
1

SLEEPJ, 2022, 1–11

https://doi.org/10.1093/sleep/zsac028
Advance Access Publication Date: 2 February 2022
Original Article

Submitted: 15 July, 2021; Revised: 23 December, 2021

Original Article

A multicentric validation study of a novel home sleep apnea 

test based on peripheral arterial tonometry
Bart Van Pee1,*, Frederik Massie1, Steven Vits2, Pauline Dreesen3, Susie Klerkx4, 
Jagdeep Bijwadia5, Johan Verbraecken6,7 and Jeroen Bergmann1

1Department of Engineering, Natural Interaction Lab, Thom Building, University of Oxford, Oxford, UK, 2Faculty of Medicine and Health 

Sciences, University of Antwerp, Antwerp, Belgium, 3Future Health Department, Ziekenhuis Oost-Limburg, Genk, Belgium and Mobile Health 

Unit, Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium, 4Department of Pneumology, Ziekenhuis Oost-Limburg, Genk, 

Belgium, 5Department of Pulmonary Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA, 6Department of 

Pulmonary Medicine and Multidisciplinary Sleep Disorders Centre, Antwerp University Hospital, Edegem, Belgium and 7Research Group LEMP, 

Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium

*Corresponding author. Bart Van Pee, Natural Interaction Lab, Thom Building, Parks Road, Oxford OX1 3PJ, UK. Email: Bart.vanpee@eng.ox.ac.uk.

Clinical Trials

NCT04191668, A Validation Study of the NightOwl PAT-based Home Sleep Apnea Test, https://clinicaltrials.gov/ct2/show/NCT04191668

Abstract
Study Objectives: This paper reports on the multicentric validation of a novel FDA-cleared home sleep apnea test based on peripheral arterial tonometry (PAT HSAT).

Methods: One hundred sixty-seven participants suspected of having obstructive sleep apnea (OSA) were included in a multicentric cohort. All patients underwent 

simultaneous polysomnography (PSG) and PAT HSAT, and all PSG data were independently double scored using both the recommended 1A rule for hypopnea, 

requiring a 3% desaturation or arousal (3% Rule), and the acceptable 1B rule for hypopnea, requiring a 4% desaturation (4% Rule). The double-scoring of PSG enabled 

a comparison of the agreement between PAT HSAT and PSG to the inter-rater agreement of PSG. Clinical endpoint parameters were selected to evaluate the device’s 

ability to determine the OSA severity category. Finally, a correction for near-boundary apnea–hypopnea index values was proposed to adequately handle the inter-

rater variability of the PSG benchmark.

Results: For both the 3% and the 4% Rules, most endpoint parameters showed a close agreement with PSG. The 4-way OSA severity categorization accuracy of PAT 

HSAT was strong, but nevertheless lower than the inter-rater agreement of PSG (70% vs 77% for the 3% Rule and 78% vs 81% for the 4% Rule).

Conclusions: This paper reported on a multitude of robust endpoint parameters, in particular OSA severity categorization accuracies, while also benchmarking 

clinical performances against double-scored PSG. This study demonstrated strong agreement of PAT HSAT with PSG. The results of this study also suggest that 

different brands of PAT HSAT may have distinct clinical performance characteristics.
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Statement of Significance

The paper reports on a recently FDA-cleared peripheral arterial tonometry (PAT)–based home sleep apnea testing device (HSAT), a category of HSAT devices that 

have seen a swift increase in clinical deployment owing to sleep clinic’s need for fully disposable devices.

Validation studies of HSATs have received scrutiny for their lack of robust clinical endpoint design and evaluation. This paper reports on a multitude of robust 

endpoint parameters, in particular, obstructive sleep apnea severity categorization accuracies, while also benchmarking clinical performances against double-

scored polysomnography. The results also highlight that within the category of PAT HSATs, significant differences in accuracies may be found among the different 

embodiments.
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Introduction

The COVID-19 pandemic has reshaped how obstructive sleep 
apnea (OSA) diagnosis is being performed. Sleep labs face re-
strictions on the number of patients they can admit to their fa-
cilities during the outbreaks, which resulted in an accelerated 
shift from in-lab polysomnography (PSG) to home sleep apnea 
testing devices (HSATs). To mitigate the potential spread of 
infection, Ramar [1] stated how the field can benefit from the 
deployment of disposable HSAT. HSAT technology based on per-
ipheral arterial tonometry (PAT) is especially well positioned to 
address this need as it is cost-effective to produce and can be 
deployed in a compact form, driving gains in logistics and eco-
logical footprint.

