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Abstract: Macrophages are present in all tissues within our body, where they promote tissue home-
ostasis by responding to microenvironmental triggers, not only through clearance of pathogens
and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these
divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging
evidence indicates that S-palmitoylation, a reversible post-translational modification that involves
the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of
macrophage physiology in health and disease. By controlling protein activity, stability, trafficking,
and protein–protein interactions, studies identified a key role of S-palmitoylation in endocyto-
sis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth
overview of the impact of S-palmitoylation on these cellular processes in macrophages in health
and disease. Findings discussed in this review highlight the therapeutic potential of modulators of
S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders
to metabolic conditions.
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1. Protein Acetylation

Cellular proteins undergo numerous post-translational modifications that extend and
regulate protein and, thereby, cellular physiology. Some of these modifications, phosphory-
lation, and ubiquitination, in particular, have been extensively studied and characterized
in the context of cellular function in health and disease [1]. In contrast, only recently,
owing to technological advances allowing their accurate measurement, we are beginning
to understand the essential role of acetylation on protein physiology and cellular function.

Depending on the nature of the fatty acids attached to a protein, acetylation can take
multiple forms, the three most commonly known being prenylation, N-myristoylation,
and palmitoylation [2–4]. Protein prenylation catalyzes the covalent attachment of either
a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) isoprenoid lipid to free thiols or cys-
teine side-chains at or near the C-terminus of proteins. Emerging evidence stresses the
importance of this form of acetylation in driving cellular activity, trafficking, and local-
ization of RAS family GTPases and heterotrimeric G-proteins [5,6]. N-myristoylation is
characterized by the addition of myristic acid, a 14-carbon unsaturated fatty acid, to the
alpha-amino group of an N-terminal glycine residue of a wide range of substrate proteins.
It plays a vital role in signal transduction, protein stability, and the localization of proteins
to membranes [7,8]. Recent studies further indicate that N-myristoylation is involved in
host defense against microbial and viral infections (reviewed in [9]). Protein palmitoylation
involves the covalent binding of palmitate to amino acid residues of proteins [10] and can be
subdivided into S- and N- palmitoylation. S-palmitoylation involves the addition of palmi-
tate to cysteine sulfhydryl groups of proteins via a labile thioester linkage. Ample evidence
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indicates that S-palmitoylation plays an important role in protein trafficking, targeting, and
stability and tightly controls protein–protein interactions [11,12]. N-palmitoylation is a less
common form of palmitoylation and involves the binding of palmitate to amide groups
of lysines, glycines, and N-terminal portions of proteins. In contrast to S-palmitoylation,
N-palmitoylation is an irreversible and poorly understood process. However, few studies
support the role of N-palmitoylation in protein function and localization [12,13]. In this re-
view, we summarize and discuss the current knowledge on the impact of S-palmitoylation,
one of the most common forms of protein lipidation, on protein signaling, translocation,
and interactions in innate immune cells, macrophages in particular.

2. S-Palmitoylation

The saturated fatty acid palmitate (C16:0) is the most common fatty acid in the human
body. It is situated at the heart of fatty acid metabolism, as it is the primary end-product
of fatty acid synthesis and represents the major substrate for cellular β-oxidation and
desaturation [14]. As shortly mentioned above, S-palmitoylation is a post-translational
modification that consists of the reversible addition of palmitate to cysteine residues on
proteins through a thioester bond [15,16]. Upon S-palmitoylation, the hydrophobicity
of proteins increases, allowing proteins to associate with membranes of intracellular or-
ganelles, such as the endoplasmic reticulum, Golgi apparatus, endosomes, mitochondria,
and the plasma membrane. Of interest, few studies demonstrated that S-palmitoylation
can impact the activity of transcription factors as well. Noland et al. demonstrated that
S-palmitoylation controls folding and stability of TEAD family transcription factors [17,18],
which are involved in cell growth and differentiation. Likewise, a mutated form of the
small GTPase Cdc42 is linked with increased S-palmitoylation and associated with en-
hanced activation of the NF-κβ transcription factor and signaling pathway [19]. All in
all, S-palmitoylation dynamically regulates protein life cycle and function by facilitating
membrane interactions and trafficking and by modulating protein–protein interactions and
enzyme activity (Figure 1) [20–23].

Palmitoyl-proteome screens and prediction algorithms indicate that at least 10% of the
human proteome is susceptible to S-palmitoylation. Therefore, S-palmitoylation is consid-
ered to be among the most prevalent post-translation lipid modifications [24]. In general,
most post-translational lipid modifications are static and rely on specific substrate sequence
motifs [25]. However, unlike analogous lipid modifications, such as N-myristoylation and
prenylation, S-palmitoylation is an enzymatically reversible process and lacks a specific
sequence motif [15,23]. These characteristics stress the dynamic nature of S-palmitoylation
and have hampered the prediction of substrate targets of S-palmitoylation for a long time.
Despite the latter, recent studies showed that the addition of palmitate typically occurs
on cysteine residues in the vicinity or within transmembrane domains or near existing
membrane-targeting protein-lipid modifications, such as prenylated cysteine or N-terminal
myristoylated glycine residues [15,23].

