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Abstract

With differential Hydrogen/Deuterium exchange, differences in the structure and dynamics of

protein states can be studied. Detecting statistically significant differentially deuterated peptides

is crucial to draw meaningful conclusions about the distinct conformations and dynamics of the

protein under study. Here, we introduced a linear model in combination with an empirical Bayes

approach to detect differentially deuterated peptides. Using a linear model allows to test for

differences in deuteration between two (two-sample t-test) or more groups (F -statistic), while

potentially controlling for the effects of other variables that are not of interest. The empirical

Bayes approach improves the estimation of deuteration-level variances, especially in experiments

with a low number of replicates. As a consequence, the two sample t-test and the F -statistic become

moderated, resulting in a lower number of false positive and false negative findings. Furthermore,

we introduce a thresholded moderated t-statistic to test if the observed deuteration differences are

larger than a specified, biologically relevant difference. Finally, we underline the importance of

having a sufficient number of replicates, and the effect of the number of replicates on the power of

the statistical significance tests. The R-code for the proposed moderated test-statistics is available

upon request.

1 Introduction

Hydrogen/Deuterium exchange (HX) combined with mass spectrometry (MS) is an analytical

technique to study the conformation and dynamics of proteins [1]. Among various experimental

approaches, differential HX-MS (∆HX-MS) is commonly applied. It allows one to identify differ-

ences in structure and/or dynamics between multiple conditions or protein states, by comparing

deuteration levels [2]. Typically, a bottom-up workflow is used in ∆HX-MS, i.e., the deuterated

protein is digested into many peptides whose deuteration-levels are then determined by MS. To de-

tect peptides that are significantly differentially deuterated between two or more conditions, a fixed

threshold for the differences in deuteration-levels is sometimes used. Commonly, such empirical
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thresholds require that deuteration differences between peptides are larger than 0.5Da. However,

specifying a threshold ignores the variability of the peptide-deuteration-levels, and therefore leads

to false positives (FP). Additionally, imposing strict thresholds to reduce the number of FPs, leads

to ignoring small and moderate, but biologically relevant differences in deuteration, i.e., false neg-

atives (FN). Statistical tests should be used instead, as they offer better control of FPs and FNs.

However, the limited number of replicates in complex HX-MS experiments in combination with a

moderately large number of peptides poses several challenges. When testing many hypotheses, the

probability of finding FPs is large. In order to limit the number of false positives, family-wise error

rate (FWER) and false discovery rate (FDR) controlling procedures are proposed [3]. Classical

FWER controlling procedures are known to substantially reduce the power of statistical tests [4].

For example, in case of Bonferroni’s procedure, the significance level, α, decreases fast when the

number of tests increases, αcorrected = α/(number of tests). As a consequence, it becomes more

difficult to reject a null hypothesis. FDR controlling procedures focus on the number of erro-

neously rejected null hypotheses among the rejected hypotheses. Controlling this proportion is less

stringent than controlling the probability of finding one FP [4]. Additionally, standard univariate

statistical tests, such as the t-test or Wilcoxon test, are less suited for high-dimensional settings

where the number of variables to be tested is much larger than the number of observations. In

such a setting, these tests are less precise and, as a result, high FDRs are found.

Comparing many variables between two or more conditions is not exclusively linked to ∆HX-MS.

It also occurs in, for instance, quantitative proteomics and transcriptomics, where, respectively,

protein abundance and gene expression are of interest. For differential gene expression experiments,

statistical tests that borrow information between genes using empirical Bayes approaches have been

developed [5–8]. In this article, we introduce the empirical Bayes approach and moderated test

statistics in the setting of ∆HX-MS. We illustrate the performance of the proposed methods by

means of simulated datasets and a real-life dataset.
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2 Methodology

In a ∆HX-MS experiment, differences in deuteration between conditions are of interest. The t-test

and confidence intervals based on the t-test are commonly used to identify statistically significant

differences in deuteration-levels (see Supporting Information). Recently, an approach that com-

bines a global confidence interval with a two-sample t-test has been proposed [9] (see Supporting

Information). In this section, we introduce a linear model for statistical testing. Additionally, we

present the empirical Bayes approach and the moderate F - and t-statistic.