A brief history of peripheral arterial tonometry

In 1937, Hertzman published a paper titled “Photoelectric 
plethysmography of the Fingers and Toes in Man” [2], which 
would later be credited as the founding paper for the research 
into photoplethysmography (PPG) [3]. PPG operates based on op-
tical technology to detect pulsatile blood volume changes in the 
tissue, from which blood oxygen level estimates can also be de-
rived (i.e. pulse oximetry). Hertzman observed how changes in 
the tone of the peripheral arterial smooth muscle tissue, also 
referred to as peripheral arterial tone (PAT) and itself triggered 
by changes in sympathetic tone, were observable in the pulsatile 
blood volume changes as registered by the PPG. In a follow-up 
paper from 1942, Hertzman et al. [4] described the occurrence of 
such periodic changes in PAT in a snoring individual, in what we 
may today speculate to have been a patient with sleep apnea.

In the early 1970s, Lugaresi et al. [5] further complemented 
Hertzman’s work in his reporting of the simultaneous occurrence 
of respiratory disturbances with an increase in PAT, an acceler-
ation in pulse rate, and the presence of a cortical arousal—an 
observation which closely resembles the AASM’s definition of 
the Peripheral Arterial Tonometry HSAT technique [6].

There are currently two FDA-cleared HSATs in the PAT cat-
egory: WatchPAT (Itamar Medical, Israel) [7] and NightOwl 
(Ectosense, Belgium) [8], the latter of which is the device studied 
in this manuscript (Study Device). Both devices make use of 
signal conditioning methods to derive a sensitive PAT meas-
urement from the PPG but differ in the mechanisms used to 
obtain such a measurement. WatchPAT uses mostly hardware 
implementations: an approximately isosbestic PPG wavelength 
provided through a third optical emitter helps compensate for 
fluctuations in the PPG driven solely by blood oxygen changes. 
A cuff-like pneumo-optic probe applies an approximately uni-
form and constant pressure with claims of improving the 
signal to noise ratio of the PPG as well as preventing venous 
pooling from affecting the PPG [9]. The Study Device comprises 
a wrap-around sensor probe—the size of a fingertip that does 
not fully envelop the finger. Instead, it relies mostly on signal 
processing techniques to compensate for varying levels of blood 
oxygen and the effects of venous pooling, as well as to obtain a 
highly linear measurement of PAT. These software-based tech-
niques allow for an improved miniaturization of the technology.

Study objective

The aim of this paper was to report on the multicentric val-
idation of a novel home sleep apnea test based on peripheral 

arterial tonometry (PAT HSAT) with a particular emphasis on re-
thinking robust clinical endpoint design and evaluation.

Methods

Participants

One hundred sixty-seven participants suspected of having OSA 
were consecutively included in a cohort across four different 
centers of which one was located in Belgium (Ziekenhuis Oost 
Limburg, ZOL, Genk, Belgium) and three in the United States 
(where all centers were part of the United Health Systems 
Group in Miami, FL). All participants were scheduled for one 
overnight in-lab PSG. Participants were asked for informed 
consent. The US branch of the study was approved by Aspire 
Institutional Review Board (IRB), part of the WIRB-Copernicus 
Group. The European branch of the study was approved by the 
Ethics Committee of ZOL. Underaged or mentally impaired par-
ticipants were excluded from participation in the study. For the 
European center, recruitment took place between July 2018 and 
September 2018. For the US-based centers, recruitment took 
place between December 2019 and January 2020. For all parti-
cipants, gender, age, and Body-Mass-Index (BMI) were recorded. 
For the US branch of the study, participants completed the FDA’s 
self-completion questionnaire for ethnicity and race.

Protocol and devices

A graphical representation of the study setup is provided in 
Figure 1. Routine PSG was performed in all study participants. 
Qualified lab technicians at each participating study center were 
responsible for setting up the equipment and capturing PSG 
data. During the setup of PSG, the PAT HSAT (NightOwl, reusable 
version, software version 1.202.1) was attached to the middle 
finger of the hand to which the pulse oximeter of PSG was ap-
plied. All PSG data were double-scored by two independent cen-
ters which were blinded from one-another’s analysis.

Polysomnography

For the European center, the Alice 6 PSG (Philips Respironics, 
USA) was used, whereas a Cadwell Easy PSG (Cadwell, USA) was 
applied in the US centers.

PSG was scored by two independent scoring centers. The 
first scoring was performed by the team of sleep technicians 
of the center where the patient was admitted (further referred 
to as the “Local Analysis”). A second independent scoring was 
performed by scorers of Cerebra Medical (CM, Canada), which 
provides computer-aided sleep scoring services to support PSG 
scoring for clinical centers and clinical trials. The studies were 
first analyzed by their proprietary Michele Sleep Scoring System 
(MSSS) and were subsequently complemented with complete 
manual rescoring by an expert technologist. All expert scorers 
of CM had received Registered Polysomnographic Technologist 
certification through the Board of Registered Polysomnographic 
Technologists.