While S-palmitoylation can occur spontaneously, auto-palmitoylation, it is assumed to
be primarily driven by protein acyl-transferases with zinc-finger and aspartate-histidine-
histidine-cysteine (zDHHC) domains [26,27]. These zDHHCs catalyze S-palmitoylation via
a two-step process, in which they are first auto-palmitoylated to form a palmitoyl-zDHHC
complex followed by transfer of palmitoyl to substrate proteins [28]. The reverse process,
de-palmitoylation, in which palmitate is removed from proteins, is mediated by acylprotein
thioesterases (APTs) (Figure 1). The zDHHC family of enzymes consists of 24 proteins
in humans (zDHHC1-24), while at least six APTs are described, including palmitoyl-
proteinthioesterase-1/-2, APT1/2, and α/β hydrolase domain-10/-17 [22,25,26,29,30]. In-
terestingly, our unpublished findings indicate that zDHHCs and APTs have divergent
cellular and tissular distributions, and few studies showed specific subcellular locations
of these enzymes [13,22,31,32]. With respect to the latter, the majority of zDHHCs are
localized in both the endoplasmic reticulum and Golgi apparatus, which are the primary
sites of protein palmitoylation. While zDHHC7 and zDHHC8 are specific to the Golgi
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apparatus, zDHHC6 and zDHHC13 are specific to the endoplasmic reticulum. On the
other hand, zDHHC5, zDHHC20, and zDHHC21 are primarily localized at the plasma
membrane [13,22]. In contrast, APTs are mainly situated in the cytosol but are, in small
proportions, also present in the plasma and nuclear membrane, as well as the endoplasmic
reticulum [31,32]. In addition to context-dependent changes in expression and differences in
cellular distribution, cellular localization of zDHHCs is likely to drive substrate specificity
of zDHHCs.
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translational protein modification that is mediated by protein acyl-transferases (zDHHC-PAT) and 
acyl protein thioesterases (APTs) that attach to and remove palmitate from protein cysteine residues, 
respectively. S-palmitoylation controls protein activity, stability, trafficking, and protein–protein in-
teractions. Figure created with BioRender.com (accessed on 9 January 2022). 
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Figure 1. Dynamic protein S-palmitoylation. S-palmitoylation is a reversible and dynamic post-
translational protein modification that is mediated by protein acyl-transferases (zDHHC-PAT) and
acyl protein thioesterases (APTs) that attach to and remove palmitate from protein cysteine residues,
respectively. S-palmitoylation controls protein activity, stability, trafficking, and protein–protein
interactions. Figure created with BioRender.com (accessed on 9 January 2022).

Various methods have been developed to determine protein palmitoylation dynamics.
For a long time, metabolic radioactive labeling using 3H-, 14C- or 125I-labeled palmitic
acid was the most commonly used technique to detect S-palmitoylation in live cells. How-
ever, given the time-consuming and laborious nature as well as lack of sensitivity and
specificity, acyl-biotin exchange (ABE) and acyl-resin-assisted capture (Acyl-RAC) replaced
radiolabeling techniques (reviewed in [33]). The principle of ABE originates from the
labile nature of thioester bonds between palmitate and cysteine residues. Upon block-
ing free cysteine residues, neutral hydroxylamine is used to cleave the labile thioester
bonds between palmitate and palmitoylated cysteine residues, after which newly revealed
cysteines can be labeled and captured using a sulfhydryl-reactive biotinylation reagent
and streptavidin beads, respectively. Acyl-RAC follows largely the same experimental
pipeline. However, exposed cysteine residues are immediately conjugated to thiopropyl
sepharose-containing beads. Finally, click chemistry has advanced the field of protein
palmitoylation by providing specific, sensitive, rapid, and easy-to-handle methods for
studying protein palmitoylation (reviewed in [34]). Here, azido- or alkynyl-containing fatty
acids, commonly 17-octadecyonic acid (17-ODYA) for S-palmitoylation, are metabolized by
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the endogenous cellular palmitoylation machinery and transferred to endogenous sites of
modification. The azide or alkyne group can be conjugated to reporter molecules, such as
fluorophores or biotin derivatives, allowing for targeted and untargeted identification of
palmitoylated proteins. For all the above mentioned techniques, targeted immunoblotting
and unbiased mass spectrometry-based proteomics techniques are generally applied to
identify palmitoylated proteins.

3. S-Palmitoylation in Macrophages

Macrophages are multifunctional innate immune cells situated in all tissues within the
body. While they are well-known for their essential role in the clearance of pathogens and
controlling inflammatory responses, their functions go well beyond immunity. For instance,
studies show that they are also indispensable for lipid metabolism as well as tissue devel-
opment and remodeling [35]. To accomplish these divergent functions, tremendous fine-
tuning of their physiology is required. Increasing evidence indicates that S-palmitoylation
is key in driving appropriate responses of macrophages in processes such as endocytosis,
intracellular signaling pathways, lysosomal hydrolase sorting, and chemotaxis. In the
following sections, we summarize and discuss the current knowledge on the impact of
S-palmitoylation on macrophage physiology in health and disease.

