemiddeld maandelijks netto inkomen 3994 2.379 0.673 51.703 

LEDENA Aantal leden in huishouden 5680 3.239 1.308 6.673 

LEDENA6 Aantal leden jonger dan 6 jaar 5691 0.184 0.487 6.466 

LEEFT AGE 6039 39.283 18.653 0.331 

LIGGING Ligging van de woonplaats 5680 1.606 0.610 6.673 

MOTORA Aantal motoren 5691 0.074 0.279 6.466 

PERSWAGA Aantal personenwagens 5691 1.459 0.818 6.466 

RGZ Relatie gezinshoofd 6017 1.885 0.844 0.698 

RYJAREN  Aantal jaren bezit rijbewijs 4256 21.791 11.297 42.364 

 SNORA  Aantal snorfietsen 5691 0.059 0.254 6.466 

STAT12 Individual Profession  5961 4.835 2.796 1.644 

TOTDIST Total distance covered 5484 43.513 65.982 10.485 

TOTINK Categorie van totale huishoudeninkomen 5202 2.751 0.815 16.474 

TOTTIME Total travel time 5692 75.250 79.155 6.448 

VASTKM Afstand vast werk/school tot woonplaats 3512 152.960 211.706 72.523 

BS Burgerlijke staat 6034 ---- ---- 0.414 

HHNR Nummer van het huishouden 6059 ---- ---- 0.000 

HUISPOST Postnummer van woonplaats 6059 ---- ---- 0.000 

PERSID Persoonsnummer 6059 ---- ---- 0.000 

RYBEWYS Bezit rijbewijs om auto te besturen 6014 ---- ---- 0.748 

SEXE geslacht 6031 ---- ---- 0.464 

WEEKDAG dag van de week (1=maandag) 6059 ---- ---- 0.000 

HUISGEM Gemeente van woonplaats 6059 ---- ---- 0.000 

HUISGMTP Type gemeente huishouden 6056 ---- ---- 0.050 
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a.      b. 

Figure A: Original and nonparametric imputed data with covariates for a) MCAR and b) MAR, first 

scenario 
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Figure B: Plots of fitted curves for GAM and LM with age by missingness mechanism 
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Figure C: Boxplots of simulated MASE-values under MCAR- 2nd scenario 
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Figure D: Boxplots of simulated MASE-values under MAR- 2nd scenario 
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Figure E: Standard deviation of the response values from all methods, 2nd scenario 
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Figure F: Boxplots of simulated MASE-values under MNAR- 2nd scenario 
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Figure G: Boxplots of simulated MASE-values under MCAR- missing in covariate 
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Figure H: Boxplots of estimates and SE, all methods for a) 30% and b) 50% level under MCAR when 

missingness is in covariate 
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Figure I: Boxplots of simulated MASE-values under MAR- missing in covariate 
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Figure J: Boxplots of estimates and SE, all methods under MNAR when missingness is in covariate 
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R codes used for Analysis 
### calling libraries to be used 
library(MASS); library(nnet); library(mice) 
library(mitools); library(stats); library(mgcv) 
 
#### calling data to fit lm model to obtaine conditional mean for data 
generation ##### 
traffcc<-read.table("D:\\School life in 
Belgium\\Biostatistic\\Project\\ANALY2\\traffic.txt", head=T) 
SEXE<-traffcc[,1]; DIPLOMA<-traffcc[,2]; GFIETS<-traffcc[,3] 
LEEFT<-traffcc[,4]; LEDENA6<-traffcc[,5]; AVERP<-traffcc[,6] 
TOTDIST <-traffcc[,7] 
 
## creating new variables- higher orders 
Age2<-LEEFT *LEEFT ; Age3<-Age2*LEEFT 
trafcc.lm <-lm(TOTDIST ~ LEEFT + SEXE+ DIPLOMA+GFIETS 
+LEDENA6+AVERP, data= traffcc) 
 
##### data generation #### 
#Coefficients:  
beta0<--13.88919 # for Intercept; beta1<--0.14218 # for LEEFT 
beta2<-15.82709 # for SEXE ; beta3<-5.34507  # for DIPLOMA  
beta4<-3.57714  # for GFIETS   ; beta5<--5.25932 # for LEDENA6  
beta6<-4.46466  # for AVERP      
#sigmacc<-sd(TOTDIST,na.rm=TRUE) 
mucc<-
beta0+beta1*LEEFT+beta2*SEXE+beta3*DIPLOMA+beta4*GFIETS+beta5*L
EDENA6+beta6*AVERP 
sigmacc<-67.79 
 
# Generating data to use: Original Data 
set.seed(3344) 
n= nrow(traffcc) ##5304 
y<-rnorm(n,mucc,sigmacc) # we call this original y 
y.star<-matrix(y,1,n) 
 
# function to generate the probability for missingness 
expit<-function(x){return(exp(x)/(1+exp(x)))} 
 
### Generating probability for missingness 
Part 1: Single analysis: combined missingness models 
##  MCAR: 30% MISSINGNESS ###  
set.seed(235) 
psi0LEEFT<-(-1.5); psi0SEXE<-0.5 
pLEEFT<-expit(psi0LEEFT); pSEXE<-expit(psi0SEXE) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n 
 
##  MCAR: 50% MISSINGNESS ###  
set.seed(236) 
psi0LEEFT<--1.5; psi0SEXE<--0.45 
pLEEFT<-expit(psi0LEEFT); pSEXE<-expit(psi0SEXE) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n ##### [1] 0.504902 == missingness 
##************ 
##  MAR: 30% MISSINGNESS ###  
set.seed(3557) 
psi0LEEFT<-(-90.5); psi1LEEFT<-3; psi2LEEFT<-5;  
psi3LEEFT<-0.5; psi0SEXE<-47; psi1SEXE<-(-45.5) 
psi2SEXE<-37; psi3SEXE<-2 
pLEEFT<-expit(psi0LEEFT+ psi1LEEFT*LEEFT+ psi2LEEFT*SEXE+ 
psi3LEEFT*AVERP) 
pSEXE<-expit(psi0SEXE+ psi1SEXE*LEEFT+ psi2SEXE*SEXE+ 
psi3SEXE*AVERP) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n 
 
##  MAR: 50% MISSINGNESS ###  
set.seed(3664) 
psi0LEEFT<--110.5; psi1LEEFT<-2.85; psi2LEEFT<--9 
psi3LEEFT<-0.5; psi0SEXE<-55; psi1SEXE<--40.5 
psi2SEXE<-14; psi3SEXE<-2 
pLEEFT<-expit(psi0LEEFT+ psi1LEEFT*LEEFT+ psi2LEEFT*SEXE+ 
psi3LEEFT*AVERP) 
pSEXE<-expit(psi0SEXE+ + psi1SEXE*LEEFT+ psi2SEXE*SEXE+ 
psi3SEXE*AVERP) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n 
 
##  MNAR: 30% MISSINGNESS ###  

set.seed(7642) 
psi0LEEFT<-1; psi1LEEFT<-4; psi2LEEFT<-21 
psi3LEEFT<-1; psi4LEEFT<-(-2); psi0SEXE<-3 
psi1SEXE<-1; psi2SEXE<-1; psi3SEXE<-1; psi4SEXE<-(-3) 
pLEEFT<-expit(psi0LEEFT+ psi1LEEFT*LEEFT+ psi2LEEFT*SEXE+ 
psi3LEEFT*AVERP+psi4LEEFT*y) 
pSEXE<-expit(psi0SEXE+ + psi1SEXE*LEEFT+ psi2SEXE*SEXE+ 
psi3SEXE*AVERP+ psi4SEXE*y) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n 
 
##  MNAR: 50% MISSINGNESS ###  
set.seed(6742) 
psi0LEEFT<-0.9; psi1LEEFT<-2; psi2LEEFT<-1 
psi3LEEFT<-1; psi4LEEFT<-(-2); psi0SEXE<-(-0.2) 
psi1SEXE<-3; psi2SEXE<-14.45; psi3SEXE<-2; psi4SEXE<-(-3) 
pLEEFT<-expit(psi0LEEFT+ psi1LEEFT*LEEFT+ psi2LEEFT*SEXE+ 
psi3LEEFT*AVERP+psi4LEEFT*y) 
pSEXE<-expit(psi0SEXE+ + psi1SEXE*LEEFT+ psi2SEXE*SEXE+ 
psi3SEXE*AVERP+ psi4SEXE*y) 
rLEEFT<-rbinom(n,1,1-pLEEFT); rSEXE<-rbinom(n,1,1-pSEXE) 
sum(rLEEFT==1&rSEXE==1)/n 
 
###### complete code with summary results: presented only for 30% 
MCAR, the rest are similar 
# creating the matrix with missingness probabilities 
t<-rLEEFT+rSEXE 
a<-matrix(t,1,n) 
r<-matrix(NA,1,n) # matrix ya kuweka missingness indicator 
for  (i in 1:n) { 
if (a[,i]==2) r[,i]<-0 else r[,i]<-1 } 
 
# creating dataset and generate missingness based on "r" 
y.miss30a<-matrix(NA,1,n) 
for  (i in 1:n) { 
if (r[,i]==1) y.miss30a[,i]<-y.star[,i] else y.miss30a[,i]<-NA } 
y.miss30a[,1:15] 
y.miss301<-y.miss30a[1,] # change to a vector 
 
# fit0: Original Data 
fit.od<-lm(y~SEXE+LEEFT+AVERP) 
 
# fit1: cc for y.miss30a 
# Make a dataset to fit a model with cc of "y.miss" values 
dataCC301<-matrix(NA,n,4) 
# add the variable names on top 
dimnames(dataCC301)<-list(1:n,c("LEEFT", "SEXE", "AVERP","y.miss301")) 
dataCC301[,1]<-traffcc[,4]; dataCC301[,2]<-traffcc[,1] 
dataCC301[,3]<-traffcc[,6]; dataCC301[,4]<-y.miss301 
dataCC301[1:4,1:4] 
dataCC301<-data.frame(dataCC301)# make it a data frame 
#y.miss301<-y.miss30[1,] # change to a vector 
fit.cc301<-lm(y.miss301~SEXE+LEEFT+AVERP, data=dataCC301) 
#summary(fit.cc301) 
 
# Imputation of y.miss (use a vector) 
##### SINGLE IMPUTATION 
# define index of TRUE and FALSE 
ry<-matrix(T,1,n) 
for  (i in 1:n) { 
if (r[,i]==0) ry[,i]<-F else ry[,i]<-ry[,i] } 
 
 ## replace NA with mean of the available ones ##  
y.miss3011<-y.miss30a[1,] 
rep.na<-function(y.miss3011, my.mean=TRUE)  
{  if (my.mean) {value<-mean(y.miss3011[!is.na(y.miss3011)])}  
for (i in (1:length(y.miss3011))){if (is.na(y.miss3011[i])==TRUE) 
{y.miss3011[i]<-value}}  
y.miss3011<<-y.miss3011 }  
(y.miss3011) 
y.miss301.imp<-(rep.na(y.miss3011)) 
 
# Make a dataset to fit a model with single imputed "y" values 
dataS301<-matrix(NA,n,4) 
# add the variable names on top 
dimnames(dataS301)<-list(1:n,c("LEEFT", "SEXE", 
"AVERP","y.miss301.imp")) 
dataS301[,1]<-traffcc[,4]; dataS301[,2]<-traffcc[,1] 
dataS301[,3]<-traffcc[,6]; dataS301[,4]<-y.miss301.imp 
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dataS301<-data.frame(dataS301)# make it a data frame 
# fit2: single imputed y.miss30a (=y.miss301.imp) 
#y.miss301<-y.miss30a[1,] # change to a vector 
fit.impS301<-lm(y.miss301.imp~SEXE+LEEFT+AVERP,data=dataS301) 
#summary(fit.impS301) 
 
##### CONDITIONAL MEANS IMPUTATION 
y.miss301111<-y.miss30a[1,] 
fit.impCM301o<-lm(y.miss301111~SEXE+LEEFT+AVERP+SEXE*AVERP) 
beta.CM301<-summary(fit.impCM301o)$coefficients 
#y.miss301111.imp<-y.miss301111 
 
### replacing using fitted values 
DD<-
beta.CM301[1,1]+(beta.CM301[2,1]*SEXE)+(beta.CM301[3,1]*LEEFT)+(beta.
CM301[4,1]*AVERP)+(beta.CM301[5,1]*SEXE*AVERP) 
y.miss301111.imp<- ifelse((is.na(y.miss301111)),DD,y.miss301111) 
 
### fitting model with condition imputed values 
fit.impCM301<-
lm(y.miss301111.imp~SEXE+LEEFT+AVERP+SEXE*AVERP) 
#summary(fit.impCM301) 
 
##### fit3: Statistics for Conditional mean imputation for y.miss30a 
fit.impCM301<-
lm(y.miss301111.imp~SEXE+LEEFT+AVERP+SEXE*AVERP) 
summ.impCM301<-summary(fit.impCM301) 
#fitd.impCM301<-cbind(fit.impCM301$fitted.values) 
 
##### MULTIPLE IMPUTATION 
dataCC301[1:4,1:4] 
imp.CC301<- mice(dataCC301,m=5,maxit=10, seed = 333) 
#imp<-mice(dataCC301,predictorMatrix =(1 - diag(1, ncol(trafms))), seed = 
3333) 
#complete(imp.CC301)[1:10,2] # show some of completed data 
#complete(imp.CC301) # show the first completed data matrix 
 
fits<-lm.mids(y.miss301 ~ SEXE+LEEFT+AVERP, imp.CC301) 
summary(pool(fits)) 
#?pool: Pools the results of m repeated complete data analysis 
fit.impM301<-summary(MIcombine(fits$analyses)) 
#fits$analyses[1] 
#complete(imp.CC301)[1:10,] # show some of completed data 
 
### To get fitted values for Multiple imputation from 5 models 
#fittd1<-cbind(fits$analyses[[1]]$fitted.values) 
#fittd2<-cbind(fits$analyses[[2]]$fitted.values) 
#fittd3<-cbind(fits$analyses[[3]]$fitted.values) 
#fittd4<-cbind(fits$analyses[[4]]$fitted.values) 
#fittd5<-cbind(fits$analyses[[5]]$fitted.values) 
#fittd.impM301<-cbind(rowSums(cbind(fittd1)+cbind(fittd2)+cbind(fittd3)+ 
cbind(fittd4)+cbind(fittd5))/5) 
 