Malhotra et al. [10] confirmed in a multicentric trial that the 
MSSS, complemented with manual editing by an expert scorer, 
is more robust than the results of a single expert scorer. Because 
of these conclusions, CM’s analysis served as the expert bench-
mark to which the Local Analysis and PAT HSAT’s analysis were 
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compared. The analysis by CM is therefore referred to as the 
“Expert Analysis.”

All PSG data were scored according to the latest AASM 
scoring rules [6]. Data were first scored using the Recommended 
rule 1A for the scoring of hypopnea (3% Rule), requiring a 3% de-
saturation or an arousal for the scoring of hypopnea. An alterna-
tive scoring of all PSGs was also performed using the Acceptable 
rule 1B (4% Rule) for the scoring of hypopnea by discarding all 
hypopnea that did not coincide with an oxygen desaturation of 
at least 4%.

Statistical Analysis

General

Statistical analysis was performed using MATLAB (version 2019a, 
MathWorks, USA). For all endpoint parameters, 95% confidence 
intervals were computed. For proportion-based endpoints, con-
fidence intervals were computed by approximating the distri-
bution of error about a binomially distributed observation with 
a normal distribution. Significance levels were set at a p-value 
of .05. The PAT HSAT outcome was compared to the Expert 
Analysis for both the 3% Rule and the 4% Rule by using the PAT 
HSAT pAHI as scored by its 3% Rule and 4% Rule scoring variant. 
Significant differences between two proportions were assessed 
by means of a two-proportion z-test.

Data synchronization

PSG and PAT HSAT data were algorithmically synchronized by 
matching the instantaneous heart rate traces derived from the 
electrocardiogram trace of PSG and the PR trace of PAT HSAT. 
Data epochs that were of insufficient quality to be interpreted by 
the sleep technician or PAT HSAT were rejected from both PSG 
and PAT HSAT traces. This resulted in a median rejection rate of 
12% of data epochs per recording.

Data adequacy

Technical failure of PSG and missing PSG data or annotations. The 
AASM defines HSAT as technically adequate if at least 4  h of 
analyzable signal can be obtained [11]. In our study, the same 
cutoff criterion of technical adequacy was used, and all technic-
ally inadequate recordings were excluded from further analysis. 
When PSG recording was technically inadequate, for instance, 

when one of the channels could not be interpreted by the tech-
nicians, the participant was excluded from analysis. Similarly, 
when PSG data or any annotations of the two scoring centers 
were missing due to administrative errors, the participant was 
removed from further analysis.

Participants with missing patient characteristics, such as age 
and gender data, were omitted from the analysis of population 
demographic statistics.

Performance endpoint selection

The clinical performance of HSATs can be described by their 
(diagnostic) accuracy, defined as the percentage agreement with 
polysomnography of the obstructive sleep apnea severity cat-
egory (normal, mild, moderate, and severe) [12].

Secondary performance endpoints which characterize the 
device’s bias and variance in estimating the apnea–hypopnea 
index (AHI) may provide additional insights as to the device’s 
propensity to over-or underestimate the OSA severity. In light of 
the considerations mentioned above, a list of primary and sec-
ondary endpoints is proposed.

Primary endpoints

OSA severity categorization accuracy (4-way categorization ac-
curacy).  The 4-way categorization accuracy expresses the per-
centage of agreement between the OSA severity determined by 
HSAT and the OSA severity determined by PSG. Its main advan-
tage is its straightforward interpretation. Its main disadvantage 
is its lack of insight into whether the categorization perform-
ance of HSAT exceeds the agreement that can be obtained by 
random guessing (chance level). Consider an extreme example 
where 90% of the study participants have mild OSA. In such 
a case, it is trivial for HSAT to obtain a 90% categorization ac-
curacy by outputting mild OSA 100% of the time without per-
forming any meaningful inference. The 4-way accuracy of 90% 
would misleadingly suggest that HSAT is effective.

Cohen’s Kappa (κ).  To address the main limitation of categor-
ization accuracies, Cohen’s Kappa [13] is an alternative agree-
ment metric which takes into account the chance level. Cohen’s 
Kappa is formulated as follows:

 
κ =

categorization accuracy− chance level
1− chance level  

The downside of this metric is its less straightforward in-
terpretation. Applying this formula to the previous example, 
Cohen’s Kappa corresponding to the 90% categorization ac-
curacy would be 0.