3.1. Endocytosis

The clearance of pathogens, cell debris, and apoptotic cells retains immune and tissue
homeostasis in health and disease. Macrophages are equipped with an arsenal of receptors
that recognize these ligands, many of which require S-palmitoylation for their sequestration
in lipid rafts and function [15,36]. Moreover, few studies indicate that pathogens can hijack
the palmitoylation machinery involved in the acetylation of some of these receptors to
support their survival and spread.

The first well-investigated scavenger receptor whose function is regulated by
S-palmitoylation is the fatty acid translocase CD36. CD36 facilitates cellular uptake of
long-chain fatty acids, a key step in energy metabolism [37]. Similar, macrophages recog-
nize and ingest disease-associated ligands such as oxidized LDL (oxLDL), amyloid-β, and
myelin via CD36, thereby having a major impact on disease pathogenesis in atherosclero-
sis, Alzheimer’s disease (AD), and multiple sclerosis (MS) [38,39]. Several studies found
that CD36 is palmitoylated on multiple cysteine residues located in its N- and C-terminal
cytoplasmic tail [40]. While S-palmitoylation of CD36 is redundant for receptor matu-
ration, it controls endoplasmic reticulum processing, trafficking through the secretory
pathway, and lipid raft localization [41]. Consistent with reduced lipid raft localization,
CD36 S-palmitoylation mutants show less efficient uptake of oxLDL [41]. Selenoprotein K,
an endoplasmic reticulum-localized protein that exhibits oxidoreductase enzymatic activity,
was found to be an important co-factor in CD36 S-palmitoylation, directing its localization
to lipid rafts in macrophages [42], potentially through its interaction with zDHHC6 [43,44].
Alternatively, or in parallel, CD36 S-palmitoylation, plasma membrane localization, and
fatty acid uptake activity rely on zDHHC4 and zDHHC5 [45]. While zDHHC4 promotes
CD36 S-palmitoylation in the Golgi apparatus and stimulates the transport of CD36 to
the plasma membrane, zDHHC5 maintains plasma membrane localization of CD36 by
protecting it from de-palmitoylation by APTs (Figure 2) [45]. Despite these studies, the im-
pact of disturbances in CD36 S-palmitoylation on disease pathologies remains unexplored.
We anticipate that changes in CD36 S-palmitoylation in macrophages will have disease-
dependent outcomes. Given that CD36-mediated clearance of amyloid-β and myelin debris
by macrophages is neuroprotective in AD and MS, respectively, CD36 S-palmitoylation
may limit disease progression in these disorders. In contrast, excessive uptake of oxLDL
and fatty acids by CD36 promotes atherosclerotic lesion development, inflammation, and
liver steatosis. Hence, CD36 S-palmitoylation may promote disease progression in these
disorders. Consistent with the latter, patients with non-alcoholic steatohepatitis exhibit
elevated CD36 S-palmitoylation, which augments liver steatosis and inflammation [46]. Al-
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together, these findings indicate that -palmitoylation is essential for CD36 localization and
function in macrophages. However, more research is warranted to define the importance
of CD36 S-palmitoylation in disease pathology.
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Figure 2. S-palmitoylation controls macrophage endocytosis. Ample evidence indicates that many
endocytic receptors on macrophages require S-palmitoylation for their sequestration in lipid rafts and
function. First, Fc receptor-mediated endocytosis relies on S-palmitoylation. Here, zDHHC6/SelK-
mediated S-palmitoylation of the scaffolding protein ASAP2 was found to inhibit FC receptor-
mediated endocytosis. Similar, zDHHC20-mediated S-palmitoylation of the viral toxin Tat was
found to reduce FcR-mediated phagocytosis during HIV-1 infections. Second, the intracellular
transport, plasma membrane localization, and function of the scavenger receptor CD36 depend on
palmitoylation by zDHHC4–6 and Selenoprotein K (SelK). Third, the anthrax toxin produced by
Bacillus anthracis hijacks the palmitoylation machinery to affect macrophage endocytosis. Here,
S-palmitoylation of plasma membrane receptors TEM8 and CMG2, as well as zDHHC5-mediated
S-palmitoylation of the proteases furin and PC7, was found to affect raft association, oligomerization,
and endocytosis of protective antigen (PA), a subunit of anthrax toxin. Fourth, few studies indicate
that the endocytic receptors CD44 and lectin-like oxLDL receptor-1 (LOX-1) rely on palmitoylation
for proper plasma membrane distribution. The zDHHCs and acylprotein thioesterases (APTs), as
well as the functional impact CD44 and LOX-1 S-palmitoylation, remain to be determined. Finally,
S-palmitoylation triggers a process coined massive endocytosis (MEND) through zDHHC5-mediated
S-palmitoylation of plasma membrane proteins in lipid rafts. Figure created with BioRender.com
(accessed on 9 January 2022).