# calculating confidence interval of estimates and its length 
#for fit.od 
CI.od1<-c(fit.od$coefficients[1]-1.96*summary(fit.od)$coef[, "Std. Error"] 
[1],fit.od$coefficients[1]+1.96*summary(fit.od)$coef[, "Std. Error"] [1]) 
CI.od2<-c(fit.od$coefficients[2]-1.96*summary(fit.od)$coef[, "Std. Error"] 
[2],fit.od$coefficients[2]+1.96*summary(fit.od)$coef[, "Std. Error"] [2]) 
CI.od3<-c(fit.od$coefficients[3]-1.96*summary(fit.od)$coef[, "Std. Error"] 
[3],fit.od$coefficients[3]+1.96*summary(fit.od)$coef[, "Std. Error"] [3]) 
CI.od4<-c(fit.od$coefficients[4]-1.96*summary(fit.od)$coef[, "Std. Error"] 
[4],fit.od$coefficients[4]+1.96*summary(fit.od)$coef[, "Std. Error"] [4]) 
avCI.od1<-sum(CI.od1)/2; avCI.od2<-sum(CI.od2)/2 
avCI.od3<-sum(CI.od3)/2; avCI.od4<-sum(CI.od4)/2 
avCI.od<-c(avCI.od1,avCI.od2,avCI.od3,avCI.od4) 
 
#for fit.cc1 
CI.cc3011<-c(fit.cc301$coefficients[1]-1.96*summary(fit.cc301) $coef[, "Std. 
Error"] [1],fit.cc301$coefficients[1]+ 1.96*summary(fit.cc301)$coef[, "Std. 
Error"] [1]) 
CI.cc3012<-c(fit.cc301$coefficients[2]-1.96*summary(fit.cc301) $coef[, "Std. 
Error"] [2],fit.cc301$coefficients[2]+1.96*summary (fit.cc301)$coef[, "Std. 
Error"] [2]) 
CI.cc3013<-c(fit.cc301$coefficients[3]-1.96*summary(fit.cc301) $coef[, "Std. 
Error"] [3],fit.cc301$coefficients[3]+1.96*summary (fit.cc301)$coef[, "Std. 
Error"] [3]) 
CI.cc3014<-c(fit.cc301$coefficients[4]-1.96*summary(fit.cc301) $coef[, "Std. 
Error"] [4],fit.cc301$coefficients[4]+1.96*summary (fit.cc301)$coef[, "Std. 
Error"] [4]) 

avCI.cc3011<-sum(CI.cc3011)/2; avCI.cc3012<-sum(CI.cc3012)/2 
avCI.cc3013<-sum(CI.cc3013)/2;avCI.cc3014<-sum(CI.cc3014)/2 
avCI.cc301<-c(avCI.cc3011,avCI.cc3012,avCI.cc3013,avCI.cc3014) 
 
#for fit.impS301 
CI.impS3011<-c(fit.impS301$coefficients[1]-1.96*summary 
(fit.impS301)$coef[, "Std. Error"] [1],fit.impS301$coefficients[1]+ 
1.96*summary(fit.impS301)$coef[, "Std. Error"] [1]) 
CI.impS3012<-c(fit.impS301$coefficients[2]-1.96* 
summary(fit.impS301)$coef[, "Std. Error"] [2],fit.impS301 
$coefficients[2]+1.96*summary(fit.impS301)$coef[, "Std. Error"] [2]) 
CI.impS3013<-c(fit.impS301$coefficients[3]-
1.96*summary(fit.impS301)$coef[, "Std. Error"] [3],fit.impS301 
$coefficients[3]+1.96*summary(fit.impS301)$coef[, "Std. Error"] [3]) 
CI.impS3014<-c(fit.impS301$coefficients[4]-
1.96*summary(fit.impS301)$coef[, "Std. Error"] [4],fit.impS301 
$coefficients[4]+1.96*summary(fit.impS301)$coef[, "Std. Error"] [4]) 
avCI.impS3011<-sum(CI.impS3011)/2; avCI.impS3012<-sum(CI.impS3012)/2 
avCI.impS3013<-sum(CI.impS3013)/2; avCI.impS3014<-sum(CI.impS3014)/2 
avCI.impS301<-
c(avCI.impS3011,avCI.impS3012,avCI.impS3013,avCI.impS3014) 
 
#for fit.impCM301 
CI.impCM3011<-c(fit.impCM301$coefficients[1]-1.96*summary 
(fit.impCM301)$coef[, "Std. Error"] [1],fit.impCM301$coefficients[1] 
+1.96*summary(fit.impCM301)$coef[, "Std. Error"] [1]) 
CI.impCM3012<-c(fit.impCM301$coefficients[2]-1.96*summary 
(fit.impCM301)$coef[, "Std. Error"] [2],fit.impCM301$coefficients[2]+ 
1.96*summary(fit.impCM301)$coef[, "Std. Error"] [2]) 
CI.impCM3013<-c(fit.impCM301$coefficients[3]-1.96*summary 
fit.impCM301)$coef[, "Std. Error"] [3],fit.impCM301$coefficients[3]+ 
1.96*summary(fit.impCM301)$coef[, "Std. Error"] [3]) 
CI.impCM3014<-c(fit.impCM301$coefficients[4]-1.96*summary 
(fit.impCM301)$coef[, "Std. Error"] [4],fit.impCM301$coefficients[4]+ 
1.96*summary(fit.impCM301)$coef[, "Std. Error"] [4]) 
avCI.impCM3011<-sum(CI.impCM3011)/2; avCI.impCM3012<-
sum(CI.impCM3012)/2 
avCI.impCM3013<-sum(CI.impCM3013)/2; avCI.impCM3014<-
sum(CI.impCM3014)/2 
avCI.impCM301<-c(avCI.impCM3011,avCI.impCM3012, 
avCI.impCM3013,avCI.impCM3014) 
 
# calculating length confidence interval of estimates for fit.impM301 
#for fit.impM301 
CI.impM3011<-c(fit.impM301[, "(lower"][1],fit.impM301[, "upper)"][1]) 
CI.impM3012<-c(fit.impM301[, "(lower"][2],fit.impM301[, "upper)"][2]) 
CI.impM3013<-c(fit.impM301[, "(lower"][3],fit.impM301[, "upper)"][3]) 
CI.impM3014<-c(fit.impM301[, "(lower"][4],fit.impM301[, "upper)"][4]) 
avCI.impM3011<-sum(CI.impM3011)/2; avCI.impM3012<-
sum(CI.impM3012)/2 
avCI.impM3013<-sum(CI.impM3013)/2; avCI.impM3014<-
sum(CI.impM3014)/2 
avCI.impM301<-
c(avCI.impM3011,avCI.impM3012,avCI.impM3013,avCI.impM3014) 
 
### MAJIBU 
jibu.od<-matrix(0,4,5) 
#dimnames(jibu)<-list(1:4,c("Estimate", "std error", 
"Llimit","Ulimit","LengthCI")) 
col<-c("Estimate", "std error", "Llimit","Ulimit","LengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(jibu.od)<-list(rows,col) 
a1<-c(fit.od$coefficients[1],summary(fit.od)$coef[,"Std. 
Error"][1],CI.od1,avCI.od[1]);  jibu.od[1,]<-a1 
a2<-c(fit.od$coefficients[2],summary(fit.od)$coef[,"Std. 
Error"][2],CI.od2,avCI.od[2]);  jibu.od[2,]<-a2 
a3<-c(fit.od$coefficients[3],summary(fit.od)$coef[,"Std. 
Error"][3],CI.od3,avCI.od[3]);  jibu.od[3,]<-a3 
a4<-c(fit.od$coefficients[4],summary(fit.od)$coef[,"Std. 
Error"][4],CI.od4,avCI.od[4]);  jibu.od[4,]<-a4 
 
 
jibu.cc301<-matrix(0,4,5) 
#dimnames(jibu)<-list(1:4,c("Estimate", "std error", 
"Llimit","Ulimit","LengthCI")) 
col<-c("Estimate", "std error", "Llimit","Ulimit","LengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(jibu.cc301)<-list(rows,col) 
b1<-c(fit.cc301$coefficients[1],summary(fit.cc301)$coef[,"Std. 
Error"][1],CI.cc3011,avCI.cc301[1]);  jibu.cc301[1,]<-b1 
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b2<-c(fit.cc301$coefficients[2],summary(fit.cc301)$coef[,"Std. 
Error"][2],CI.cc3012,avCI.cc301[2]);  jibu.cc301[2,]<-b2 
b3<-c(fit.cc301$coefficients[3],summary(fit.cc301)$coef[,"Std. 
Error"][3],CI.cc3013,avCI.cc301[3]); jibu.cc301[3,]<-b3 
b4<-c(fit.cc301$coefficients[4],summary(fit.cc301)$coef[,"Std. 
Error"][4],CI.cc3014,avCI.cc301[4]);  jibu.cc301[4,]<-b4 
 
jibu.impS301<-matrix(0,4,5) 
#dimnames(jibu)<-list(1:4,c("Estimate", "std error", 
"Llimit","Ulimit","LengthCI")) 
col<-c("Estimate", "std error", "Llimit","Ulimit","LengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(jibu.impS301)<-list(rows,col) 
s1<-c(fit.impS301$coefficients[1],summary(fit.impS301)$coef[,"Std. 
Error"][1],CI.impS3011,avCI.impS301[1]);  jibu.impS301[1,]<-s1 
s2<-c(fit.impS301$coefficients[2],summary(fit.impS301)$coef[,"Std. 
Error"][2],CI.impS3012,avCI.impS301[2]);  jibu.impS301[2,]<-s2 
s3<-c(fit.impS301$coefficients[3],summary(fit.impS301)$coef[,"Std. 
Error"][3],CI.impS3013,avCI.impS301[3]);  jibu.impS301[3,]<-s3 
s4<-c(fit.impS301$coefficients[4],summary(fit.impS301)$coef[,"Std. 
Error"][4],CI.impS3014,avCI.impS301[4]);  jibu.impS301[4,]<-s4 
 
jibu.impCM301<-matrix(0,4,5) 
#dimnames(jibu)<-list(1:4,c("Estimate", "std error", 
"Llimit","Ulimit","LengthCI")) 
col<-c("Estimate", "std error", "Llimit","Ulimit","LengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(jibu.impCM301)<-list(rows,col) 
s1<-c(fit.impCM301$coefficients[1],summary(fit.impCM301) $coef[,"Std. 
Error"][1],CI.impCM3011,avCI.impCM301[1]);  jibu.impCM301[1,]<-s1 
s2<-c(fit.impCM301$coefficients[2],summary(fit.impCM301) $coef[,"Std. 
Error"][2],CI.impCM3012,avCI.impCM301[2]);  jibu.impCM301[2,]<-s2 
s3<-c(fit.impCM301$coefficients[3],summary(fit.impCM301) $coef[,"Std. 
Error"][3],CI.impCM3013,avCI.impCM301[3]);  jibu.impCM301[3,]<-s3 
s4<-c(fit.impCM301$coefficients[4],summary(fit.impCM301) $coef[,"Std. 
Error"][4],CI.impCM3014,avCI.impCM301[4]);  jibu.impCM301[4,]<-s4 
 
jibu.impM301<-matrix(0,4,5) 
#dimnames(jibu)<-list(1:4,c("Estimate", "std error", 
"Llimit","Ulimit","LengthCI")) 
col<-c("Estimate", "std error", "Llimit","Ulimit","LengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(jibu.impM301)<-list(rows,col) 
m1<-c(fit.impM301[, "results"][1],fit.impM301[, "se"][1],fit.impM301[, 
"(lower"][1],fit.impM301[, "upper)"][1],avCI.impM3011) 
jibu.impM301[1,]<-m1 
m2<-c(fit.impM301[, "results"][2],fit.impM301[, "se"][2],fit.impM301[, 
"(lower"][2],fit.impM301[, "upper)"][2],avCI.impM3012) 
jibu.impM301[2,]<-m2 
m3<-c(fit.impM301[, "results"][3],fit.impM301[, "se"][3],fit.impM301[, 
"(lower"][3],fit.impM301[, "upper)"][3],avCI.impM3013) 
jibu.impM301[3,]<-m3 
m4<-c(fit.impM301[, "results"][4],fit.impM301[, "se"][4],fit.impM301[, 
"(lower"][4],fit.impM301[, "upper)"][4],avCI.impM3014) 
jibu.impM301[4,]<-m4 
##### END END END #####   
 
Part 2: Single analysis: single missingness model 
##  MCAR: 30% MISSINGNESS ###  
set.seed(235); psi1<-(0.89); p1<-expit(psi1) 
R1<-rbinom(n,1,1-p1); Pmiss<-sum(R1==1)/n 
 
##  MCAR: 50% MISSINGNESS ###  
set.seed(534); psi1<-(0.005); p1<-expit(psi1) 
R1<-rbinom(n,1,1-p1); Pmiss<-sum(R1==1)/n 
 
##  MAR: 30% MISSINGNESS ###  
set.seed(3557); psi0<-2.95; psi1<-(-0.05);psi2<--0.005; psi3<-(-0.005) 
p1<-expit(psi0+ psi1*LEEFT+ psi2*SEXE+ psi3*AVERP) 
R1<-rbinom(n,1,1-p1); Pmiss<-sum(R1==1)/n 
 
##  MAR: 50% MISSINGNESS ###  
set.seed(5197); psi0<-1.97; psi1<-(-0.05);psi2<-(-0.055); psi3<-(0.005) 
p1<-expit(psi0+ psi1*LEEFT+ psi2*SEXE+ psi3*AVERP) 
R1<-rbinom(n,1,1-p1); Pmiss502<-sum(R1==1)/n 
 
##  MNAR: 30% MISSINGNESS ###  
set.seed(197); psi0<-1.5; psi1<-2.15; psi2<-2.05; psi3<-0.02; psi4<-(-1.0) 
p1<-expit(psi0+ psi1*LEEFT+ psi2*SEXE+ psi3*AVERP+psi4*y) 
R1<-rbinom(n,1,1-p1); Pmiss303<-sum(R1==1)/n 

 
##  MNAR: 50% MISSINGNESS ###  
set.seed(517); psi0<-1.5; psi1<-1.05; psi2<-2.05; psi3<-0.02; psi4<-(-1.0) 
p1<-expit(psi0+ psi1*LEEFT+ psi2*SEXE+ psi3*AVERP+psi4*y) 
R1<-rbinom(n,1,1-p1) 
 
###### complete code with summary results: presented only for 30% 
MAR, the rest are similar 
### Original data with Age by Missingness Indicator 
#plot(LEEFT,y, xlab="Age",ylab="y",type="n",cex.main=0.9, 
font.main=2,col.main="blue",main="Or.Data with Age by missingness Ind.") 
#points(LEEFT[R1==1],y[R1==1],pch=1) 
#points(LEEFT[R1==0],y[R1==0],pch=2,col="blue") 
 