2.1 Linear model

For a peptide, p, the deuteration-values can be described with the following linear model:

ypi = Xβp + εpi, (1)

where yp is a vector of n deuteration values, yp = [yp1, . . . , ypn]T , βp is a vector of m unknown

coefficients, X a (n × p)-matrix reflecting the experimental design, εpi ∼ N (0, σ2
p), and σ2

p is the

residual variance. The deuteration values yp can be computed by subtracting the average masses

of the undeuterated peptide from the deuterated average masses, or by deconvoluting the isotope

distribution of the (partially) deuterated peptide.

For example, consider a ∆HX-MS experiment with two conditions, c1 and c2, two labeling times,

t1 and t2, and two replicates. The design matrix of this experiment is:

XT =



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1



with the number of colunns of XT corresponding to the number of observations, and the number of



5

rows corresponding to the number of unknown coefficients βp = (βp,(c1,t1), βp,(c1,t2), βp,(c2,t1), βp,(c2,t2)).

Differences in deuteration levels between conditions and/or labeling times can be tested by speci-

fying contrasts between the coefficients βp, γp = CTβp where C denotes a contrast matrix. The

t-statistic for contrast j is of following form:

tγ̂pj =
γ̂pj

s.e.(γ̂pj)
(2)

where s.e.(γ̂pj) is the standard error of the estimated value γ̂pj . The standard error is derived from

the sample residual variance, s2p, that follows, conditionally on σ2
p, a scaled chi-square distribution:

s2p|σ2
p ∼

σ2
p

dp
χ2
dp (3)

where dp is the degrees of freedom for the linear model for peptide p.

In our example, we are interested in the differences in deuteration between the two conditions at

each time point:

γp =

1 0 −1 0

0 1 0 −1

×



βp,(c1,t1)

βp,(c1,t2)

βp,(c2,t1)

βp,(c2,t2)


=

βp,(c1,t1) − βp,(c2,t1)
βp,(c1,t2) − βp,(c2,t2)

 .

2.2 Empirical Bayes and moderated test statistics

The residual variance, σ2
p, cannot be precisely estimated when the sample size is small. Hence,

using the t-statistic (2) to identify statistically significant differences in deuteration-levels will lead

to a higher number of false findings than is desirable. As the same linear model (1) is fitted

for each peptide, one can borrow information from the whole group of peptides. Using a pooled

residual standard deviation, as proposed by [10, 11], is a possibility but ignores the peptide-specific

variability. The variance of peptides with low variability will be overestimated, while the variance
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of peptides with high variability will be underestimated. As an alternative, the residual variance of

peptides can be moderated with empirical Bayes [12–14]. Empirical Bayes methods use a Bayesian

hierarchical model to estimate the variance of the peptides. This model describes how the residual

variance varies across peptides with an inverse-χ2 prior located at prior estimate s20 with d0 degrees

of freedom:

σ2
p ∼

s20d0
χ2
d0

. (4)

The prior estimate, s20, and the degrees of freedom, d0, are estimated from the whole set of pep-

tides [8]. Based on the prior distribution (4) and the observed distribution (3), the posterior

variance, given s2p, is:

s̃2p =
d0s

2
0 + dps

2
p

d0 + dp
. (5)

The posterior variances shrink the observed variances, s2p, towards the prior estimate, s20, with the

level of shrinkage depending on the relative sizes of the observed and prior degrees of freedom.

The moderated posterior variances s̃2p can be converted to moderated standard errors, s̃.e.(γ̂pj),

and replace s.e.(γ̂pj) in the classical t-statistic [8]:

t̃γ̂pj =
γ̂pj

s̃.e.(γ̂pj)
. (6)

Under the null hypothesis, H0: γpj = 0, the moderated t-statistic follows a t-distribution with

dp + d0 degrees of freedom [8].