Antibody-opsonized pathogens and particles are recognized and engulfed by macrophages
through Fc receptors (FcRs). FcR-mediated endocytosis is crucial for inducing appropriate
responses to infections and chronic inflammation but can also contribute to the pathogenesis
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and progression of autoimmunity [47]. A recent study defined that palmitoylation indirectly
facilitates FcR-mediated uptake of immunoglobulin G-coated microspheres by driving
S-palmitoylation of Arf-GAP with SH3 domain, ANK repeat, and PH domain-containing
protein 2 (ASAP2) [48], a scaffolding protein linked to FcR-mediated phagocytosis [49].
The zDHHC6-selenoprotein K complex was found to catalyze palmitoylation of ASAP2
at the endoplasmic reticulum, thereby directing its localization to phagocytic cups that
appear beneath IgG-opsonized ligands. Counterintuitively, whereas S-palmitoylation gen-
erally stabilizes protein expression, selenoprotein K-mediated S-palmitoylation of ASAP2
marked it for calpain-2-mediated cleavage. It remains unclear how ASAP2 retention in
phagocytic cups in palmitoylation-deficient cells leads to less efficient FcR-mediated phago-
cytosis [44]. In another study, S-palmitoylation was found to retain the viral toxin Tat,
which is released by HIV-1 infected cells, in the plasma membrane of receiving uninfected
macrophages, thereby inhibiting FcγR-mediated phagocytosis [50]. zDHHC20-mediated
S-palmitoylation of Tat at Cys31 enabled Tat accumulation on phosphatidylinositol (4,5)
bisphosphate (PI(4,5)P2) at the plasma membrane, and by doing so, allowing it to in-
hibit PI(4,5)P2-dependent phagocytosis (Figure 2). It is tempting to speculate that Tat
impedes FcR-mediated phagocytosis by interfering with PI(4,5)P2-mediated recruitment
of the Rho GTPases Cdc42 to the phagocytic cup [51]. These findings provide a molecu-
lar basis for the phagocytic defects observed in uninfected phagocytes following HIV-1
infection [52]. Collectively, these studies stress that S-palmitoylation is key in driving FcR
function on macrophages.

Similar to HIV-1, virulence factors released by extracellular bacteria can hijack the
endocytic capacity of cells to promote their survival and spread. A well-studied example
is the anthrax toxin, one of the major virulence factors produced by Bacillus anthracis,
which targets macrophages and neutrophils to successfully establish infection [53,54]. For
anthrax toxin to enter macrophages, the protective antigen (PA) subunit of the toxin first
binds to the plasma membrane receptors tumor endothelial marker 8 (TEM8) and capil-
lary morphogenesis gene 2 (CMG2) [53,55]. Next, PA becomes cleaved by proteases such
as furin and PC7, leading to PA oligomerization and complex endocytosis [56]. Several
studies demonstrate that S-palmitoylation is essential for the entry of anthrax toxin in
target cells. S-palmitoylation of TEM8 and CMG2 is found to affect PA raft association,
oligomerization, and endocytosis, likely via a complex process involving other palmitoy-
lated proteins [57]. A more recent study extends these findings by showing that zDHHC5-
mediated S-palmitoylation of Furin and PC7 enables partitioning of these proteases into
lipid rafts and is necessary for efficient PA oligomerization and endocytosis (Figure 2) [58].
Remarkably, similar processes control cellular intoxication, lipid raft localization, and
oligomerization of aerolysin, a protoxin produced by Aeromonas hydrophila [58].

In addition to the abovementioned endocytic pathways, S-palmitoylation affects
lipid raft localization and function of several other endocytic receptors expressed by
macrophages. Alongside its role as an adhesion molecule, CD44 acts as a primary and
accessory phagocytic receptor [59,60]. S-palmitoylation of CD44 is essential for its se-
questration in lipid rafts and endocytosis of hyaluronan [61,62], a large inflammation-
associated glycosaminoglycan that is cleared by macrophages in a CD44-dependent manner
(Figure 2) [63]. Furthermore, S-palmitoylation of the scavenger receptor lectin-like oxLDL
receptor-1 (LOX-1) at Cys36 and Cys46 is necessary for its recruitment into lipid rafts [64].
While direct evidence is lacking, LOX-1 S-palmitoylation may well impact the capacity of
macrophages to clear oxLDL and apoptotic cells (Figure 2) [65]. Finally, S-palmitoylation
triggers a process coined massive endocytosis (MEND), a form of endocytosis in which
large parts of the plasma membrane are absorbed by cells, including macrophages [66,67].
MEND ensues following a large influx of calcium, which leads to the formation of mito-
chondrial transition pores, release of coenzyme A (CoA) in the cytoplasm, and formation of
acyl-CoA. The latter serves as a substrate for zDHHC5-mediated S-palmitoylation of plasma
membrane proteins, thereby increasing their clustering into ordered domains (Figure 2).
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Collectively, S-palmitoylation is increasingly being acknowledged to impact the en-
docytic capacity of macrophages. However, we are only beginning to understand the
molecular processes and receptors involved, let alone their impact on disease pathologies.
By using the murine RAW264.7 macrophages cell line, palmitoyl screens identified numer-
ous other palmitoylated candidates that are likely to affect the clearance of pathogens, cell
debris, and apoptotic cells by macrophages, including but not limited to several members
of the vesicle-associated membrane protein family [15,36]. In the upcoming years, more
research is needed to confirm the impact of these putative palmitoylated proteins on the
endocytic capacity of macrophages in health and disease.