#win.graph() 
#par(mfrow=c(1,2)) 
#plot(LEEFT,p1,type="n",xlab="Age",ylab="conditional missing 
probability",ylim=range(0,1)) 
#points(LEEFT[SEXE==1],p1[SEXE==1],pch=1) 
#points(LEEFT[SEXE==0],p1[SEXE==0],pch=4,col="blue") 
#plot(AVERP,p1,type="n",xlab="Average trips",ylab="conditional missing 
probability",ylim=range(0,1)) 
#points(AVERP[SEXE==1],p1[SEXE==1],pch=1) 
#points(AVERP[SEXE==0],p1[SEXE==0],pch=4,col="blue") 
##plot(LEEFT,p1, xlab="Age",ylab="conditional missing 
probability",ylim=range(0,1)) 
##plot(AVERP,p1, xlab="Average trips",ylab="conditional missing 
probability",ylim=range(0,1)) 
 
#plot(LEEFT,pSEXE, ylab="conditional missing probability") 
#plot(SEXE,pSEXE, ylab="conditional missing probability") 
##plot(SEXE,pLEEFT,  xlab="Sex", ylab="conditional missing probability") 
#plot(AVERP,pSEXE, ylab="conditional missing probability") 
##plot(AVERP,pLEEFT,  xlab="Average trips",ylab="conditional missing 
probability") 
##### [1] 0.3073152 == missingness 
 
# creating dataset and generate missingness based on "r" 
y.miss30b<-rep(NA,n) 
for  (jj in 1:n) { 
if (R1[jj]==0) y.miss30b[jj]<-y.star[,jj] else y.miss30b[jj]<-NA } 
y.miss302<-y.miss30b 
 
#### fit0: MODEL FROM ORIGINAL DATA 
fit.od<-lm(y~SEXE+LEEFT+AVERP) 
#summary(fit.od) 
fitd.od<-cbind(fit.od$fitted.values) 
 
#### fit1: MODEL FOR THE COMPLETE CASES cc for y.miss30b 
fit.cc302<-lm(y.miss302~SEXE+LEEFT+AVERP) 
summ.cc302<-summary(fit.cc302) 
fitd.cc302<-cbind(fit.cc302$fitted.values) 
ASE4302cc<-sum((cbind(fitd.cc302)-cbind(fitd.od[!is.na(y.miss302)]))^2) ##  
 
##### SINGLE MEAN IMPUTATION 
y.miss3021<-y.miss30b 
## replace NA with mean of the available ones ##  
rep.na<-function(y.miss3021, my.mean=TRUE) {  
if (my.mean) {value<-mean(y.miss3021[!is.na(y.miss3021)])}  
for (i in (1:length(y.miss3021))){if (is.na(y.miss3021[i])==TRUE) 
{y.miss3021[i]<-value}}  
y.miss3021<<-y.miss3021   }  
(y.miss3021) 
y.miss302.imp<-(rep.na(y.miss3021)) 
 
##### fit2: MODEL USING SINGLE MEAN IMPUTED DATA - 302 
fit.sm302<-lm(y.miss302.imp~SEXE+LEEFT+AVERP) 
summ.sm302<-summary(fit.sm302) 
fitd.sm302<-cbind(fit.sm302$fitted.values) 
ASE302sm<-sum((cbind(fitd.sm302)-cbind(fitd.od))^2) 
 
##### CONDITIONAL MEANS IMPUTATION 
y.miss30211<-y.miss30b 
fit.cm302o<-lm(y.miss30211~SEXE+LEEFT+AVERP+Age2+Age3) 
beta.CM302<-summary(fit.cm302o)$coefficients 
#y.miss30211.imp<-y.miss30211 
### replacing using fitted values 
DD302<-
beta.CM302[1,1]+(beta.CM302[2,1]*SEXE)+(beta.CM302[3,1]*LEEFT)+(beta.
CM302[4,1]*AVERP)+(beta.CM302[5,1]*Age2)+(beta.CM302[6,1]*Age3) 
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y.miss30211.imp<- ifelse((is.na(y.miss30211)),DD302,y.miss30211) 
 
### fit3: MODEL WITH CONDIONAL IMPUTED VALUES 
fit.cm302<-lm(y.miss30211.imp~SEXE+LEEFT+AVERP) 
#summ.cm302<-summary(fit.cm302) 
fitd.cm302<-cbind(fit.cm302$fitted.values) 
ASE302cm<-sum((cbind(fitd.cm302)-cbind(fitd.od))^2) 
 
### MULTIPLE IMPUTATION - 302 
### PartI-- Single imputation using PMM 
dataCC302<-data.frame(y.miss302,SEXE,LEEFT,AVERP) 
imp.CC302I<-mice(dataCC302,m=1,maxit=10, seed = 333) 
imp.CC302I<-complete(imp.CC302I) 
#complete(imp.CC302I)[1:10,1:4] # show some of completed data 
MIfitsI<-lm(y.miss302 ~ SEXE+LEEFT+AVERP, imp.CC302I) 
summ.multI302<-summary(MIfitsI) 
fitd.multI302<-cbind(MIfitsI$fitted.values) 
ASEM302I<-sum((cbind(fitd.multI302)-cbind(fitd.od))^2) 
 
### PartII-- Multiple imputation using PMM 
dataCC302<-data.frame(y.miss302,SEXE,LEEFT,AVERP) 
imp.CC302II<- mice(dataCC302,m=5,maxit=10, seed = 333) 
#complete(imp.CC302II)[1:10,1:4] # show some of completed data 
MIfitsII<-lm.mids(y.miss302 ~ SEXE+LEEFT+AVERP, imp.CC302II) 
summ.multII302<-summary(MIcombine(MIfitsII$analyses)) 
 
### To get fitted values for Multiple imputation from 5 models 
fittd1<-cbind(MIfitsII$analyses[[1]]$fitted.values) 
fittd2<-cbind(MIfitsII$analyses[[2]]$fitted.values) 
fittd3<-cbind(MIfitsII$analyses[[3]]$fitted.values) 
fittd4<-cbind(MIfitsII$analyses[[4]]$fitted.values) 
fittd5<-cbind(MIfitsII$analyses[[5]]$fitted.values) 
fittd.multII302<-cbind(rowSums(cbind(fittd1)+cbind(fittd2)+ 
cbind(fittd3)+cbind(fittd4)+cbind(fittd5))/5) 
 
### To get data to calculate MASE1 
dat1<-complete(imp.CC302II,1)[1];dat2<-complete(imp.CC302II,2)[1] 
dat3<-complete(imp.CC302II,3)[1];dat4<-complete(imp.CC302II,4)[1] 
dat5<-complete(imp.CC302II,5)[1] 
y.mult<-cbind(rowSums(cbind(dat1)+cbind(dat2)+cbind(dat3)+ 
cbind(dat4)+cbind(dat5))/5) 
ASEM302II<-sum((cbind(fittd.multII302)-cbind(fitd.od))^2) 
 
#### GENERALIZED ADDITIVE MODEL==302 
y.miss302.gam<-y.miss302 
fit.sp302<-gam(y.miss302.gam~ s(LEEFT)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
#,family=gaussian(link="identity")), fit=FALSE 
#summary(fit.sp302) 
#, data=dataCC302 
hh302<-predict.gam(fit.sp302,newdata=data.frame(LEEFT,AVERP,SEXE), 
type="response") 
#hh302<-cbind(hh302) 
y.smth302<-ifelse((is.na(y.miss302)),hh302,y.miss302) 
sigmag302<-sd(y.smth302) ## sigmag302 
fits.smth302<-lm(y.smth302~ SEXE+LEEFT+AVERP) 
summary(fits.smth302) 
fittd.smth302<-fits.smth302$fitted.values 
ASEG302<-sum((cbind(fittd.smth302)-cbind(fitd.od))^2) ##  
#ASEG302 
 
#### MULTIPLE IMPUTATION USING GAM == 302 
y.miss302.Mgam<-y.miss302 
fit.MG302<-gam(y.miss302.Mgam~ s(LEEFT)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
hhMG302<-
predict.gam(fit.MG302,newdata=data.frame(LEEFT,AVERP,SEXE), 
type="response") 
### Data generation/sampling 
YY<-matrix(0,n,5) 
col<-c("Y.gam1", "Y.gam2", "Y.gam3","Y.gam4","Y.gam5") 
rows<-seq(1:n) 
dimnames(YY)<-list(rows,col) 
sigmaMG302<-sqrt(fit.MG302$sig2) 
 
set.seed(337) 
for (bb in 1:n){ YY[bb,1]=rnorm(1,hhMG302[bb],sigmaMG302) } 
set.seed(456) 
for (bb in 1:n){ YY[bb,2]=rnorm(1,hhMG302[bb],sigmaMG302) } 
set.seed(231) 

for (bb in 1:n){ YY[bb,3]=rnorm(1,hhMG302[bb],sigmaMG302) } 
set.seed(567) 
for (bb in 1:n){ YY[bb,4]=rnorm(1,hhMG302[bb],sigmaMG302) } 
set.seed(123) 
for (bb in 1:n){ YY[bb,5]=rnorm(1,hhMG302[bb],sigmaMG302) } 
 
Y.gam1<-YY[,1]; Y.gam2<-YY[,2] 
Y.gam3<-YY[,3]; Y.gam4<-YY[,4]; Y.gam5<-YY[,5] 
 
Y.gamdat<-cbind(rowSums(cbind(Y.gam1)+cbind(Y.gam2)+ 
cbind(Y.gam3)+cbind(Y.gam4)+cbind(Y.gam5))/5) 
 
### fitting 5 GAM using the 5 datasets 
g1.302<-lm(Y.gam1~ SEXE+LEEFT+AVERP) 
g2.302<-lm(Y.gam2~ SEXE+LEEFT+AVERP) 
g3.302<-lm(Y.gam3~ SEXE+LEEFT+AVERP) 
g4.302<-lm(Y.gam4~ SEXE+LEEFT+AVERP) 
g5.302<-lm(Y.gam5~ SEXE+LEEFT+AVERP) 
 
##################### 
#### MULTIPLE IMPUTATION BY HAND FOR GAM 
lmids.vals<-function(obj,param) 
{ out.mat<-NULL 
for(f in 1:obj$call1$m) 
out.mat<-rbind(out.mat,summary.lm(obj$analyses[[f]])$coef[,param]) 
out.mat  } 
 
### CREATE MATRICES FOR COEFs AND STDs 
coef.all<-matrix(0,5,4) 
dimnames(coef.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
std.all<-matrix(0,5,4) 
dimnames(std.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
 
## CREATE VECTORS OF ALL 5 ESTIMATES 4@ COVARIATE 
coef.all[,1]<-coef.int<-c(g1.302$coefficients[[1]],g2.302$coefficients[[1]], 
g3.302$coefficients[[1]],g4.302$coefficients[[1]],g5.302$coefficients[[1]]) 
coef.all[,2]<-coef.sex<-c(g1.302$coefficients[[2]],g2.302$coefficients[[2]], 
g3.302$coefficients[[2]],g4.302$coefficients[[2]],g5.302$coefficients[[2]]) 
coef.all[,3]<-coef.age<-c(g1.302$coefficients[[3]],g2.302$coefficients[[3]], 
g3.302$coefficients[[3]],g4.302$coefficients[[3]],g5.302$coefficients[[3]]) 
coef.all[,4]<-coef.ave<-c(g1.302$coefficients[[4]],g2.302$coefficients[[4]], 
g3.302$coefficients[[4]],g4.302$coefficients[[4]],g5.302$coefficients[[4]]) 
 
## CREATE VECTORS OF ALL 5 STD ERRORS FOR THE ESTIMATES 
FOR EACH COVARIATE 
std.all[,1]<-std.int<-
c(summary(g1.302)$coef[,2][[1]],summary(g2.302)$coef[,2][[1]], 
summary(g3.302)$coef[,2][[1]],summary(g4.302)$coef[,2][[1]],summary(g5.30
2)$coef[,2][[1]]) 
std.all[,2]<-std.int<-c(summary(g1.302)$coef[,2][[2]],summary(g2.302) 
$coef[,2][[2]],summary(g3.302)$coef[,2][[2]],summary(g4.302) 
$coef[,2][[2]],summary(g5.302)$coef[,2][[2]]) 
std.all[,3]<-std.int<-c(summary(g1.302)$coef[,2][[3]],summary(g2.302)$ 
coef[,2][[3]],summary(g3.302)$coef[,2][[3]],summary(g4.302)$ 
coef[,2][[3]],summary(g5.302)$coef[,2][[3]]) 
std.all[,4]<-std.int<-c(summary(g1.302)$coef[,2][[4]],summary(g2.302) 
$coef[,2][[4]],summary(g3.302)$coef[,2][[4]],summary(g4.302) 
$coef[,2][[4]],summary(g5.302)$coef[,2][[4]]) 
 
### FUNCTION TO GET THE THREE REQUIRED VECTORS 
impute.coef.vec<-apply(coef.all,2,mean) 
between.var<-apply(coef.all,2,var) 
within.var<-apply(std.all^2,2,mean) 
### # COMPUTE THE STANDARD ERROR VECTOR 
m <- 5 
impute.se.vec <- sqrt(within.var + ((m+1)/m)*between.var) 
 
# ADJUSTing DEGREES OF FREEDOM FOR THE T-STATISTIC . 
# SEE LITTLE AND RUBIN (1987), PAGE 257 
impute.df <- (m-1)*(1 + (1/(m+1)) * within.var/between.var)^2 
 
# TO OBTAIN REGRESSION TABLE: 
multG.302 <- round( cbind( 
impute.coef.vec,impute.se.vec,impute.coef.vec/impute.se.vec, 
1-pt(abs(impute.coef.vec/impute.se.vec),impute.df) ),4) 
dimnames(multG.302) <- list( c("(Intercept)","Sex","Age","Averp"), 
c("Estimate","Std. Error","t value","Pvalue") )  
multG.302 
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### To get fitted values for MI for GAM 
ftd1<-cbind(g1.302$fitted.values);ftd2<-cbind(g2.302$fitted.values) 
ftd3<-cbind(g3.302$fitted.values);ftd4<-cbind(g4.302$fitted.values) 
ftd5<-cbind(g5.302$fitted.values) 
ftd.multG302<-cbind(rowSums(cbind(ftd1)+cbind(ftd2)+cbind(ftd3)+ 
cbind(ftd4)+cbind(ftd5))/5) 
ASEMG302II<-sum((cbind(ftd.multG302)-cbind(fitd.od))^2) 
 