Similarly, the F -statistic, which can be used to test all contrasts simultaneously, can be converted

to a moderated F -statistic by replacing the variance by the moderated posterior variance. The

degrees of freedom of the F -distribution also increase from dp to dp + d0, reflecting the extra

information from all peptides.
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2.3 Testing against a threshold

The t-statistic (2) and the moderated t-statistic (6) are used to test the null hypothesis H0: γpj =

0 against the alternative hypothesis H1: γpj 6= 0. In order to avoid considering biologically

meaningless differences in deuteration to be statistically significant, hypothesis testing can be

combined with specifying a threshold value, δ. The threshold is used to remove peptides with too

small deuteration differences after testing. This approach ignores the variability of the deuteration-

values, and results in an FDR that is lower than specified. A more appropriate approach is to

reformulate the tested hypotheses, i.e., H0: |γpj | ≤ δ against H1: |γpj | > δ. McCarthy and

Smith [15] introduced a method to determine p-values for any δ when using the moderated t-

statistic:

p-value = P (tpj(γ0) < −tobspj − δ|γpj = γ0, s̃p)

+ P (tpj(γ0) > tobspj − δ|γpj = γ0, s̃p)

= F (tobspj + δ) + F (tobspj − δ),

where γpj = γ0 is a conservative approximation of the null hypothesis, tobspj is the observed mod-

erated t-statistic and F () is the uppertail probability function of the t-distribution with d0 + dp

degrees of freedom.
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3 Data

We evaluated the performance of the proposed moderated test-statistics with simulated data and

real-life data.

3.1 Simulated data

We simulated data reflecting a real-life experiment with 108 different peptides, measured in three

different states (‘0’, ‘1’ and ‘2’). Each peptide was exposed to deuterium for 1min, 10mins, 25mins,

60mins and 1440mins. For each peptide i, we generated deuteration values, Di, from a normal

distribution with mean µi and variance σ2
i . The values for µi (Tables S1-S3) are based on the

NucB2 dataset of the HaDeX R-package [16].

We considered four possible settings for the variances of the peptides, i.e., very small variation

(σ2
i ∼ U(0.001, 0.05)), small variation (σ2

i ∼ U(0.001, 0.2)), medium variation (σ2
i ∼ U(0.001, 0.8)),

and large variation (σ2
i ∼ U(0.001, 1.6)). Note that the term “variation” is used here to describe

the range of the variances of the deuteration values. Therefore, in the “large variation” setting, the

variances range from 0.001 to 1.6, while in the “very small variation setting”, the variances range

from 0.001 to 0.05. In case of the “very small variation”-setting, the variances are also small. For

the other settings, a combination of small and medium, or small, medium and large variances can

be found. Additionally, we varied the number of replicates, i.e., three, five and ten. For each of

the 12 different scenarios, we generated 1,000 datasets.

3.2 Real-life data

The differences in dynamics of a monomeric, dimeric and a C-tail removed variant of SecA, in

bound and unbound state, were investigated with HX-MS [17]. For each of the six SecA variants,

HX was recorded, in triplicate, at seven different time points, i.e., 10s, 30s, 1min, 2mins, 5mins

10mins and 30mins.
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4 Results

4.1 Simulated data

We compared the moderated test statistics, i.e., the F -, t-, and thresholded t-statistic, with the

standard t-statistic, the ‘global threshold’-approach [10, 11], the hybrid significance test [9] and the

‘manual thresholding’-approach. Additionally, we also checked the performance of the moderated

t-statistic corrected with the Benjamini-Hochberg method for multiple testing. For each scenario

and each method, we determined the number of FPs, FNs, TPs and TNs at α = 0.05. Note that

for the hybrid significance test, peptides for which the difference between the deuteration-values

was smaller than the global threshold, the p-value was set to 1. For each method, the number of

FPs, FNs, TPs and TNs were averaged over the 1,000 datasets.