3.2. Toll-like Receptor Signaling

Toll-like receptors (TLRs) are pattern recognition receptors that primarily sense con-
served microbial ligands. Their ligation triggers the activation of transcription factors that
control the expression of an array of inflammatory and anti-microbial genes. As immune
sentinels, macrophages highly express TLRs, enabling them to rapidly respond to microbial
threats [68]. TLR1, 2, 4, 5, and 6 are localized in the plasma membrane, where they recog-
nize external microbial ligands. TLR3, 7, 8, and 9 are situated in cytoplasmic compartments
and mainly recognize intracellular viral products.

Diverse studies indicate that S-palmitoylation controls TLR signal transduction. A
palmitoyl screen using the RAW264.7 macrophage cell line showed that exposure to
lipopolysaccharide (LPS), a prototypical TLR4 ligand found in the membrane of most
Gram-negative bacteria, profoundly changes the palmitoyl profile of these cells [36].
Among other proteins, LPS was found to trigger S-palmitoylation and activation of en-
zymes of the phosphatidylinositol cycle, such as type II phosphatidylinositol 4-kinase
(PI4KII) β, leading to the inflammatory activation of macrophages. A recent study further
demonstrated that zDHHC6 is involved in S-palmitoylation of myeloid differentiation
primary response 88 (MYD88) in myeloid cells, a common adapter molecule in the TLR
family [69]. Accordingly, blocking MYD88 S-palmitoylation suppressed TLR-induced in-
flammation. Of interest, the authors provide evidence that CD36-mediated exogenous fatty
acid incorporation maintains the intracellular palmitate pool and is essential for MYD88
S-palmitoylation. Given that CD36 relies on S-palmitoylation for proper function as well,
these findings stress the complexity of the CD36-TLR signaling axis and the essential role
that S-palmitoylation plays herein. In addition to controlling intracellular TLR signaling,
a transmembrane domain-proximal cysteine residue in TLR2 was recently found to be
susceptible to S-palmitoylation in dendritic cells [70]. Inhibition of TLR2 S-palmitoylation
pharmacologically using 2-bromopalmitic acid (2BP) or by cysteine mutagenesis led to
decreased plasma membrane expression and a reduced inflammatory response upon TLR2
ligation. Finally, in contrast to the abovementioned studies, S-palmitoylation can also
negatively regulate TLR signaling by promoting lipid raft localization of the Src family
member Lyn (Figure 3) [71]. This negative feedback regulation may limit excessive in-
flammation in response to multiple waves of pathogenic stimuli and prevent septic shock.
Collectively, these findings indicate that S-palmitoylation dynamically fine-tunes TLR
signaling and plasma membrane expression, thereby closely monitoring the anti-microbial
macrophage response.
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Figure 3. S-palmitoylation regulates lysosomal hydrolase sorting and cytokine, chemokine, NOD,
and TLR signaling. First, few studies defined that S-palmitoylation controls TLR4 signaling by
affecting the activity and binding properties of the adaptor molecule MYD88 and tyrosine kinase
Lyn, thereby promoting or inhibiting TLR4 signal transduction, respectively. Moreover, TLR2 mem-
brane distribution as such depends on S-palmitoylation. Second, membrane localization and ability
to activate NF-κB and MAPK of NOD1/2 is associated with zDHHC5-mediated S-palmitoylation.
Third, diverse cytokine and chemokine receptors expressed by macrophages rely on S-palmitoylation
for signal transduction. For instance, zDHHC5/8-mediated palmitoylation of gp130, a subunit of
the IL-6 receptor complex, affects its surface localization and downstream STAT3 phosphorylation.
Likewise, S-palmitoylation of the interferon alpha and beta receptor subunits 1 and 2 (IFNAR1/2)
controls its membrane abundance and downstream STAT1/2 phosphorylation. In addition, TNFα
signaling is closely associated with S-palmitoylation in macrophages. S-palmitoylation of trans-
membrane TNFα (tmTNFα) blocks TNF receptor 1 (TNFR1) binding to soluble TNFα, thereby
counteracting NF-κB activation. Furthermore, TNFR1 membrane distribution and activation as such
depends on S-palmitoylation. Finally, few studies defined that plasma membrane expression of the
G protein-coupled receptor (GPCR) CCR5 relies on zDHHC3-, zDHHC7-, and zDHHC15-mediated
palmitoylation. In addition, intracellular signaling molecules required for CCR5 signaling and chemo-
taxis, such as (regulators of) Gα proteins and Rac1, are susceptible to palmitoylation. Figure created
with BioRender.com (accessed on 9 January 2022).
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3.3. NOD-like Receptor Signaling