#################################################### 
 ### Summary for all models ### 
################ for cc302  ################ 
cc302.coef<-fit.cc302$coefficients 
cc302.std<-summary(fit.cc302)$coef[, 2] 
CI.cc3021<-c(cc302.coef[1]-
1.96*cc302.std[1],cc302.coef[1]+1.96*cc302.std[1]) 
CI.cc3022<-c(cc302.coef[2]-
1.96*cc302.std[2],cc302.coef[2]+1.96*cc302.std[2]) 
CI.cc3023<-c(cc302.coef[3]-
1.96*cc302.std[3],cc302.coef[3]+1.96*cc302.std[3]) 
CI.cc3024<-c(cc302.coef[4]-
1.96*cc302.std[4],cc302.coef[4]+1.96*cc302.std[4]) 
LCI.cc3021<-((cc302.coef[1]+1.96*cc302.std[1])-(cc302.coef[1]-
1.96*cc302.std[1])) 
LCI.cc3022<-((cc302.coef[2]+1.96*cc302.std[2])-(cc302.coef[2]-
1.96*cc302.std[2])) 
LCI.cc3023<-((cc302.coef[3]+1.96*cc302.std[3])-(cc302.coef[3]-
1.96*cc302.std[3])) 
LCI.cc3024<-((cc302.coef[4]+1.96*cc302.std[4])-(cc302.coef[4]-
1.96*cc302.std[4])) 
LCI.cc302<-c(LCI.cc3021,LCI.cc3022,LCI.cc3023,LCI.cc3024) 
## Jibu 
jibu.cc302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.cc302)<-list(rows,col) 
ll1<-c(cc302.coef[1],cc302.std[1],CI.cc3021,LCI.cc302[1]) 
jibu.cc302[1,]<-ll1 
ll2<-c(cc302.coef[2],cc302.std[2],CI.cc3022,LCI.cc302[2]) 
jibu.cc302[2,]<-ll2 
ll3<-c(cc302.coef[3],cc302.std[3],CI.cc3023,LCI.cc302[3]) 
jibu.cc302[3,]<-ll3 
ll4<-c(cc302.coef[4],cc302.std[4],CI.cc3024,LCI.cc302[4]) 
jibu.cc302[4,]<-ll4 
 
################ for sm302  ################ 
sm302.coef<-fit.sm302$coefficients 
sm302.std<-summary(fit.sm302)$coef[, 2] 
CI.sm3021<-c(sm302.coef[1]-
1.96*sm302.std[1],sm302.coef[1]+1.96*sm302.std[1]) 
CI.sm3022<-c(sm302.coef[2]-
1.96*sm302.std[2],sm302.coef[2]+1.96*sm302.std[2]) 
CI.sm3023<-c(sm302.coef[3]-
1.96*sm302.std[3],sm302.coef[3]+1.96*sm302.std[3]) 
CI.sm3024<-c(sm302.coef[4]-
1.96*sm302.std[4],sm302.coef[4]+1.96*sm302.std[4]) 
LCI.sm3021<-((sm302.coef[1]+1.96*sm302.std[1])-(sm302.coef[1]-
1.96*sm302.std[1])) 
LCI.sm3022<-((sm302.coef[2]+1.96*sm302.std[2])-(sm302.coef[2]-
1.96*sm302.std[2])) 
LCI.sm3023<-((sm302.coef[3]+1.96*sm302.std[3])-(sm302.coef[3]-
1.96*sm302.std[3])) 
LCI.sm3024<-((sm302.coef[4]+1.96*sm302.std[4])-(sm302.coef[4]-
1.96*sm302.std[4])) 
LCI.sm302<-c(LCI.sm3021,LCI.sm3022,LCI.sm3023,LCI.sm3024) 
 
## Jibu 
jibu.sm302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.sm302)<-list(rows,col) 
ll1<-c(sm302.coef[1],sm302.std[1],CI.sm3021,LCI.sm302[1]) 
jibu.sm302[1,]<-ll1 
ll2<-c(sm302.coef[2],sm302.std[2],CI.sm3022,LCI.sm302[2]) 
jibu.sm302[2,]<-ll2 
ll3<-c(sm302.coef[3],sm302.std[3],CI.sm3023,LCI.sm302[3]) 
jibu.sm302[3,]<-ll3 
ll4<-c(sm302.coef[4],sm302.std[4],CI.sm3024,LCI.sm302[4]) 
jibu.sm302[4,]<-ll4 
 

################ for cm302  ################ 
cm302.coef<-fit.cm302$coefficients 
cm302.std<-summary(fit.cm302)$coef[, 2] 
CI.cm3021<-c(cm302.coef[1]-
1.96*cm302.std[1],cm302.coef[1]+1.96*cm302.std[1]) 
CI.cm3022<-c(cm302.coef[2]-
1.96*cm302.std[2],cm302.coef[2]+1.96*cm302.std[2]) 
CI.cm3023<-c(cm302.coef[3]-
1.96*cm302.std[3],cm302.coef[3]+1.96*cm302.std[3]) 
CI.cm3024<-c(cm302.coef[4]-
1.96*cm302.std[4],cm302.coef[4]+1.96*cm302.std[4]) 
LCI.cm3021<-((cm302.coef[1]+1.96*cm302.std[1])-(cm302.coef[1]-
1.96*cm302.std[1])) 
LCI.cm3022<-((cm302.coef[2]+1.96*cm302.std[2])-(cm302.coef[2]-
1.96*cm302.std[2])) 
LCI.cm3023<-((cm302.coef[3]+1.96*cm302.std[3])-(cm302.coef[3]-
1.96*cm302.std[3])) 
LCI.cm3024<-((cm302.coef[4]+1.96*cm302.std[4])-(cm302.coef[4]-
1.96*cm302.std[4])) 
LCI.cm302<-c(LCI.cm3021,LCI.cm3022,LCI.cm3023,LCI.cm3024) 
 
## Jibu 
jibu.cm302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.cm302)<-list(rows,col) 
ll1<-c(cm302.coef[1],cm302.std[1],CI.cm3021,LCI.cm302[1]) 
jibu.cm302[1,]<-ll1 
ll2<-c(cm302.coef[2],cm302.std[2],CI.cm3022,LCI.cm302[2]) 
jibu.cm302[2,]<-ll2 
ll3<-c(cm302.coef[3],cm302.std[3],CI.cm3023,LCI.cm302[3]) 
jibu.cm302[3,]<-ll3 
ll4<-c(cm302.coef[4],cm302.std[4],CI.cm3024,LCI.cm302[4]) 
jibu.cm302[4,]<-ll4 
 
################ for multI302  ################ 
multI302.coef<- MIfitsI $coefficients 
multI302.std<-summary(MIfitsI)$coef[, 2] 
CI.multI3021<-c(multI302.coef[1]-
1.96*multI302.std[1],multI302.coef[1]+1.96*multI302.std[1]) 
CI.multI3022<-c(multI302.coef[2]-
1.96*multI302.std[2],multI302.coef[2]+1.96*multI302.std[2]) 
CI.multI3023<-c(multI302.coef[3]-
1.96*multI302.std[3],multI302.coef[3]+1.96*multI302.std[3]) 
CI.multI3024<-c(multI302.coef[4]-
1.96*multI302.std[4],multI302.coef[4]+1.96*multI302.std[4]) 
LCI.multI3021<-((multI302.coef[1]+1.96*multI302.std[1])-(multI302.coef[1]-
1.96*multI302.std[1])) 
LCI.multI3022<-((multI302.coef[2]+1.96*multI302.std[2])-(multI302.coef[2]-
1.96*multI302.std[2])) 
LCI.multI3023<-((multI302.coef[3]+1.96*multI302.std[3])-(multI302.coef[3]-
1.96*multI302.std[3])) 
LCI.multI3024<-((multI302.coef[4]+1.96*multI302.std[4])-(multI302.coef[4]-
1.96*multI302.std[4])) 
LCI.multI302<-c(LCI.multI3021,LCI.multI3022,LCI.multI3023,LCI.multI3024) 
 
## Jibu 
jibu.multI302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.multI302)<-list(rows,col) 
ll1<-c(multI302.coef[1],multI302.std[1],CI.multI3021,LCI.multI302[1]) 
jibu.multI302[1,]<-ll1 
ll2<-c(multI302.coef[2],multI302.std[2],CI.multI3022,LCI.multI302[2]) 
jibu.multI302[2,]<-ll2 
ll3<-c(multI302.coef[3],multI302.std[3],CI.multI3023,LCI.multI302[3]) 
jibu.multI302[3,]<-ll3 
ll4<-c(multI302.coef[4],multI302.std[4],CI.multI3024,LCI.multI302[4]) 
jibu.multI302[4,]<-ll4 
 
################ for multII302  ################ 
multII302.coef<- MIfitsII$coefficients 
multII302.std<-summary(MIfitsI)$coef[, 2] 
summ.multII302 
CI.multII3021<-c(summ.multII302[1,3],summ.multII302[1,4]) 
CI.multII3022<-c(summ.multII302[2,3],summ.multII302[2,4]) 
CI.multII3023<-c(summ.multII302[3,3],summ.multII302[3,4]) 
CI.multII3024<-c(summ.multII302[4,3],summ.multII302[4,4]) 
LCI.multII3021<-(summ.multII302[1,4])-(summ.multII302[1,3]) 
LCI.multII3022<-(summ.multII302[2,4])-(summ.multII302[2,3]) 



__________________________________________________________________ 70

LCI.multII3023<-(summ.multII302[3,4])-(summ.multII302[3,3]) 
LCI.multII3024<-(summ.multII302[4,4])-(summ.multII302[4,3]) 
LCI.multII302<-c(LCI.multI3021,LCI.multI3022,LCI.multI3023,LCI.multI3024) 
 
## Jibu 
jibu.multII302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.multII302)<-list(rows,col) 
ml1<-c(summ.multII302[1,1],summ.multII302[1,2], 
CI.multII3021,LCI.multII3021) 
jibu.multII302[1,]<-ml1 
ml2<-c(summ.multII302[2,1],summ.multII302[2,2], 
CI.multII3022,LCI.multII3022) 
jibu.multII302[2,]<-ml2 
ml3<-c(summ.multII302[3,1],summ.multII302[3,2], 
CI.multII3023,LCI.multII3023) 
jibu.multII302[3,]<-ml3 
ml4<-c(summ.multII302[4,1],summ.multII302[4,2], 
CI.multII3024,LCI.multII3024) 
jibu.multII302[4,]<-ml4 
 
################ for GAM302  ################ 
smth302.coef<-fits.smth302$coefficients 
smth302.std<-summary(fits.smth302)$coef[, 2] 
CI.smth3021<-c(smth302.coef[1]-
1.96*smth302.std[1],smth302.coef[1]+1.96*smth302.std[1]) 
CI.smth3022<-c(smth302.coef[2]-
1.96*smth302.std[2],smth302.coef[2]+1.96*smth302.std[2]) 
CI.smth3023<-c(smth302.coef[3]-
1.96*smth302.std[3],smth302.coef[3]+1.96*smth302.std[3]) 
CI.smth3024<-c(smth302.coef[4]-
1.96*smth302.std[4],smth302.coef[4]+1.96*smth302.std[4]) 
LCI.smth3021<-((smth302.coef[1]+1.96*smth302.std[1])-(smth302.coef[1]-
1.96*smth302.std[1])) 
LCI.smth3022<-((smth302.coef[2]+1.96*smth302.std[2])-(smth302.coef[2]-
1.96*smth302.std[2])) 
LCI.smth3023<-((smth302.coef[3]+1.96*smth302.std[3])-(smth302.coef[3]-
1.96*smth302.std[3])) 
LCI.smth3024<-((smth302.coef[4]+1.96*smth302.std[4])-(smth302.coef[4]-
1.96*smth302.std[4])) 
LCI.smth302<-c(LCI.smth3021,LCI.smth3022,LCI.smth3023,LCI.smth3024) 
 
## Jibu 
jibu.smth302<-matrix(0,4,5) 
col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.smth302)<-list(rows,col) 
ll1<-c(smth302.coef[1],smth302.std[1],CI.smth3021,LCI.smth302[1]) 
jibu.smth302[1,]<-ll1 
ll2<-c(smth302.coef[2],smth302.std[2],CI.smth3022,LCI.smth302[2]) 
jibu.smth302[2,]<-ll2 
ll3<-c(smth302.coef[3],smth302.std[3],CI.smth3023,LCI.smth302[3]) 
jibu.smth302[3,]<-ll3 
ll4<-c(smth302.coef[4],smth302.std[4],CI.smth3024,LCI.smth302[4]) 
jibu.smth302[4,]<-ll4 
 
################ for GAM302  ################ 
CI.multG3021<-c(multG.302[1,1]-
1.96*multG.302[1,2],multG.302[1,1]+1.96*multG.302[1,2]) 
CI.multG3022<-c(multG.302[2,1]-
1.96*multG.302[2,2],multG.302[2,1]+1.96*multG.302[2,2]) 
CI.multG3023<-c(multG.302[3,1]-
1.96*multG.302[3,2],multG.302[3,1]+1.96*multG.302[3,2]) 
CI.multG3024<-c(multG.302[4,1]-
1.96*multG.302[4,2],multG.302[4,1]+1.96*multG.302[4,2]) 
 
LCI.multG3021<-(multG.302[1,1]+1.96*multG.302[1,2])-(multG.302[1,1]-
1.96*multG.302[1,2]) 
LCI.multG3022<-(multG.302[2,1]+1.96*multG.302[2,2])-(multG.302[2,1]-
1.96*multG.302[2,2]) 
LCI.multG3023<-(multG.302[3,1]+1.96*multG.302[3,2])-(multG.302[3,1]-
1.96*multG.302[3,2]) 
LCI.multG3024<-(multG.302[4,1]+1.96*multG.302[4,2])-(multG.302[4,1]-
1.96*multG.302[4,2]) 
LCI.multG302<-
c(LCI.multG3021,LCI.multG3022,LCI.multG3023,LCI.multG3024) 
 
## Jibu 
jibu.multG302<-matrix(0,4,5) 

col<-c("Estimate", "SE", "LL","UL","LCI") 
rows<-c("Intercept", "Sex", "Age","AVERP") 
dimnames(jibu.multG302)<-list(rows,col) 
lj1<-c(multG.302[1,1],multG.302[1,2],CI.multG3021,LCI.multG302[1]) 
jibu.multG302[1,]<-lj1 
lj2<-c(multG.302[2,1],multG.302[2,2],CI.multG3022,LCI.multG302[2]) 
jibu.multG302[2,]<-lj2 
lj3<-c(multG.302[3,1],multG.302[3,2],CI.multG3023,LCI.multG302[3]) 
jibu.multG302[3,]<-lj3 
lj4<-c(multG.302[4,1],multG.302[4,2],CI.multG3024,LCI.multG302[4]) 
jibu.multG302[4,]<-lj4 
################################################ 
 