4.1.1 Pairwise comparisons

The moderated t-statistic, the standard t-statistic, the ‘global threshold’-approach and the hybrid

significance test allow to test for differences in the deuteration-levels of peptides between two

groups or conditions.

As expected, the ability to identify statistically significant differences in deuteration-levels is a

function of the number of replicates and of the variance of the deuteration-levels. The number of

TPs and TNs increases and the number of FNs decreases when the number of replicates increases

and/or when the variance of the deuteration-levels decreases (Figure 1). Additionally, as the

variance of the deuteration-levels of a peptide can be estimated more accuractely with increasing

numbers of replicates, the difference between the standard t-statistic and the moderated t-statistic

becomes smaller, and eventually disappears.

For the “small variation” setting, the performance of all the tested methods for pairwise compar-

isons is comparable. The ‘global threshold’-approach, the hybrid significance test and the mod-

erated t-statistic corrected with the Benjamini-Hochberg procedure are more conservative than

the moderated t-statistic but these differences are neglectable. The performance of the standard
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Figure 1: Accuracy measures of the methods for pairwise comparisons at α = 0.05.

t-statistic changes from similar to the ‘global threshold’-approach to similar to the moderated

t-statistic, as the number of replicates increases.

When the variance of Di is very small (“very small variation”), the performance of the ‘global

threshold’-approach is identical to the hybrid significance test, but worse than the performance of

the (corrected) moderated t-statistic and the standard t-statistic. A substantially lower number of

TPs and higher number of FNs are found, while there is no or a neglectible difference in the number

of TNs and a marginally lower number of FPs. A low number of TPs and no FPs in combination

with many FNs indicates that, in this setting, the ‘global threshold’-approach overestimates the

deuteration-variances of many peptides. The hybrid significance test, i.e., applying Welch’s t-test
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on the set of peptides selected by the ‘global threshold’-approach, to confirm that these peptides

are differentially deuterated, is not able to correct for this overestimation.

In case of the “medium variation” and “large variation” settings, the ‘global threshold’-approach

identifies more TPs, but has a substantial higher number of FPs, and a considerable smaller number

of TNs and FNs. The hybrid significance test has a similar number of FPs as the (moderated)

t-statistic, indicating that, for these settings, the ‘global threshold’-approach underestimates the

deuteration-variances of several peptides, and that this underestimation-issue can be corrected by

the hybrid significance test.

Similar results were found when using a significance level of 1% or 10% (results not shown).

Additionally, we would like to point out that the magnitude of the problem with the under-

and overestimation of the deuteration-variance of the ‘global treshold’-approach is dependent on

the distribution of the variances. With the uniform distribution, where each value in the specified

interval is equally likely to occur, the magnitude of over- and underestimation is greater than when

the variances follow a normal distribution. For the normal distribution, values close to the average

have a higher probability than values at the tails of the distribution. The pooled residual standard

deviation, as estimated by the ‘global threshold’-approach, is close to the average of the normal

distribution. As a result, the occurrence of under- and overestimated variances is limited, and as a

consequence, the performance of the ‘global threshold’-approach and the moderated t-statistic are

comparable. On the other hand, if the variance follows a bimodal or multimodal distribution, or a

distribution where the extremes are more likely than the centre of the distribution, the magnitude

of over- and underestimation will be larger than shown here.

4.1.2 Thresholded pairwise comparisons

The thresholded moderated t-statistic and the ‘manual threshold’-approach allow to specify a

minimum difference that is considered biologically meaningful. While the thresholded moderated

t-statistic tests if the observed difference in deuteration is larger than the specified threshold, the

‘manual threshold’-approach only checks if the difference is larger or smaller than the threshold.
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Here, we defined a threshold of 0.25Da to illustrate the performance of both methods.

Figure 2: Accuracy measures for thresholded pairwise comparisons at α = 0.05.