The nucleotide-binding oligomerization domain (NOD) proteins, NOD1 and NOD2,
are intracellular receptors responsible for the recognition of cytosolic bacterial peptido-
glycans. While NOD1 is ubiquitously expressed, NOD2 is primarily present in immune
cells, such as macrophages and dendritic cells [72]. In steady state, NOD1/2 are primar-
ily present in the cytosol, with only a small fraction being associated with plasma and
endosomal membranes for the surveillance of bacterial components. Increasing evidence
suggests that membrane localization of NOD1/2 is essential for bacterial sensing, nuclear
factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation, and the release
of inflammatory and anti-microbial mediators [73–76]. Accordingly, impaired membrane
localization of NOD1/2 is associated with inflammatory conditions, such as Crohn’s dis-
ease [76]. Given the lack of clearly defined membrane-targeting domains, NOD1/2 were
classically considered to be anchored to membranes through cytoskeletal components as
well as the plasma membrane and endosomal proteins [77]. However, increasing evidence
indicates that S-palmitoylation drives the recruitment of NOD1/2 to bacteria-containing
endosomes and other intracellular membranes.

In an elegant series of experiments, Lu et al. recently showed that S-palmitoylation is
required for NOD1/2 membrane association and its ability to activate the NF-κB and MAPK
signaling pathways in macrophages [77]. Site-directed mutagenesis experiments showed
that multiple cysteine residues in NOD1 (Cys558, Cys567, and Cys952) and NOD2 (Cys395
and Cys1033) are S-palmitoylated. In addition, it was demonstrated that S-palmitoylation-
deficient mutants of NOD1 and NOD2 are mislocalized and lose their ability to induce
NF-κB and MAPK signaling in response to NOD ligands. Additionally, gain- and loss-of-
function experiments demonstrated that zDHHC5 is required for S-palmitoylation and the
function of NOD1 and NOD2. Finally, the authors provide evidence that several NOD2
polymorphisms associated with Crohn’s disease lead to aberrant S-palmitoylation. The
majority of Crohn’s disease-associated NOD2 mutant proteins displayed a 70% to 90%
reduction in S-palmitoylation levels and a dysregulated intracellular localization of NOD2.
Conversely, a gain-of-function NOD2 variant exhibited enhanced S-palmitoylation and
NF-κB hyperactivation, which could be counterbalanced using 2-BP (Figure 3). While
these findings stress the importance of S-palmitoylation in NOD2 palmitoylation and
the pathology of Crohn’s disease, it is noteworthy to mention that the vast majority of
polymorphisms did not involve changes in cysteine residues, and none of them matched
the cysteine residues described above. Given that single-nucleotide polymorphisms can
generate alternative protein isoforms with divergent structures, it would be of interest to
study if altered accessibility of Cys395 and Cys1033 mediates aberrant S-palmitoylation in
the Crohn’s disease-associated NOD2 mutants that were experimentally addressed.

3.4. Cytokine Receptor Signaling

Cytokines are chemical cues that transmit intercellular signals and retain immune
homeostasis. Macrophages are major producers of cytokines and express a plethora of
cytokine receptors, which alter their physiology upon ligation. Direct and indirect evidence
indicates that cytokines and cytokine receptors undergo S-palmitoylation, thereby affecting
cytokine signaling networks and the functional phenotype of macrophages. For example,
both the interferon alpha and beta receptor subunits 1 and 2 (IFNAR1 and IFNAR2), which
bind to type I IFNs and are highly expressed by macrophages [78,79], are subjected to
S-palmitoylation [80]. Counterintuitively, while IFNAR1 S-palmitoylation at Cys463 is
essential for phosphorylation and activation of signal transducer and activator of transcrip-
tion 1 and 2 (STAT1/2), key proteins needed for relaying the transcriptional activity of
IFNs, it does not impact IFNAR1 endocytosis, intracellular distribution, or stability at the
cell surface (Figure 3) [80]. To date, the impact of IFNAR S-palmitoylation on anti-viral
and -tumor activities of IFNs remains unexplored. Vice versa, it remains unclear whether
viruses or tumors can hijack IFNAR1 S-palmitoylation to support their replication and
growth, respectively.
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Similar to type 1 IFN signaling, ample evidence points toward S-palmitoylation having
a broad range of functions in the tumor necrosis factor alpha (TNFα) signaling pathway.
Transmembrane TNFα (tmTNFα), but not soluble TNFα (sTNFα), was recently found to be
palmitoylated at Cys47, thereby promoting lipid raft integration in macrophages and other
cell types [81–83]. While tmTNFα S-palmitoylation did not affect cleavage of its extracel-
lular domain and consequent TNFα shedding, it diminished TNF receptor 1 signaling by
reducing its binding to sTNF [83]. These findings point toward an auto-inhibitory process
that likely plays a vital role in the resolution of inflammation. Furthermore, by using human
monocytic U937 cells, TNF receptor 1 was recently demonstrated to be constitutively palmi-
toylated and de-palmitoylated upon ligand binding 75. Mutation of Cys248 counteracted
TNF receptor 1 S-palmitoylation and interfered with its receptor localization to the plasma
membrane and proper signal transduction. In addition, the palmitoyl thioesterase APT2
controlled TNF receptor 1 de-palmitoylation and, thereby, TNF-induced NF-κB activation
(Figure 3) [84].