### FINAL MAJIBU 
jibu.cc302; jibu.sm302; jibu.cm302; jibu.multI302 
jibu.multII302; jibu.smth302; jibu.multG302 
 
#### SUMMARY FOR THE ASE VALUES 
ASE.302<-
c(ASE4302cc,ASE302sm,ASE302cm,ASEM302I,ASEM302II,ASEG302,ASE
MG302II) 
 
### PLOTS OF ASE AND MASE ### THIS is just one of the used codes, 
similar codes for all analysis and for MASE also 
pp<-c(0,0.2918429,0.4995192); asecc<-c(0,5856.839,9487.931) 
asesmi<-c(0,1482.966,2426.333); asecmi<-c(0,12.71369,9219.44) 
asemi1<-c(0,4875.289,9428.789); asemi2<-c(0,2509.473,4766.304) 
asegam1<-c(0,2764.912,9116.295); asegam2<-c(0,1841.889,2461.796) 
plot(pp,asecc, type="b", lty=1, xlab="Missingness Proportion",  
cex.main=1.2, font.main=2,main="MASE values under 
MCAR",ylab="MASE",ylim=range(0,10000), 
xlim=range(0,0.6),lwd=1.5) 
lines(pp, asesmi, type="b",col="purple", lty=3,lwd=2) 
lines(pp, asecmi, type="b", col="blue",lty=5,lwd=1.5) 
lines(pp, asemi1, type="b", col="yellow",lty=7,lwd=2.1) 
lines(pp, asemi2, type="b", col="green",lty=9,lwd=2.1) 
lines(pp, asegam1, type="b", col="red", lty=11,lwd=2) 
lines(pp, asegam2, type="b", col="magenta", lty=13,lwd=2) 
lgg<-c("CC","SM","CM","PMM-I","PMM-II","GAM-I","GAM-II") 
legend(locator(1),legend=lgg ,lty=1:13, ncol=2, adj = c(0, 0.5), 
col = c("black","purple","blue","yellow","green","red","magenta"),lwd=2) 
#### END END END ###  
  
Simulation code  
### Creating arrays for saving simulated data 
nsample <-200; nmeasures <-14; nparam <-4 
ccase<-simean<-sicmean<-PMM1<-PMM2<-GAM1<-GAM2<-array(data=NA, 
dim=c(nsample,nmeasures,nparam), 
dimnames=list(paste(1:nsample),c("Est","Std","LL","UL","LCI","Sigma","ASE0
","ASE1","ASE2","ASE3", 
"ASE4","ASE5","ASE6","Miss"),c("Int","SEX","Age","Averp"))) 
 
nmeasures2 <-1; nparam2 <-4 
minf<-array(data=NA, dim=c(nsample,nmeasures2,nparam2), 
dimnames=list(paste(1:nsample),"Minf",c("Int","SEX","Age","Averp"))) 
 
##******* 30% MISSINGNESS : MCAR  
for (i in 1:nsample){ 
set.seed(i) 
psi1<-(0.89) 
p1<-expit(psi1); R1<-rbinom(n,1,1-p1); Pmiss<-sum(R1==1)/n 
 ### same missingness models as ones used under single analysis with 
single missingness model were used so here only MCAR  for 30% is 
presented 
# # creating dataset and generate missingness based on "R" FOR Y 
y.miss30a<-rep(NA,n) 
for  (jj in 1:n) { 
if (R1[jj]==0) y.miss30a[jj]<-y.star[,jj] else y.miss30a[jj]<-NA } 
#y.miss30a[1:15] 
y.miss301<-y.miss30a 
 
# creating dataset and generate missingness based on "R" FOR AGE 
# ag.miss30a<-rep(NA,n) 
# for  (jj in 1:n) { 
# i f (R1[jj]==0) ag.miss30a[jj]<-LEEFT[jj] else ag.miss30a[jj]<-NA } 
# ag.miss30a[1:15] 
# ag.miss301<-ag.miss30a 
 
#### fit1: MODEL FOR THE COMPLETE CASES cc 
fit.cc301<-lm(y.miss301~SEXE+LEEFT+AVERP) 
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# fit.cc301<-lm(y~SEXE+ag.miss301+AVERP) ### FOR MISSING IN AGE 
summ.cc301<-summary(fit.cc301) 
fitd.cc301<-cbind(fit.cc301$fitted.values) 
ccase[i,"Est","Int"]<-summ.cc301$coef[1,1] 
ccase[i,"Std","Int"]<-summ.cc301$coef[1,2] 
ccase[i,"LL","Int"]<-ccase[i,"Est","Int"]-1.96*ccase[i,"Std","Int"] 
ccase[i,"UL","Int"]<-ccase[i,"Est","Int"]+1.96*ccase[i,"Std","Int"] 
ccase[i,"LCI","Int"]<-ccase[i,"UL","Int"]-ccase[i,"LL","Int"] 
ccase[i,"Sigma","Int"]<-summ.cc301$sigma 
ccase[i,"Miss",]<-Pmiss 
ccase[i,"ASE0",]<-sum((cbind(fitd.od[!is.na(y.miss301)])-
cbind(fit.cc301$fitted.values))^2)  
#ccase[i,"ASE0",]<-sum((cbind(fitd.od[!is.na(ag.miss301)])-
cbind(fit.cc301$fitted.values))^2) ### MISS IN AGE 
 
ccase[i,"Est","SEX"]<-summ.cc301$coef[2,1] 
ccase[i,"Std","SEX"]<-summ.cc301$coef[2,2] 
ccase[i,"LL","SEX"]<-ccase[i,"Est","SEX"]-1.96*ccase[i,"Std","SEX"] 
ccase[i,"UL","SEX"]<-ccase[i,"Est","SEX"]+1.96*ccase[i,"Std","SEX"] 
ccase[i,"LCI","SEX"]<-ccase[i,"UL","SEX"]-ccase[i,"LL","SEX"] 
ccase[i,"Sigma","SEX"]<-summ.cc301$sigma 
 
ccase[i,"Est","Age"]<-summ.cc301$coef[3,1] 
ccase[i,"Std","Age"]<-summ.cc301$coef[3,2] 
ccase[i,"LL","Age"]<-ccase[i,"Est","Age"]-1.96*ccase[i,"Std","Age"] 
ccase[i,"UL","Age"]<-ccase[i,"Est","Age"]+1.96*ccase[i,"Std","Age"] 
ccase[i,"LCI","Age"]<-ccase[i,"UL","Age"]-ccase[i,"LL","Age"] 
ccase[i,"Sigma","Age"]<-summ.cc301$sigma 
 
ccase[i,"Est","Averp"]<-summ.cc301$coef[4,1] 
ccase[i,"Std","Averp"]<-summ.cc301$coef[4,2] 
ccase[i,"LL","Averp"]<-ccase[i,"Est","Averp"]-1.96*ccase[i,"Std","Averp"] 
ccase[i,"UL","Averp"]<-ccase[i,"Est","Averp"]+1.96*ccase[i,"Std","Averp"] 
ccase[i,"LCI","Averp"]<-ccase[i,"UL","Averp"]-ccase[i,"LL","Averp"] 
ccase[i,"Sigma","Averp"]<-summ.cc301$sigma 
 
##### SINGLE MEAN IMPUTATION 
y.miss3011<-y.miss30a 
## replace NA with mean of the available ones ##  
rep.na<-function(y.miss3011, my.mean=TRUE) {  
if (my.mean) {value<-mean(y.miss3011[!is.na(y.miss3011)])}  
for (i in (1:length(y.miss3011))){if (is.na(y.miss3011[i])==TRUE) 
{y.miss3011[i]<-value}}  
y.miss3011<<-y.miss3011   }  
(y.miss3011) 
y.miss301.imp<-(rep.na(y.miss3011)) 
 
## FOR AGE 
ag.miss3011<-ag.miss30a 
## replace NA with mean of the available ones ##  
#rep.na<-function(ag.miss3011, my.mean=TRUE) {  
#if (my.mean) {value<-mean(ag.miss3011[!is.na(ag.miss3011)])}  
#for (i in (1:length(ag.miss3011))){if (is.na(ag.miss3011[i])==TRUE) 
{ag.miss3011[i]<-value}}  
#ag.miss3011<<-ag.miss3011   }  
# (ag.miss3011) 
# ag.miss301.imp<-(rep.na(ag.miss3011)) 
 
##### fit2: MODEL USING SINGLE MEAN IMPUTED DATA - 301 
fit.sm301<-lm(y.miss301.imp~SEXE+LEEFT+AVERP) 
# fit.sm301<-lm(y~SEXE+ag.miss301.imp+AVERP) 
summ.sm301<-summary(fit.sm301) 
fitd.sm301<-cbind(fit.sm301$fitted.values) 
 
simean[i,"Est","Int"]<-summ.sm301$coef[1,1] 
simean[i,"Std","Int"]<-summ.sm301$coef[1,2] 
simean[i,"LL","Int"]<-simean[i,"Est","Int"]-1.96*simean[i,"Std","Int"] 
simean[i,"UL","Int"]<-simean[i,"Est","Int"]+1.96*simean[i,"Std","Int"] 
simean[i,"LCI","Int"]<-simean[i,"UL","Int"]-simean[i,"LL","Int"] 
simean[i,"Sigma","Int"]<-summ.sm301$sigma 
simean[i,"Miss",]<-Pmiss 
simean[i,"ASE1",]<-sum((cbind(fitd.sm301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
 
##### CONDITIONAL MEANS IMPUTATION 
y.miss30111<-y.miss30a 
fit.cm301o<-lm(y.miss30111~SEXE+LEEFT+AVERP+Age2+Age3) 
beta.CM301<-summary(fit.cm301o)$coefficients 
 

### replacing using fitted values 
DD301<-
beta.CM301[1,1]+(beta.CM301[2,1]*SEXE)+(beta.CM301[3,1]*LEEFT)+(beta.
CM301[4,1]*AVERP)+(beta.CM301[5,1]*Age2)+(beta.CM301[6,1]*Age3) 
y.miss30111.imp<- ifelse((is.na(y.miss30111)),DD301,y.miss30111) 
 
### fit3: MODEL WITH CONDITIONAL IMPUTED VALUES 
fit.cm301<-lm(y.miss30111.imp~SEXE+LEEFT+AVERP) 
summ.cm301<-summary(fit.cm301) 
fitd.cm301<-cbind(fit.cm301$fitted.values) 
 
## FOR AGE 
#ag.miss30111<-ag.miss30a 
#fit.cm301o<-lm(ag.miss30111~SEXE+y+AVERP+Age2+Age3) 
#beta.CM301<-summary(fit.cm301o)$coefficients 
#rrr<-fit.cm301o$fitted.values 
 
### replacing using fitted values 
#DD301<-
beta.CM301[1,1]+(beta.CM301[2,1]*SEXE)+(beta.CM301[3,1]*y)+(beta.CM30
1[4,1]*AVERP)+(beta.CM301[5,1]*Age2)+(beta.CM301[6,1]*Age3) 
#ag.miss30111.imp<- ifelse((is.na(ag.miss30111)),DD301,ag.miss30111) 
 
### fit3: MODEL WITH CONDITIONAL IMPUTED VALUES 
#fit.cm301<-lm(y~SEXE+ag.miss30111.imp+AVERP) 
#summ.cm301<-summary(fit.cm301) 
#fitd.cm301<-cbind(fit.cm301$fitted.values) 
 
sicmean[i,"Est","Int"]<-summ.cm301$coef[1,1] 
sicmean[i,"Std","Int"]<-summ.cm301$coef[1,2] 
sicmean[i,"LL","Int"]<-sicmean[i,"Est","Int"]-1.96*sicmean[i,"Std","Int"] 
sicmean[i,"UL","Int"]<-sicmean[i,"Est","Int"]+1.96*sicmean[i,"Std","Int"] 
sicmean[i,"LCI","Int"]<-sicmean[i,"UL","Int"]-sicmean[i,"LL","Int"] 
sicmean[i,"Sigma","Int"]<-summ.cm301$sigma 
sicmean[i,"Miss",]<-Pmiss 
sicmean[i,"ASE2",]<-sum((cbind(fitd.cm301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
 
### MULTIPLE IMPUTATION - 301 
############## PartI-- Single imputation using PMM 
dataCC301<-data.frame(y.miss301,SEXE,LEEFT,AVERP) 
imp.CC301I<-mice(dataCC301,m=1,maxit=10, seed = 333) 
imp.CC301I<-complete(imp.CC301I) 
#complete(imp.CC301I)[1:10,1:4] # show some of completed data 
MIfitsI<-lm(y.miss301 ~ SEXE+LEEFT+AVERP, imp.CC301I) 
summ.multI301<-summary(MIfitsI) 
fitd.multI301<-cbind(MIfitsI$fitted.values) 
 
## FOR AGE 
#dataCC301<-data.frame(y,SEXE,ag.miss301,AVERP) 
#imp.CC301I<-mice(dataCC301,m=1,maxit=10, seed = 333) 
#imp.CC301I<-complete(imp.CC301I) 
#complete(imp.CC301I)[1:10,1:4] # show some of completed data 
#MIfitsI<-lm(y~ SEXE+ag.miss301 +AVERP, imp.CC301I) 
#summ.multI301<-summary(MIfitsI) 
#fitd.multI301<-cbind(MIfitsI$fitted.values) 
 
PMM1[i,"Est","Int"]<-summ.multI301$coef[1,1] 
PMM1[i,"Std","Int"]<-summ.multI301$coef[1,2] 
PMM1[i,"LL","Int"]<-PMM1[i,"Est","Int"]-1.96*PMM1[i,"Std","Int"] 
PMM1[i,"UL","Int"]<-PMM1[i,"Est","Int"]+1.96*PMM1[i,"Std","Int"] 
PMM1[i,"LCI","Int"]<-PMM1[i,"UL","Int"]-PMM1[i,"LL","Int"] 
PMM1[i,"Sigma","Int"]<-summ.multI301$sigma 
PMM1[i,"Miss",]<-Pmiss 
PMM1[i,"ASE3",]<-sum((cbind(fitd.multI301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
 
########## PartII-- Multiple imputation using PMM 
dataCC301<-data.frame(y.miss301,SEXE,LEEFT,AVERP) 
imp.CC301II<- mice(dataCC301,m=5,maxit=10, seed = 333) 
#complete(imp.CC301II)[1:10,1:4] # show some of completed data 
MIfitsII<-lm.mids(y.miss301 ~ SEXE+LEEFT+AVERP, imp.CC301II) 
summ.multII301<-summary(MIcombine(MIfitsII$analyses)) 
 