In contrast to pairwise comparisons, the number of TPs and TNs does not change when the number

of replicates increases (Figure 2). The number of FNs decreases when the number of replicates

increases. For the (corrected) thresholded moderated t-statistic, higher variability of Di-values

leads to a lower number of TPs while the number of FPs and TPs remains constant. In case of the

‘manual threshold’-approach the opposite can be observed: the number of TPs does not change,

but the number of FPs increases and the number of TNs decreases considerably with increasing

levels of variability. The substantial increase of FPs is a consequence of ignoring the variance of

the Di-values. For the “very small variation” setting, the variances are too small to negatively



13

affect the performance of the ‘manual threshold’-approach. In this setting, the performance of the

‘manual threshold’-approach and the (corrected) thresholded moderated t-statistic are comparable.

4.1.3 Moderated F -statistic

The moderated F -statistic allows to detect differences between two or more groups or conditions.

Similarly to the moderated test statistics for pairwise comparisons, the power of the F -statistic

increases when the number of replicates increases, i.e., more TPs, and less FNs (Figure 3). With

increasing variability, the number of TPs decreases and the number of FNs increases, while the

number of FPs remains constant.

Figure 3: Accuracy measures for the moderated F -statistic at α = 0.05.
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4.2 Real-life data

4.2.1 Preprocessing

For each sample of the SecA-variants, the ‘cluster’ data-file from Waters DynamX software was

converted to deuteration uptake values, D:

Di,t,s = m/zi,t,s × zi,t,s −m/zi,t0,s × zi,t0,s

where m/zi,t,s and zi,t,s are the mass-to-charge and charge of peptide i at labeling time t in sample

s, respectively. For peptides with multiple charges at labeling time t, the average Dt-value was

calculated. Peptides which were not present in each sample and at each labeling time were removed.

4.2.2 Exploratory data analysis

The deuteration-values of 112 peptides were inspected with variably weighted spectral map anal-

ysis [18, 19] (see Supporting Information), a multivariate method to identify clusters of samples

and clusters of features, here, peptides (Figure 4). The three replicates of each variant of unbound

SecA (SecA APO), and SecA in complex with ADP (SecA ADP), group closely together, indicat-

ing neglectible variability of the extracted deuteration-values within each variant. Additionally, all

samples of SecA ADP (red) cluster together, and all samples of SecA APO (blue) cluster together.

This suggests that the differences between SecA APO and SecA ADP are larger than, for instance,

the differences between the monomeric and dimeric variants of SecA APO. Furthermore, the effect

of the different labeling times can also be seen. Samples that are briefly exposed to deuterium, e.g.

10s , are located on the right hand side of the spectral map (light colors), while samples with longer

exposure times (darker colors) gradually move to the center (SecA ADP) or to the left hand side

(SecA APO). In case of SecA APO, the differences between the monomeric, dimeric and shortened

variant get bigger when the labeling time increases.

The majority of the peptides (grey dots) can be found in the space between SecA APO and SecA
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ADP samples, while eleven peptides are located to the left of the SecA APO samples. These

peptides are part of the NBD1, NBD linker and NBD2 regions of SecA, which are crucial for ADP-

binding. More specifically, the peptides map to helicase motif I (NBD1, 104-109), the NBD linker

region (412-419), helicase motif Vb (NBD2, 556-558) and to helicase motif VI (NBD2, 570-577).

Most likely, the differences in deuteration-values of these peptides are responsible for not clustering

SecA APO and SecA ADP samples together.

Figure 4: Spectral map of the SecA APO and SecA ADP data. Each protein-state is represented
by a series of points, i.e., one point per replicate and one point per labelling time. The color
shading of the points correspond to the labelling time. The longer the labelling time, the darker
the color. Each peptide is represented by one point (in grey).