Finally, S-palmitoylation affects interleukin-6 (IL-6) signaling, a pleiotropic signaling
pathway that not only regulates inflammation but also affects haematopoiesis, metabolism,
and organ development. Collura et al. showed that gp130, a subunit of the IL-6 receptor
complex, is palmitoylated by both zDHHC5 and zDHHC8 [85]. Gp130 S-palmitoylation was
found to affect its surface localization and downstream STAT3 phosphorylation (Figure 3).
As this study was performed in dorsal root ganglion (DRG) neurons, future studies should
confirm gp130 S-palmitoylation in macrophages and define its impact on macrophage phys-
iology and inflammation. Altogether, these studies strongly suggest that S-palmitoylation
plays a key role in cytokine signaling pathways in macrophages. However, to what extent
faulty S-palmitoylation impacts inflammatory disorders or whether S-palmitoylation can
be targeted to suppress inflammation remains to be clarified.

3.5. Chemotaxis

Chemotaxis is the directional movement of cells in response to a chemical stimulus
gradient. Macrophage chemotaxis is crucial during both onset and resolution of inflam-
mation and relies on the expression of G protein-coupled receptors (GPCRs) that bind
chemoattractants. One such receptor is the chemokine (C-C motif) receptor type 5 (CCR5),
which is highly expressed on immune cells, macrophages in particular. Notably, alongside
enhancing chemotaxis, CCR5 acts as an essential co-receptor for macrophage tropic human
immunodeficiency virus (M-tropic HIV) entry into target cells, such as CD4+ T-lymphocytes
and macrophages [86,87]. Mutagenesis experiments, applying single or combined cysteine
residue substitutions, showed that CCR5 is palmitoylated in its carboxyl-terminal domain
at three cysteine residues (Cys321, Cys323, and Cys324) [88,89], likely catalyzed by the
action of zDHHC3, zDHHC7, and zDHHC15 [90]. The absence of receptor S-palmitoylation
led to the sequestration of CCR5 in intracellular biosynthetic compartments and a profound
decrease in plasma membrane expression [88,89]. However, aside from reduced surface
expression and signaling activity, mutants that escaped degradation and reached the cell sur-
face did not display impaired chemokine binding and receptor internalization in response
to ligands, such as RANTES, MIP1α, and HIV envelope proteins [88,89]. Alongside CCR5,
intracellular signaling molecules required for GPCR signaling and chemotaxis, such as
(regulators of) Gα proteins and Rac1, are reported to be palmitoylated [91–95]. Importantly,
palmitoylation-deficient mutants displayed an altered cellular protein distribution, im-
paired GPCR signaling, and migratory defects (Figure 3) [91–95]. These studies indicate that
S-palmitoylation is a hub and driver of GPCR signaling and function. However, whether
the abovementioned functions can be generalized to primary macrophages and to what
extent they can be therapeutically exploited to reduce HIV viral load and the pathogenic
accumulation of macrophages in inflammatory disorders remains to be determined.
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3.6. Lysosomal Hydrolase Sorting

Lysosomes are acidified organelles that carry out degradative metabolism essential
to many endocytic, phagocytic, and autophagic processes. Proper lysosomal degradation
relies on a collection of over 60 divergent hydrolytic enzymes. Mannose 6-phosphate
receptors (M6PRs) shuttle between the trans-Golgi network (TGN) and endosomes, and by
doing so, deliver newly synthesized acid hydrolases to lysosomes. To date, two distinct
M6PRs have been identified, the cation-dependent (CD-M6PR) and cation-independent
M6PR (CI-M6PR), that differ in their transport efficacy [96–100].

Few studies indicate that S-palmitoylation of M6PR is necessary for efficient lysosomal
sorting. Mutation of Cys34 to alanine markedly reduces M6PR S-palmitoylation, leading
to a gradual accumulation of CD-M6PR in lysosomes and total loss of hydrolase sorting
function in the Golgi apparatus [101,102]. In another study, McCormick et al. present
evidence that, in addition to CD-M6PR, CI-M6PR is S-palmitoylated and that this modifi-
cation is necessary for efficient retrograde trafficking [103]. The authors further identified
zDHHC15 as the acyltransferase responsible for CI-M6PR S-palmitoylation (Figure 3).
Noteworthy, given that the abovementioned studies used fibroblast and epithelial cell lines
to study M6PR S-palmitoylation, it is difficult to predict whether S-palmitoylation fulfills a
similar role in M6PR shuttling in macrophages. However, in support of a role for M6PR
S-palmitoylation in macrophages, proteomic profiling identified M6PR S-palmitoylation
in membrane fractions of RAW 264.7 macrophages [15]. Importantly, macrophages are
well-known for their endocytic and autophagic capacity, continuously scavenging and
degrading apoptotic cells, lipids, and pathogens, among many other biomolecules, in their
lysosomes. In addition, it is of high interest to study the therapeutic potential of M6PR
S-palmitoylation in lysosomal storage diseases as well as disorders associated with the ac-
cumulation of pathogenic lipid-engorged macrophages, such as AD, MS, and non-alcoholic
steatohepatitis, and following infections with persistent pathogens such as Mycobacterium
tuberculosis, Chlamydia pneumoniae, and Toxoplasma gondii [104]. In these disorders, foamy
macrophages often display impaired degradative metabolism and contribute to disease
progression (reviewed in [105]).