## FOR AGE 
#dataCC301<-data.frame(y,SEXE,ag.miss301,AVERP) 
#imp.CC301II<- mice(dataCC301,m=5,maxit=10, seed = 333) 
#complete(imp.CC301II)[1:10,1:4] # show some of completed data 
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#MIfitsII<-lm.mids(y ~ SEXE+ag.miss301 +AVERP, imp.CC301II) 
#summ.multII301<-summary(MIcombine(MIfitsII$analyses)) 
 
### To get fitted values for Multiple imputation from 5 models 
fittd1<-cbind(MIfitsII$analyses[[1]]$fitted.values) 
fittd2<-cbind(MIfitsII$analyses[[2]]$fitted.values) 
fittd3<-cbind(MIfitsII$analyses[[3]]$fitted.values) 
fittd4<-cbind(MIfitsII$analyses[[4]]$fitted.values) 
fittd5<-cbind(MIfitsII$analyses[[5]]$fitted.values) 
fitd.multII301<-
cbind(rowSums(cbind(fittd1)+cbind(fittd2)+cbind(fittd3)+cbind(fittd4)+cbind(fitt
d5))/5) 
 
### To get data to calculate MASE1 
dat1<-complete(imp.CC301II,1)[1]; dat2<-complete(imp.CC301II,2)[1] 
dat3<-complete(imp.CC301II,3)[1]; dat4<-complete(imp.CC301II,4)[1] 
dat5<-complete(imp.CC301II,5)[1] 
ag.mult<-cbind(rowSums(cbind(dat1)+cbind(dat2)+cbind(dat3)+ 
cbind(dat4)+cbind(dat5))/5) 
 
 
PMM2[i,"Est","Int"]<-summ.multII301[1,1] 
PMM2[i,"Std","Int"]<-summ.multII301[1,2] 
PMM2[i,"LL","Int"]<-PMM2[i,"Est","Int"]-1.96*PMM2[i,"Std","Int"] 
PMM2[i,"UL","Int"]<-PMM2[i,"Est","Int"]+1.96*PMM2[i,"Std","Int"] 
PMM2[i,"LCI","Int"]<-PMM2[i,"UL","Int"]-PMM2[i,"LL","Int"] 
minf[i,"Minf","Int"]<-summ.multII301[1,5] 
PMM2[i,"Sigma","Int"]<-sd(ag.mult) 
PMM2[i,"Miss",]<-Pmiss 
PMM2[i,"ASE4",]<-sum((cbind(fitd.multII301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
 
#### GENERALIZED ADDITIVE MODEL==301 
y.miss301.gam<-y.miss301 
fit.sp301<-gam(y.miss301.gam~ s(LEEFT)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
#summary(fit.sp301) 
hh301<-predict.gam(fit.sp301,newdata=data.frame(LEEFT,AVERP,SEXE), 
type="response") 
y.smth301<-ifelse((is.na(y.miss301)),hh301,y.miss301) 
sigmag301<-sd(y.smth301) ## sigmag301 
fits.smth301<-lm(y.smth301~ SEXE+LEEFT+AVERP) 
summ.smth301<-summary(fits.smth301) 
fitd.smth301<-fits.smth301$fitted.values 
 
### FOR AGE 
#ag.miss301.gam<-ag.miss301 
#fit.sp301<-gam(ag.miss301.gam~ s(y)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
#summary(fit.sp301) 
#hh301<-predict.gam(fit.sp301,newdata=data.frame(y,AVERP,SEXE), 
type="response") 
#ag.smth301<-ifelse((is.na(ag.miss301)),hh301,ag.miss301) 
#sigmag301<-sd(y) ## sigmag301 
#fits.smth301<-lm(y~ SEXE+ag.smth301+AVERP) 
#summ.smth301<-summary(fits.smth301) 
#fitd.smth301<-fits.smth301$fitted.values 
 
GAM1[i,"Est","Int"]<-summ.smth301$coef[1,1] 
GAM1[i,"Std","Int"]<-summ.smth301$coef[1,2] 
GAM1[i,"LL","Int"]<-GAM1[i,"Est","Int"]-1.96*GAM1[i,"Std","Int"] 
GAM1[i,"UL","Int"]<-GAM1[i,"Est","Int"]+1.96*GAM1[i,"Std","Int"] 
GAM1[i,"LCI","Int"]<-GAM1[i,"UL","Int"]-GAM1[i,"LL","Int"] 
GAM1[i,"Sigma","Int"]<-summ.smth301$sigma 
GAM1[i,"Miss",]<-Pmiss 
GAM1[i,"ASE5",]<-sum((cbind(fitd.smth301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
 
#### MULTIPLE IMPUTATION USING GAM == 301 
y.miss301.Mgam<-y.miss301 
fit.MG301<-gam(y.miss301.Mgam~ s(LEEFT)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
hhMG301<-
predict.gam(fit.MG301,newdata=data.frame(LEEFT,AVERP,SEXE), 
type="response") 
### Data generation/sampling 
YY<-matrix(0,n,5) 
col<-c("Y.gam1", "Y.gam2", "Y.gam3","Y.gam4","Y.gam5") 

rows<-seq(1:n) 
dimnames(YY)<-list(rows,col) 
sigmaMG301<-sqrt(fit.MG301$sig2) 
 
set.seed(337) 
for (bb in 1:n){ YY[bb,1]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(456) 
for (bb in 1:n){ YY[bb,2]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(231) 
for (bb in 1:n){ YY[bb,3]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(567) 
for (bb in 1:n){ YY[bb,4]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(123) 
for (bb in 1:n){ YY[bb,5]=rnorm(1,hhMG301[bb],sigmaMG301) } 
 
Y.gam1<-YY[,1]; Y.gam2<-YY[,2]; Y.gam3<-YY[,3] 
Y.gam4<-YY[,4]; Y.gam5<-YY[,5] 
 
Y.gamdat<-
cbind(rowSums(cbind(Y.gam1)+cbind(Y.gam2)+cbind(Y.gam3)+cbind(Y.gam
4)+cbind(Y.gam5))/5) 
 
### fitting 5 GAM using the 5 datasets 
g1.301<-lm(Y.gam1~ SEXE+LEEFT+AVERP) 
g2.301<-lm(Y.gam2~ SEXE+LEEFT+AVERP) 
g3.301<-lm(Y.gam3~ SEXE+LEEFT+AVERP) 
g4.301<-lm(Y.gam4~ SEXE+LEEFT+AVERP) 
g5.301<-lm(Y.gam5~ SEXE+LEEFT+AVERP) 
 
##################### 
#### MULTIPLE IMPUTATION BY HAND FOR GAM 
lmids.vals<-function(obj,param) 
{ out.mat<-NULL 
for(f in 1:obj$call1$m) 
out.mat<-rbind(out.mat,summary.lm(obj$analyses[[f]])$coef[,param]) 
out.mat } 
 
### CREATE MATRICES FOR COEFs AND STDs 
coef.all<-matrix(0,5,4) 
dimnames(coef.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
std.all<-matrix(0,5,4) 
dimnames(std.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
 
## CREATE VECTORS OF ALL 5 ESTIMATES FOR EACH COVARIATE 
coef.all[,1]<-coef.int<-c(g1.301$coefficients[[1]],g2.301$coefficients[[1]], 
g3.301$coefficients[[1]],g4.301$coefficients[[1]],g5.301$coefficients[[1]]) 
coef.all[,2]<-coef.sex<-c(g1.301$coefficients[[2]],g2.301$coefficients[[2]], 
 g3.301$coefficients[[2]],g4.301$coefficients[[2]],g5.301$coefficients[[2]]) 
coef.all[,3]<-coef.age<- c(g1.301$coefficients[[3]],g2.301$coefficients[[3]], 
g3.301$coefficients[[3]],g4.301$coefficients[[3]],g5.301$coefficients[[3]]) 
coef.all[,4]<-coef.ave<-c(g1.301$coefficients[[4]],g2.301$coefficients[[4]], 
g3.301$coefficients[[4]],g4.301$coefficients[[4]],g5.301$coefficients[[4]]) 
 
## CREATE VECTORS OF ALL 5 STD ERRORS FOR THE ESTIMATES 
FOR EACH COVARIATE 
std.all[,1]<-std.int<-
c(summary(g1.301)$coef[,2][[1]],summary(g2.301)$coef[,2][[1]], 
summary(g3.301)$coef[,2][[1]],summary(g4.301)$coef[,2][[1]],summary(g5.30
1)$coef[,2][[1]]) 
std.all[,2]<-std.int<-c(summary(g1.301)$coef[,2][[2]],summary(g2.301) 
$coef[,2][[2]], summary(g3.301)$coef[,2][[2]],summary 
(g4.301)$coef[,2][[2]],summary(g5.301)$coef[,2][[2]]) 
std.all[,3]<-std.int<-c(summary(g1.301)$coef[,2][[3]],summary(g2.301) 
$coef[,2][[3]],summary(g3.301)$coef[,2][[3]],summary(g4.301) 
$coef[,2][[3]],summary(g5.301)$coef[,2][[3]]) 
std.all[,4]<-std.int<-c(summary(g1.301)$coef[,2][[4]],summary(g2.301) 
$coef[,2][[4]],summary(g3.301)$coef[,2][[4]],summary(g4.301) 
$coef[,2][[4]],summary(g5.301)$coef[,2][[4]]) 
### FUNCTION TO GET THE THREE REQUIRED VECTORS 
impute.coef.vec<-apply(coef.all,2,mean) 
between.var<-apply(coef.all,2,var) 
within.var<-apply(std.all^2,2,mean) 
 
### # COMPUTE THE STANDARD ERROR VECTOR 
m <- 5 
impute.se.vec <- sqrt(within.var + ((m+1)/m)*between.var) 
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# THE DEGREES OF FREEDOM FOR THE T-STATISTIC NEEDS TO BE 
ADJUSTED. # SEE LITTLE AND RUBIN (1987), PAGE 257 
impute.df <- (m-1)*(1 + (1/(m+1)) * within.var/between.var)^2 
 
# TO OBTAIN REGRESSION TABLE: 
multG.301 <- round( cbind( 
impute.coef.vec,impute.se.vec,impute.coef.vec/impute.se.vec, 
1-pt(abs(impute.coef.vec/impute.se.vec),impute.df) ),4) 
dimnames(multG.301) <- list( c("(Intercept)","Sex","Age","Averp"), 
c("Estimate","Std. Error","t value","Pvalue") )  
summ.multG301<-multG.301 
 
### To get fitted values for MI for GAM 
ftd1<-cbind(g1.301$fitted.values);ftd2<-cbind(g2.301$fitted.values) 
ftd3<-cbind(g3.301$fitted.values);ftd4<-cbind(g4.301$fitted.values) 
ftd5<-cbind(g5.301$fitted.values) 
fitd.multG301<-cbind(rowSums(cbind(ftd1)+cbind(ftd2)+cbind(ftd3)+ 
cbind(ftd4)+cbind(ftd5))/5) 
#ASEMG301II<-sum((cbind(fitd.multG301)-cbind(fitd.od))^2) 
 
### FOR AGE  
ag.miss301.Mgam<-ag.miss301 
fit.MG301<-gam(ag.miss301.Mgam~ s(y)+s(AVERP)+SEXE, 
family="gaussian",fit=TRUE) 
hhMG301<-predict.gam(fit.MG301,newdata=data.frame(y,AVERP,SEXE), 
type="response") 
### Data generation/sampling 
AG<-matrix(0,n,5) 
col<-c("ag.gam1", "ag.gam2", "ag.gam3","ag.gam4","ag.gam5") 
rows<-seq(1:n) 
dimnames(AG)<-list(rows,col) 
sigmaMG301<-sqrt(fit.MG301$sig2) 
 
set.seed(337) 
for (bb in 1:n){ AG[bb,1]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(456) 
for (bb in 1:n){ AG[bb,2]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(231) 
for (bb in 1:n){ AG[bb,3]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(567) 
for (bb in 1:n){ AG[bb,4]=rnorm(1,hhMG301[bb],sigmaMG301) } 
set.seed(123) 
for (bb in 1:n){ AG[bb,5]=rnorm(1,hhMG301[bb],sigmaMG301) } 
 
ag.gam1<-AG[,1]; ag.gam2<-AG[,2]; ag.gam3<-AG[,3] 
ag.gam4<-AG[,4]; ag.gam5<-AG[,5] 
 
ag.gamdat<-
cbind(rowSums(cbind(ag.gam1)+cbind(ag.gam2)+cbind(ag.gam3)+cbind(ag.g
am4)+cbind(ag.gam5))/5) 
 
### fitting 5 GAM using the 5 datasets 
g1.301<-lm(y~SEXE+ag.gam1+AVERP); g2.301<-
lm(y~SEXE+ag.gam2+AVERP); g3.301<-lm(y~SEXE+ag.gam3+AVERP) 
g4.301<-lm(y~SEXE+ag.gam4+AVERP);  
g5.301<-lm(y~SEXE+ag.gam5+AVERP) 
 
##################### 
#### MULTIPLE IMPUTATION FOR GAM 
lmids.vals<-function(obj,param) 
{  out.mat<-NULL 
for(f in 1:obj$call1$m) 
out.mat<-rbind(out.mat,summary.lm(obj$analyses[[f]])$coef[,param]) 
out.mat  } 
 
### CREATE MATRICES FOR COEFs AND STDs 
coef.all<-matrix(0,5,4) 
dimnames(coef.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
std.all<-matrix(0,5,4) 
dimnames(std.all) <- list( c("[1,]","[2,]","[3,]","[4,]","[5,]") , 
c("Intercept","Sex","Age","Averp"))  
 
## CREATE VECTORS OF ALL 5 ESTIMATES FOR EACH COVARIATE 
coef.all[,1]<-coef.int<-c(g1.301$coefficients[[1]],g2.301$coefficients[[1]], 
g3.301$coefficients[[1]],g4.301$coefficients[[1]],g5.301$coefficients[[1]]) 
coef.all[,2]<-coef.sex<-c(g1.301$coefficients[[2]],g2.301$coefficients[[2]], 
g3.301$coefficients[[2]],g4.301$coefficients[[2]],g5.301$coefficients[[2]]) 
coef.all[,3]<-coef.age<-c(g1.301$coefficients[[3]],g2.301$coefficients[[3]], 
g3.301$coefficients[[3]],g4.301$coefficients[[3]],g5.301$coefficients[[3]]) 

coef.all[,4]<-coef.ave<-c(g1.301$coefficients[[4]],g2.301$coefficients[[4]], 
g3.301$coefficients[[4]],g4.301$coefficients[[4]],g5.301$coefficients[[4]]) 
 