4.2.3 Differential deuteration analysis

To formally test for differences in deuteration, we used the (thresholded) moderated t-statistic, the

‘global thresholding’-approach and the hybrid significance test for pairwise comparisons and the

moderated F -statistic to compare the three variants of SecA. In order to be considered statistically

significant the p-values of the (thresholded) moderated t-statistic, adjusted with the Benjamini-

Hochberg procedure for multiple testing [4], should be smaller than or equal to the 5% significance

level. We also applied the “manual thresholding”-approach as used in [17], i.e, in order to be
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considered a meaningful difference in deuteration, the difference has to be larger than 0.5Da and

has to be at least 10% of the maximum deuteration-level of the peptide.

Differences between SecA APO and SecA ADP

ADP binding to the nucleotide cleft of SecA causes rigidification throughout the protein. As

a consequence, many statistically significant differences in deuteration between SecA APO and

SecA ADP for the monomeric, dimeric and C-tailed-removed variant were found (Figure S1).

In comparison to the “manual thresholding”-approach, the ‘global thresholding’-approach and

the hybrid significance test, the moderated t-statistic and the thresholded moderated t-statistic

(∆ = 0.50) found more differentially deuterated peptides (Figure 5, Table S4). However, there

are little or no differences in the number of differentially deuterated peptides between the global

thresholding-approach and the hybrid significance test, indicating overestimation issues of the

deuteration-variances.

Figure 5: Differentially deuterated peptides at 5mins labeling time when comparing SecA APO and
SecA APD (PDB ID:2VDA). The regions in purple are found by the moderated test-statistics and
the “manual thresholding”-approach, while the regions in blue are solely found by the thresholded
moderated t-statistic (left) and/or by the moderated t-statistic (right).

The statistically significant differences in deuteration between SecA APO and SecA ADP were

almost exclusively positive, i.e., larger deuteration-values for SecA APO (Figures S2 and S3). The

largest differences in deuteration were found in the helicase motifs of the NBD1 and NBD2-regions
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of SecA. These motifs are either directly involved in the binding of ADP or in conveying ADP-

driven conformational changes to the rest of the protein [17]. The magnitude of these differences

did not change with increasing labeling times, in contrast to peptides from the NBD1-NBD2-linker

region. The differences in deuteration of these peptides became substantially larger with increasing

labeling times. Allosteric effects of ADP binding became more prominent with increasing labeling

times.

The differences in deuteration, identified by the moderated statistics as statistically significant and

not by the “manual thresholding”-approach, are limited, but the majority of these differences were

selected by the “manual thresholding”-approach at longer labeling times.

Differences between the monomeric, and dimeric and C-tail-removed variants

Next to the effect of ADP binding on the structure of SecA, we also investigated the differences

between the monomeric, dimeric and C-tail-removed variant of SecA in the APO-state and in the

ADP-bound state. For both states, the number of statistically significant differences, as indicated

by the moderated F -statistic, (Figure S4) is smaller than the number of statistically significant

differences when comparing the APO-state with the ADP-bound state (Figure S1). In case of the

moderated t-statistic, corrected with the Benjamini-Hochberg procedure, more than 50% of the

peptides are statistically significant when comparing the variants of the APO-state, while in the

ADP-bound state, the number of statistically significant peptides is generally lower. Similarly to

the comparisons between ADP and APO, no or litte differences between the number of differen-

tially deuterated peptides as indicated by the ‘global threshold’-approach and the by the hybrid

significance test are seen (Table S5).

We focus here at the differences in deuteration between the monomeric and dimeric variant (Figure

S5 and S6), and between the C-tail-removed and dimeric variant (Figure S7 and S8) identified by

the (thresholded) moderated t-statistic.

When comparing the monomeric variant with the dimeric variant, the vast majority of the statis-

tically significant peptides have positive differences in deuteration, indicating increased dynamics

of the monomeric SecA variant. Many of these peptides are part of regions in SecA that are
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involved in the dimer interface. A limited set of peptides, i.e., 286-LVKEGIMDEGESL-298, 285-

LLVKEGIMDEGESL-298, 236-YKRVNKIIPHLIR-248, and 236-YKRVNKIIPHLIRQ-249, that

are an integral part of the PBD-region of SecA are consistently statistically significant with more

deuteration in the ADP-bound state. Although the magnitude of the statistically significant differ-

ences in the ADP-bound state is smaller than the differences in the APO state, a moderate overlap

between the statistically significant peptides can be found between the APO and the ADP-bound

state.