4. Therapeutic Implications

Given the broad variety of (patho)physiological processes in which S-palmitoylation is
involved, targeting acyl-transferases and -thioesterases holds great therapeutic promise for
a variety of disorders. To date, several inhibitors of palmitoylation and de-palmitoylation
have been identified, which all efficiently affect the palmitoylation machinery but also
have several off-target effects. For instance, 2-bromopalmitate (2-BP), a general irre-
versible palmitoylation inhibitor, acts as a potent inhibitor of palmitate incorporation
and is widely used in in vitro studies [106]. However, it also inactivates several lipid
metabolism-related enzymes, such as triacylglycerol biosynthesis, glycerol-3-phosphate
acyltransferase, and fatty acid CoA ligase [107], as well as de-palmitoylating enzymes
APT1 and APT2 [108]. Aside from 2-BP, cerulenin, tunicamycin, and 2-(2-hydroxy-5-
nitro-benzylidene)-benzo[b]thiophen-3-one, also known as compound V, are reported to
inhibit palmitoylation [109–113]. Similar to 2-BP, the mode of action of cerulenin and
tunicamycin remains largely unclear [109–112]. Compound V was found to reversible
inhibit zDHHC-mediated palmitoylation in vitro by preventing auto-palmitoylation of
zDHHC proteins [113]. Finally, several modulators of de-palmitoylation are available, such
as palmostatin B and M, ML211, ML348, ML349, and the mitochondrial pan-APT inhibitor
MitoFP, which inhibit the divergent protein acyl-transferases [30,107,108,114–119]. Yet
again, these modulators show off-target effects, and their mode of action remains largely
unclear, hampering their clinical use.

Given the limited number of acyl-transferases and -thioesterases, overlapping sub-
strate specificity further complicates the modulation of protein S-palmitoylation. A possible
solution for this can be to develop modulators that affect multiple zDHHCs that are in-
volved in the S-palmitoylation of specific target proteins. With respect to the latter, ankyrin
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repeat domains on the closely related zDHHC13 and zDHHC17 are essential for the interac-
tion with target proteins and could be exploited to modulate S-palmitoylation of specific pro-
teins [120]. Similar, context-dependent changes in expression and divergent cellular and tis-
sular distribution could be taken advantage of to achieve cell type-specific S-palmitoylation
of proteins of interest. To add further complexity, acyl-transferases and -thioesterases are
subjected to enzyme-mediated palmitoylation and de-palmitoylation themselves. For exam-
ple, zDHHC16 function and distribution rely on dynamic (de-)palmitoylation by zDHHC6
and APT2 [121]. All in all, overlapping substrate specificity and enzyme-mediated zDHHC
S-palmitoylation have hampered the development of clinically relevant modulators of
S-palmitoylation.

Besides using enzyme modulators, dietary palmitate impacts the palmitoylation sta-
tus of proteins. For instance, a palm oil-rich diet leads to accumulation of palmitate in
membrane-enriched fractions of murine livers, as well as altered S-palmitoylation of pro-
teins involved in the metabolism of fatty acids and cholesterol, such as fatty acid synthase,
fatty acid elongase 2, stearoyl-CoA desaturase-1, CD36, and lanosterol synthase [122].
Similarly, several studies found that a high-fat diet, mainly enriched in animal fats, al-
ters the S-palmitoylation of numerous proteins in peripheral organs and the central ner-
vous systems, including but not limited to CD36 and the GluA1 subunit of the AMPA
receptor [46,123–125]. These data strongly suggest that dietary palmitate impacts cellu-
lar S-palmitoylation, which could be therapeutically harnessed to impact systemic and
brain disorders.

Emerging evidence indicates that S-palmitoylation can also be exploited to improve
the cellular delivery of drugs and vaccines. In the last decades, researchers investigated
potential modifications of liposomes using proteins and glycolipids, among others, to
increase the cellular specificity and efficacy of liposomal cargos [126,127]. Recently, it
was demonstrated that tuftsin, a hydrophilic Thr-Lys-Pro-Arg tetrapeptide, has the abil-
ity to potently bind to receptors on macrophages, monocytes, and neutrophils, thereby
driving FcR-mediated phagocytosis and making it a promising tag to promote liposomal
cell-specific targeting [127–130]. However, due to the hydrophilic properties of tuftsin,
the addition of palmitate as an anchor arm is needed to allow its binding to liposomes,
demonstrating the importance of S-palmitoylation in drug and vaccine delivery in relation
to macrophage-based diseases [128,129].

To summarize, protein S-palmitoylation controls macrophage function in health and
disease through modulating processes such as endocytosis, intracellular signaling path-
ways, lysosomal hydrolase sorting, and chemotaxis. In the upcoming years, more re-
search is warranted to fully understand palmitoylation and de-palmitoylation dynam-
ics in macrophages and to assess the therapeutic potential of targeting S-palmitoylation
in immunopathologies.
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