## CREATE VECTORS OF ALL 5 STD ERRORS FOR THE ESTIMATES 
FOR EACH COVARIATE 
std.all[,1]<-std.int<-
c(summary(g1.301)$coef[,2][[1]],summary(g2.301)$coef[,2][[1]], 
summary(g3.301)$coef[,2][[1]],summary(g4.301)$coef[,2][[1]],summary(g5.30
1)$coef[,2][[1]]) 
std.all[,2]<-std.int<-
c(summary(g1.301)$coef[,2][[2]],summary(g2.301)$coef[,2][[2]], 
summary(g3.301)$coef[,2][[2]],summary(g4.301)$coef[,2][[2]],summary(g5.30
1)$coef[,2][[2]]) 
std.all[,3]<-std.int<-
c(summary(g1.301)$coef[,2][[3]],summary(g2.301)$coef[,2][[3]], 
summary(g3.301)$coef[,2][[3]],summary(g4.301)$coef[,2][[3]],summary(g5.30
1)$coef[,2][[3]]) 
std.all[,4]<-std.int<-
c(summary(g1.301)$coef[,2][[4]],summary(g2.301)$coef[,2][[4]], 
summary(g3.301)$coef[,2][[4]],summary(g4.301)$coef[,2][[4]],summary(g5.30
1)$coef[,2][[4]]) 
 
### FUNCTION TO GET THE THREE REQUIRED VECTORS 
impute.coef.vec<-apply(coef.all,2,mean) 
between.var<-apply(coef.all,2,var) 
within.var<-apply(std.all^2,2,mean) 
### # COMPUTE THE STANDARD ERROR VECTOR 
m <- 5 
impute.se.vec <- sqrt(within.var + ((m+1)/m)*between.var) 
 
# THE DEGREES OF FREEDOM FOR THE T-STATISTIC NEEDS TO BE 
ADJUSTED. 
# SEE LITTLE AND RUBIN (1987), PAGE 257 
impute.df <- (m-1)*(1 + (1/(m+1)) * within.var/between.var)^2 
 
# TO OBTAIN REGRESSION TABLE: 
multG.301 <- round( cbind( 
impute.coef.vec,impute.se.vec,impute.coef.vec/impute.se.vec, 
1-pt(abs(impute.coef.vec/impute.se.vec),impute.df) ),4) 
dimnames(multG.301) <- list( c("(Intercept)","Sex","Age","Averp"), 
c("Estimate","Std. Error","t value","Pvalue") )  
summ.multG301<-multG.301 
 
### To get fitted values for MI for GAM 
ftd1<-cbind(g1.301$fitted.values); ftd2<-cbind(g2.301$fitted.values) 
ftd3<-cbind(g3.301$fitted.values); ftd4<-cbind(g4.301$fitted.values) 
ftd5<-cbind(g5.301$fitted.values) 
fitd.multG301<-
cbind(rowSums(cbind(ftd1)+cbind(ftd2)+cbind(ftd3)+cbind(ftd4)+cbind(ftd5))/5
) 
#ASEMG301II<-sum((cbind(fitd.multG301)-cbind(fitd.od))^2) 
#################### 
 
##multG301.coef<-fits.multG301$coefficients 
##multG301.std<-summary(fits.multG301)$coef[, 2] 
GAM2[i,"Est","Int"]<-summ.multG301[1,1] 
GAM2[i,"Std","Int"]<-summ.multG301[1,2] 
GAM2[i,"LL","Int"]<-GAM2[i,"Est","Int"]-1.96*GAM2[i,"Std","Int"] 
GAM2[i,"UL","Int"]<-GAM2[i,"Est","Int"]+1.96*GAM2[i,"Std","Int"] 
GAM2[i,"LCI","Int"]<-GAM2[i,"UL","Int"]-GAM2[i,"LL","Int"] 
GAM2[i,"Sigma","Int"]<-sd(y) 
GAM2[i,"Miss",]<-Pmiss 
GAM2[i,"ASE6",]<-sum((cbind(fitd.multG301)-cbind(fitd.od))^2) 
 
### same for SEX, Age, Averp  ## just change position in the matrix 
} 
 
################ SUMMARY RESULTS ################ 
# SUMMARY RESULTS FOR COMPLETE CASES 
#MAJIBU 
### Jibu1.Scc301 for 30a: FOR CC- Average of the 200 
Jibu1.Scc301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.Scc301)<-list(rows,col) 
b1<-
c(mean(as.data.frame(ccase[,,"Int"]))[1],mean(as.data.frame(ccase[,,"Int"]))[2]
, 
mean(as.data.frame(ccase[,,"Int"]))[3],mean(as.data.frame(ccase[,,"Int"]))[4], 
mean(as.data.frame(ccase[,,"Int"]))[5]) 
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Jibu1.Scc301[1,]<-b1 
b2<-c(mean(as.data.frame(ccase[,,"SEX"]))[1], 
mean(as.data.frame(ccase[,,"SEX"]))[2], 
mean(as.data.frame(ccase[,,"SEX"]))[3],mean(as.data.frame(ccase[,,"SEX"]))[
4], mean(as.data.frame(ccase[,,"SEX"]))[5]) 
Jibu1.Scc301[2,]<-b2 
b3<-c(mean(as.data.frame(ccase[,,"Age"]))[1], 
mean(as.data.frame(ccase[,,"Age"]))[2], 
mean(as.data.frame(ccase[,,"Age"]))[3],mean(as.data.frame(ccase[,,"Age"]))[
4], mean(as.data.frame(ccase[,,"Age"]))[5]) 
Jibu1.Scc301[3,]<-b3 
b4<-c(mean(as.data.frame(ccase[,,"Averp"]))[1], 
mean(as.data.frame(ccase[,,"Averp"]))[2], 
mean(as.data.frame(ccase[,,"Averp"]))[3],mean(as.data.frame(ccase[,,"Averp"
]))[4], mean(as.data.frame(ccase[,,"Averp"]))[5]) 
Jibu1.Scc301[4,]<-b4 
 
### Jibu2.Scc301 for 30a: FOR CC- Jibu2.Scc301<-matrix(0,1,3) 
col<-c("AvSigma","MASE0","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.Scc301)<-list(rows,col) 
kk<-c(mean(as.data.frame(ccase[,,"Int"]))[6], 
mean(as.data.frame(ccase[,,"Int"]))[7], 
mean(as.data.frame(ccase[,,"Int"]))[14]) 
Jibu2.Scc301[1,]<-kk 
 
# SUMMARY RESULTS FOR SINGLE MEAN IMPUTATION 
#MAJIBU 
### Jibu1.SSI301 for 30a: FOR SI- Average of the 1000 
Jibu1.SSI301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.SSI301)<-list(rows,col) 
b1<-c(mean(as.data.frame(simean[,,"Int"]))[1], 
mean(as.data.frame(simean[,,"Int"]))[2], 
mean(as.data.frame(simean[,,"Int"]))[3], 
mean(as.data.frame(simean[,,"Int"]))[4], 
mean(as.data.frame(simean[,,"Int"]))[5]) 
Jibu1.SSI301[1,]<-b1 
b2<-
c(mean(as.data.frame(simean[,,"SEX"]))[1],mean(as.data.frame(simean[,,"SE
X"]))[2], 
mean(as.data.frame(simean[,,"SEX"]))[3],mean(as.data.frame(simean[,,"SEX"
]))[4], 
mean(as.data.frame(simean[,,"SEX"]))[5]) 
Jibu1.SSI301[2,]<-b2 
b3<-c(mean(as.data.frame(simean[,,"Age"]))[1] 
,mean(as.data.frame(simean[,,"Age"]))[2], 
mean(as.data.frame(simean[,,"Age"]))[3],mean(as.data.frame(simean[,,"Age"]
))[4], 
mean(as.data.frame(simean[,,"Age"]))[5]) 
Jibu1.SSI301[3,]<-b3 
b4<-c(mean(as.data.frame(simean[,,"Averp"]))[1], 
mean(as.data.frame(simean[,,"Averp"]))[2], 
mean(as.data.frame(simean[,,"Averp"]))[3],mean(as.data.frame(simean[,,"Ave
rp"]))[4], 
mean(as.data.frame(simean[,,"Averp"]))[5]) 
Jibu1.SSI301[4,]<-b4 
 
 
### Jibu2.SSI301 for 30a: FOR SI- Average of the 1000- OTHER 
STATISTICS 
Jibu2.SSI301<-matrix(0,1,3) 
col<-c("AvSigma","MASE1","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.SSI301)<-list(rows,col) 
kk<-
c(mean(as.data.frame(simean[,,"Int"]))[6],mean(as.data.frame(simean[,,"Int"]))
[8], 
mean(as.data.frame(simean[,,"Int"]))[14]) 
Jibu2.SSI301[1,]<-kk 
 
 
# SUMMARY RESULTS FOR CONDITIONAL MEAN IMPUTATION 
#sicmean[,"ESS","Int"] 
 
#MAJIBU 
### Jibu1.SCM301 for 30a: FOR SI- Average of the 1000 
Jibu1.SCM301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 

rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.SCM301)<-list(rows,col) 
b1<-c(mean(as.data.frame(sicmean[,,"Int"]))[1], 
mean(as.data.frame(sicmean[,,"Int"]))[2], 
mean(as.data.frame(sicmean[,,"Int"]))[3],  
mean(as.data.frame(sicmean[,,"Int"]))[4], 
mean(as.data.frame(sicmean[,,"Int"]))[5]) 
Jibu1.SCM301[1,]<-b1 
b2<-
c(mean(as.data.frame(sicmean[,,"SEX"]))[1],mean(as.data.frame(sicmean[,,"
SEX"]))[2], mean(as.data.frame(sicmean[,,"SEX"]))[3], 
mean(as.data.frame(sicmean[,,"SEX"]))[4], 
mean(as.data.frame(sicmean[,,"SEX"]))[5])  
Jibu1.SCM301[2,]<-b2 
b3<-
c(mean(as.data.frame(sicmean[,,"Age"]))[1],mean(as.data.frame(sicmean[,,"A
ge"]))[2], mean(as.data.frame(sicmean[,,"Age"]))[3], 
mean(as.data.frame(sicmean[,,"Age"]))[4], 
mean(as.data.frame(sicmean[,,"Age"]))[5]) 
Jibu1.SCM301[3,]<-b3 
b4<-
c(mean(as.data.frame(sicmean[,,"Averp"]))[1],mean(as.data.frame(sicmean[,,
"Averp"]))[2], mean(as.data.frame(sicmean[,,"Averp"]))[3], 
mean(as.data.frame(sicmean[,,"Averp"]))[4],mean(as.data.frame(sicmean[,,"A
verp"]))[5]) 
Jibu1.SCM301[4,]<-b4 
 
### Jibu2.SCM301 for 30a: FOR SI- Average of the 1000- OTHER 
STATISTICS 
Jibu2.SCM301<-matrix(0,1,3) 
col<-c("AvSigma","MASE2","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.SCM301)<-list(rows,col) 
HH<-c(mean(as.data.frame(sicmean[,,"Int"]))[6], 
ean(as.data.frame(sicmean[,,"Int"]))[9], 
mean(as.data.frame(sicmean[,,"Int"]))[14]) 
Jibu2.SCM301[1,]<-HH 
 
# SUMMARY RESULTS FOR MULTIPLE IMPUTATION 1 
#MAJIBU 
### Jibu1.PMM1301 for 30a: FOR MI- Average of the 1000 
Jibu1.PMM1301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.PMM1301)<-list(rows,col) 
b1<-c(mean(as.data.frame(PMM1[,,"Int"]))[1], 
mean(as.data.frame(PMM1[,,"Int"]))[2], 
mean(as.data.frame(PMM1[,,"Int"]))[3], 
mean(as.data.frame(PMM1[,,"Int"]))[4], 
mean(as.data.frame(PMM1[,,"Int"]))[5]) 
Jibu1.PMM1301[1,]<-b1 
b2<-c(mean(as.data.frame(PMM1[,,"SEX"]))[1], 
mean(as.data.frame(PMM1[,,"SEX"]))[2], 
mean(as.data.frame(PMM1[,,"SEX"]))[3],mean(as.data.frame(PMM1[,,"SEX"])
)[4], 
mean(as.data.frame(PMM1[,,"SEX"]))[5]) 
Jibu1.PMM1301[2,]<-b2 
b3<-c(mean(as.data.frame(PMM1[,,"Age"]))[1], 
mean(as.data.frame(PMM1[,,"Age"]))[2], 
mean(as.data.frame(PMM1[,,"Age"]))[3],mean(as.data.frame(PMM1[,,"Age"]))
[4], 
mean(as.data.frame(PMM1[,,"Age"]))[5]) 
Jibu1.PMM1301[3,]<-b3 
b4<-c(mean(as.data.frame(PMM1[,,"Averp"]))[1], 
mean(as.data.frame(PMM1[,,"Averp"]))[2], 
mean(as.data.frame(PMM1[,,"Averp"]))[3],mean(as.data.frame(PMM1[,,"Aver
p"]))[4], 
mean(as.data.frame(PMM1[,,"Averp"]))[5]) 
Jibu1.PMM1301[4,]<-b4 
 
### Jibu2.PMM1301 for 30a: FOR MI- Average of the 1000- OTHER 
STATISTICS 
Jibu2.PMM1301<-matrix(0,1,3) 
col<-c("AvSigma","MASE3","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.PMM1301)<-list(rows,col) 
FF<-
c(mean(as.data.frame(PMM1[,,"Int"]))[6],mean(as.data.frame(PMM1[,,"Int"]))[
10], 
mean(as.data.frame(PMM1[,,"Int"]))[14]) 
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Jibu2.PMM1301[1,]<-FF 
 