Similarly to the comparison between the bound and unbound SecA, all peptides identified by the

“manual thresholding”-approach were found by the (thresholded) moderated t-statistics (Figure 6).

The peptides that are found by the moderated test-statistics but not by the “manual thresholding”-

approach are located in the NBD1- and NBD2-region of SecA.

Figure 6: Differentially deuterated peptides at 5mins labeling time when comparing unbound
dimeric SecA with unbound monomeric SecA (PDB ID:2VDA). The regions in purple (higher
deuteration-levels in monomeric SecA) and green (higher deuteration-levels in dimeric SecA) are
found by the moderated test-statistics and the “manual thresholding”-approach, while the regions
in blue are solely found by the thresholded moderated t-statistic (left) and/or by the moderated
t-statistic (right).
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Comparison of the C-tail-removed variant and the dimeric variant of SecA shows that the C-tail-

removed variant has, in general, higher deuteration-values than the dimeric variant (Figure S7 and

S8). The differences in deuteration are small, indicating a minor increase in the dynamics of the

C-tail-removed variant compared to dimeric SecA. Many differentially deuterated peptides were

also found when comparing the monomeric variant with the dimeric variant of SecA. These two

observations suggest that the removal of the C-tail has a similar but smaller effect on the structure

and dynamics of SecA as switching from a dimeric state to a monomeric state.

Similarly to the other comparisons, bound versus unbound SecA and dimeric versus monomeric

SecA, all peptides identified by the “manual thresholding”-approach were found by the (thresh-

olded) moderated t-statistics (Figure 7).

Figure 7: Differentially deuterated peptides at 5mins labeling time when comparing unbound
dimeric SecA (PDB ID:2VDA) with the C-tail removed dimeric variant (PDB ID: 1M6N). The re-
gions in green are found by the moderated test-statistics and the “manual thresholding”-approach,
while the regions in red are solely found by the thresholded moderated t-statistic (left) and/or by
the moderated t-statistic (right).
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5 Conclusion

The proposed moderated test statistics allow the identification of differentially deuterated peptides

with ample power. They can be easily combined with statistical models, allowing the analysis of

complex ∆HX-MS experiments. The moderated F -statistic can be used as a preliminary method

to detect differentially deuterated peptides when comparing more than two groups. In contrast

to the ‘manual thresholding’-approach, the thresholded moderated t-statistic offers a statistical

framework to test for biological relevant differences, and has, as a consequence, a smaller number of

false positives. The moderated test statistics also allow to identify subtle differences in deuteration

that are not picked up with ‘manual thresholding’-approaches.

Although all test statistics allow to control the number of false positives, important differences

between the moderated test statistics, the ‘global threshold’-approach and the hybrid significance

test can be seen. The ‘global threshold’-approach suffers from under- and overestimation of the

deuteration variances. As a result, in case of underestimation, the number of true positive findings

is reduced or, in case of overestimation, more false positives are found. The hybrid significance

test depends on the results of the global threshold approach. It can reduce the number of false

positives when the deuteration-variance is underestimated, but it cannot increase the number of

true positives when the variability of the deuteration-levels is overestimated. As a consequence,

the true significance level of the global threshold approach and the hybrid significance test can be

different from the specified significance level. The moderated test statistics can be combined with

FWER- or FDR-controlling procedures, reducing the number of false positives but at the cost of

having more false negatives.

Supporting Information

Additional details on methods, simulated data and results, including figures and tables, can be

found in Supporting Information.
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(19) Wouters, L.; Göhlmann, H.; Bijnens, L.; Kass, S.; Molenberghs, G.; Lewi, P. Biometrics

2003, 59, 1131–1139.



23

Figure 8: For Table of Contents Only