# SUMMARY RESULTS FOR MULTIPLE IMPUTATION 2 
### Jibu1.PMM2301 for 30a: FOR MI- Average of the 1000 
Jibu1.PMM2301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.PMM2301)<-list(rows,col) 
b1<-c(mean(as.data.frame(PMM2[,,"Int"]))[1], 
mean(as.data.frame(PMM2[,,"Int"]))[2],  
mean(as.data.frame(PMM2[,,"Int"]))[3], 
mean(as.data.frame(PMM2[,,"Int"]))[4], 
mean(as.data.frame(PMM2[,,"Int"]))[5]) 
Jibu1.PMM2301[1,]<-b1 
b2<-c(mean(as.data.frame(PMM2[,,"SEX"]))[1], 
mean(as.data.frame(PMM2[,,"SEX"]))[2], 
mean(as.data.frame(PMM2[,,"SEX"]))[3],mean(as.data.frame(PMM2[,,"SEX"])
)[4], 
mean(as.data.frame(PMM2[,,"SEX"]))[5]) 
Jibu1.PMM2301[2,]<-b2 
b3<-c(mean(as.data.frame(PMM2[,,"Age"]))[1], 
mean(as.data.frame(PMM2[,,"Age"]))[2], 
mean(as.data.frame(PMM2[,,"Age"]))[3],mean(as.data.frame(PMM2[,,"Age"]))
[4], 
mean(as.data.frame(PMM2[,,"Age"]))[5]) 
Jibu1.PMM2301[3,]<-b3 
b4<-c(mean(as.data.frame(PMM2[,,"Averp"]))[1], 
mean(as.data.frame(PMM2[,,"Averp"]))[2], 
mean(as.data.frame(PMM2[,,"Averp"]))[3],mean(as.data.frame(PMM2[,,"Aver
p"]))[4], 
mean(as.data.frame(PMM2[,,"Averp"]))[5]) 
Jibu1.PMM2301[4,]<-b4 
 
### Jibu2.PMM2301 for 30a: FOR MI- Average of the 1000- OTHER 
STATISTICS 
Jibu2.PMM2301<-matrix(0,1,3) 
col<-c("AvSigma","MASE4","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.PMM2301)<-list(rows,col) 
FF<-
c(mean(as.data.frame(PMM2[,,"Int"]))[6],mean(as.data.frame(PMM2[,,"Int"]))[
11], 
mean(as.data.frame(PMM2[,,"Int"]))[14]) 
Jibu2.PMM2301[1,]<-FF 
 
# SUMMARY RESULTS FOR GAM 1 
#MAJIBU 
### Jibu1.GAM1301 for 30a: FOR MI- Average of the 1000 
Jibu1.GAM1301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.GAM1301)<-list(rows,col) 
b1<-c(mean(as.data.frame(GAM1[,,"Int"]))[1], 
mean(as.data.frame(GAM1[,,"Int"]))[2],  
mean(as.data.frame(GAM1[,,"Int"]))[3],mean(as.data.frame(GAM1[,,"Int"]))[4], 
mean(as.data.frame(GAM1[,,"Int"]))[5]) 
Jibu1.GAM1301[1,]<-b1 
b2<-c(mean(as.data.frame(GAM1[,,"SEX"]))[1], 
mean(as.data.frame(GAM1[,,"SEX"]))[2], 
mean(as.data.frame(GAM1[,,"SEX"]))[3],mean(as.data.frame(GAM1[,,"SEX"])
)[4], 
mean(as.data.frame(GAM1[,,"SEX"]))[5]) 
Jibu1.GAM1301[2,]<-b2 
b3<-c(mean(as.data.frame(GAM1[,,"Age"]))[1], 
mean(as.data.frame(GAM1[,,"Age"]))[2], 
mean(as.data.frame(GAM1[,,"Age"]))[3], 
mean(as.data.frame(GAM1[,,"Age"]))[4], 
mean(as.data.frame(GAM1[,,"Age"]))[5]) 
Jibu1.GAM1301[3,]<-b3 
b4<-c(mean(as.data.frame(GAM1[,,"Averp"]))[1], 
mean(as.data.frame(GAM1[,,"Averp"]))[2], 
mean(as.data.frame(GAM1[,,"Averp"]))[3], 
mean(as.data.frame(GAM1[,,"Averp"]))[4], 
mean(as.data.frame(GAM1[,,"Averp"]))[5]) 
Jibu1.GAM1301[4,]<-b4 
 
 
Jibu2.GAM1301<-matrix(0,1,3) 
col<-c("AvSigma","MASE5","AvPMiss") 
rows<-c("Value") 

dimnames(Jibu2.GAM1301)<-list(rows,col) 
FF<-
c(mean(as.data.frame(GAM1[,,"Int"]))[6],mean(as.data.frame(GAM1[,,"Int"]))[1
2], 
mean(as.data.frame(GAM1[,,"Int"]))[14]) 
Jibu2.GAM1301[1,]<-FF 
 
# SUMMARY RESULTS FOR GAM 2 
### Jibu1.GAM2301 for 30a: FOR MI- Average of the 1000 
Jibu1.GAM2301<-matrix(0,4,5) 
col<-c("Estimate", "AvSE", "AvLlimit","AvUlimit","AvLengthCI") 
rows<-c("Intercept", "SEXE", "LEEFT","AVERP") 
dimnames(Jibu1.GAM2301)<-list(rows,col) 
b1<-c(mean(as.data.frame(GAM2[,,"Int"]))[1],mean(as.data.frame 
(GAM2[,,"Int"]))[2], mean(as.data.frame(GAM2[,,"Int"]))[3], 
mean(as.data.frame(GAM2[,,"Int"]))[4], 
mean(as.data.frame(GAM2[,,"Int"]))[5]) 
Jibu1.GAM2301[1,]<-b1 
b2<-c(mean(as.data.frame(GAM2[,,"SEX"]))[1],mean(as.data.frame 
(GAM2[,,"SEX"]))[2], mean(as.data.frame(GAM2[,,"SEX"]))[3],mean 
(as.data.frame(GAM2[,,"SEX"]))[4], 
mean(as.data.frame(GAM2[,,"SEX"]))[5]) 
Jibu1.GAM2301[2,]<-b2 
b3<-c(mean(as.data.frame(GAM2[,,"Age"]))[1],mean(as.data.frame 
(GAM2[,,"Age"]))[2], mean(as.data.frame(GAM2[,,"Age"]))[3], 
mean(as.data.frame(GAM2[,,"Age"]))[4], 
mean(as.data.frame(GAM2[,,"Age"]))[5]) 
Jibu1.GAM2301[3,]<-b3 
b4<-c(mean(as.data.frame(GAM2[,,"Averp"]))[1],mean(as.data.frame 
(GAM2[,,"Averp"]))[2], mean(as.data.frame(GAM2[,,"Averp"]))[3], 
mean(as.data.frame(GAM2[,,"Averp"]))[4], 
mean(as.data.frame(GAM2[,,"Averp"]))[5]) 
Jibu1.GAM2301[4,]<-b4 
 
Jibu2.GAM2301<-matrix(0,1,3) 
col<-c("AvSigma","MASE6","AvPMiss") 
rows<-c("Value") 
dimnames(Jibu2.GAM2301)<-list(rows,col) 
FF<-c(mean(as.data.frame(GAM2[,,"Int"]))[6],mean(as.data.frame 
(GAM2[,,"Int"]))[13], mean(as.data.frame(GAM2[,,"Int"]))[14]) 
Jibu2.GAM2301[1,]<-FF 
 
 
#### FINAL RESULTS === 301 
#Complete cases; Jibu1.Scc301; Jibu2.Scc301 
#Single mean Imputation; Jibu1.SSI301; Jibu2.SSI301 
#Conditional mean Imputation; Jibu1.SCM301; Jibu2.SCM301 
#PMM 1 ; Jibu1.PMM1301; Jibu2.PMM1301 
#PMM 2 ; Jibu1.PMM2301; Jibu2.PMM2301 
#GAM 1 ; Jibu1.GAM1301; Jibu2.GAM1301 
#GAM 2 ; Jibu1.GAM2301; Jibu2.GAM2301 
#############             END HERE ############### 
###### BOXPLOTS FOR THE ESTIMATES AND SE FOR ALL MODELS 
par(mfrow=c(3,1)) 
### for Sex 
boxplot(ccase[,"Est","SEX"],simean[,"Est","SEX"],sicmean[,"Est","SEX"], 
PMM1[,"Est","SEX"],GAM1[,"Est","SEX"],PMM2[,"Est","SEX"],GAM2[,"Est","S
EX"], 
main="Distribution of Estimates for Sex",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
 
boxplot(ccase[,"Std","SEX"],simean[,"Std","SEX"],sicmean[,"Std","SEX"], 
PMM1[,"Std","SEX"],GAM1[,"Std","SEX"],PMM2[,"Std","SEX"],GAM2[,"Std","S
EX"], 
main="Distribution of SE for Sex",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
### for Age 
boxplot(ccase[,"Est","Age"],simean[,"Est","Age"],sicmean[,"Est","Age"], 
PMM1[,"Est","Age"],GAM1[,"Est","Age"],PMM2[,"Est","Age"], 
GAM2[,"Est","Age"], main="Distribution of Estimates for Age",cex.main=1.2, 
xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
 
boxplot(ccase[,"Std","Age"],simean[,"Std","Age"],sicmean[,"Std","Age"], 
PMM1[,"Std","Age"],GAM1[,"Std","Age"], 
PMM2[,"Std","Age"],GAM2[,"Std","Age"], 
main="Distribution of SE for Age",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
### for Averp 
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boxplot(ccase[,"Est","Averp"],simean[,"Est","Averp"],sicmean[,"Est","Averp"], 
PMM1[,"Est","Averp"],GAM1[,"Est","Averp"], 
PMM2[,"Est","Averp"],GAM2[,"Est","Averp"], 
main="Distribution of Estimates for Av. Trips",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
 
boxplot(ccase[,"Std","Averp"],simean[,"Std","Averp"],sicmean[,"Std","Averp"], 
PMM1[,"Std","Averp"],GAM1[,"Std","Averp"],PMM2[,"Std","Averp"],GAM2[,"St
d","Averp"], 
main="Distribution of SE for Av. Trips",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM-I","GAM-I","PMM-II","GAM-II")) 
 
 
###### BOXPLOTS FOR MASE FOR ALL MODELS 
par(mfrow=c(3,1)) 
boxplot(ccase[,"ASE0",],simean[,"ASE1",],sicmean[,"ASE2",], 
PMM1[,"ASE3",],GAM1[,"ASE5",],PMM2[,"ASE4",],GAM2[,"ASE6",], 
main="Distribution of ASE values, MCAR-30%",cex.main=1.2, xlab="Method",  
names=c("CC","SM","CM","PMM1","GAM1","PMM2","GAM2")) 
 
### PLOTS OF MASE 
pp<-c(0,0.2918429,0.4995192); asecc<-c(0,5856.839,9487.931) 
asesmi<-c(0,1482.966,2426.333); asecmi<-c(0,12.71369,9219.44) 
asemi1<-c(0,4875.289,9428.789); asemi2<-c(0,2509.473,4766.304) 
asegam1<-c(0,2764.912,9116.295) 
asegam2<-c(0,1841.889,2461.796) 
plot(pp,asecc, type="b", lty=1, xlab="Missingness Proportion",  
cex.main=1.2, font.main=2,main="MASE values under 
MCAR",ylab="MASE",ylim=range(0,10000), 
xlim=range(0,0.6),lwd=1.5) 
lines(pp, asesmi, type="b",col="purple", lty=3,lwd=2) 
lines(pp, asecmi, type="b", col="blue",lty=5,lwd=1.5) 
lines(pp, asemi1, type="b", col="yellow",lty=7,lwd=2.1) 
lines(pp, asemi2, type="b", col="green",lty=9,lwd=2.1) 
lines(pp, asegam1, type="b", col="red", lty=11,lwd=2) 
lines(pp, asegam2, type="b", col="magenta", lty=13,lwd=2) 
lgg<-c("CC","SM","CM","PMM-I","PMM-II","GAM-I","GAM-II") 
legend(locator(1),legend=lgg ,lty=1:13, ncol=2, adj = c(0, 0.5), 
col = c("black","purple","blue","yellow","green","red","magenta"),lwd=2) 
 
 
 
 
 
 
 
 
 
 
 
 
 

#### EVALUATING EFFECT OF FRACTION OF COEFFICIENTS ### 
 
#### FOR FIXED PSI 
beta.nf<-jibu.od[3,1]*c(0.4,0.5,0.6,0.7,0.8, 0.9, 1.0, 1.1, 1.2,1.3) 
f.psi<-psi1/beta.nf  ### fixed psi 
ppp<-rep(0,10) 
ind<-matrix(0,length(y),10) 
for (h in 1:length(f.psi)){ 
pp<-expit(psi0+(f.psi[h])*(fitd.od-(jibu.od[1,1]) 
-(jibu.od[2,1])*SEXE-(jibu.od[4,1])*AVERP)+psi2*SEXE+psi3*AVERP) 
ppp[h]<-sum(cbind(pp),na.rm=TRUE)/length(y) 
ind[,h]<-pp 
 
##### FOR FIXED BETA 
#psi.nf<-psi1*c(0.4,0.5,0.6,0.7,0.8, 0.9, 1.0, 1.1, 1.2,1.3) 
psi.nf<-psi1*c(0.8, 0.9, 1.0,1.1, 1.2,1.3,1.4,1.5,1.6,1.7) 
f.beta<-psi.nf/jibu.od[3,1]   ### fixed beta 
BBB<-rep(0,10) 
ind<-matrix(0,length(y),10) 
for (h in 1:length(f.beta)){ 
BB<-expit(psi0+(f.beta[h])*(fitd.od-(jibu.od[1,1]) 
-(jibu.od[2,1])*SEXE-(jibu.od[4,1])*AVERP)+psi2*SEXE+psi2*AVERP) 
BBB[h]<-sum(cbind(BB),na.rm=TRUE)/length(y) 
ind[,h]<-BB 
} 
 
### plots 
par(mfrow=c(1,2)) 
plot(f.psi,ppp,xlab="psi/beta.Age",ylab="P(R=1)-MAR",  
cex.main=0.9, main="For fixed psi.Age-1st case",ylim=range(0,1)) 
plot(f.beta,BBB,xlab="psi/beta.Age",ylab="P(R=1)-MAR",  
cex.main=0.9, main="For fixed beta.Age-1st case",ylim=range(0,1)) 
 
 
win.graph() 
par(mfrow=c(3,2)) 
plot(LEEFT,ind[,1],ylim=range(0,1)) 
#title(locator(1),main="Probability of missingness with age when Psi is fixed") 
plot(LEEFT,ind[,2],ylim=range(0,1)) 
plot(LEEFT,ind[,3],ylim=range(0,1)) 
plot(LEEFT,ind[,4],ylim=range(0,1)) 
plot(LEEFT,ind[,5],ylim=range(0,1)) 
 
win.graph() 
par(mfrow=c(3,2)) 
plot(LEEFT,ind[,6],ylim=range(0,1)) 
plot(LEEFT,ind[,7],ylim=range(0,1)) 
plot(LEEFT,ind[,8],ylim=range(0,1)) 
plot(LEEFT,ind[,9],ylim=range(0,1)) 
plot(LEEFT,ind[,10],ylim=range(0,1)) 
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