Confusion matrix, sensitivity (Se), specificity (Sp), negative pre-
dictive value (NPV), positive predictive value (PPV), and cutoff agree-
ment (Acc). Confusion matrices and their derived parameters 
provide additional granularity to the categorization accuracy 
and Cohen’s Kappa since they expose whether HSAT tends to 
over- or underestimate certain OSA severity categories.

Secondary endpoints

Bland–Altman analysis. In order to describe the bias and variance 
of the AHI estimates, a Bland–Altman analysis can be performed, 

Figure 1. Diagram of the data acquisition setup. This diagram depicts that 

PSG and PAT HSAT were administered concurrently for each study participant. 

PSG was analyzed by two independent scoring centra (Expert and Local) and 

PAT HSAT was analyzed automatically. Both the Local Analysis and PAT HSAT 

Analysis were compared to Expert Analysis.
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which sets out the average AHI of the reference and comparator 
against their difference. The standard Bland–Altman analysis is 
sensitive to extreme values, typically occurring at higher AHIs. 
Therefore, we propose to complement the standard Bland–
Altman analysis with a sub-analysis in which only reference 
AHIs smaller than 30 are retained. For non-normally distributed 
differences, the limits of agreement (LoA) were determined as 
the 97.5th and 2.5th percentiles of the differences. For normally 
distributed differences, the LoA were determined as the mean 
±1.96 times the standard deviation of the residuals. We also per-
formed a Bland–Altman analysis for the (estimated) total sleep 
time (TST).

ICC(A,1).  The degree of absolute agreement between two AHI 
estimates (and other parameters such as TST) can be described 
by the intraclass correlation coefficient of the type two-way fixed 
model with single measures of absolute agreement (ICC(A,1)) [14].

In a context where absolute agreement rather than merely 
a linear relationship is important, the ICC(A,1) is a more 
robust and targeted parameter than the commonly used 
Pearson or Spearman correlation coefficient. The Pearson cor-
relation coefficient attains the maximum value of 1 upon a 
perfect linear relationship between the two raters’ observa-
tions, but it does not penalize a constant offset or a scaling 
factor between them. For example, if the AHI determined by 
HSAT would be consistently equal to twice the AHI of the PSG 
increased by 10 events per hour, a perfect linear relationship 
would exist, and the Pearson correlation coefficient would at-
tain the maximum value of 1. Nevertheless, such HSAT would 
have impaired clinical utility. Worse in this context, is the 
Spearman correlation coefficient, as it attains the maximum 
value of 1 when there is a perfect monotonously increasing 
relationship between the two variables without penalizing for 
non-linearity of such relationship [15]. When absolute agree-
ment needs to be assessed, these coefficients provide mis-
leadingly high values for HSAT and should be avoided [15]. The 
ICC(A,1) does penalize both issues and attains the maximum 
value of 1 only upon a perfect match (i.e. absolute agreement) 
between the raters’ observations. Nevertheless, the ICC(A,1), 
similar to most other correlation coefficients, is heavily in-
fluenced by outliers. Therefore, to assess this influence, we 
included an additional ICC(A,1) which was calculated on only 
those participants for which the Expert Analysis’ AHI was less 
than 30. Confidence intervals for the ICC(A,1) were calculated 
as described by McGraw et al [14].

Endpoint assessment

No consensus exists on what endpoint parameter values are re-
quired to permit the conclusion that a HSAT has adequate per-
formance. In order to avoid the creation of arbitrary endpoint 
targets, we compared each endpoint parameter calculated from 
the HSAT to PSG comparison to the same endpoint parameter 
calculated from two independent scorings of the same PSG 
to which HSAT is compared. For this study, we compared the 
endpoint parameters calculated from comparing the PAT HSAT 
analysis to the Expert PSG Analysis to those calculated from 
comparing the Local PSG analysis to the Expert PSG Analysis. For 
all endpoint parameters, we then assessed whether its value for 
the HSAT-PSG comparison was significantly less favorable than 
the PSG scorer-to-scorer comparison.

Handling AHIs close to OSA severity category 
boundaries

Significant inter-rater disagreement on key diagnostic param-
eters such as the AHI exists [10]. This implies that an AHI de-
rived by PSG that is close to any of the OSA severity category 
boundaries (5, 15, and 30)  should be treated with caution. For 
example, an AHI of 15.1 would qualify as moderate, whereas an 
AHI of 14.9 would qualify as mild, which could have different 
therapeutic implications. However, this difference in AHI is 
much smaller than the typical inter-rater variability of the AHI. 
A dataset in which a significant proportion of AHIs are close to 
the OSA severity boundaries (near-boundary AHIs) could pro-
vide an overly pessimistic assessment of HSAT performance. 
Therefore, we complemented any endpoint analysis based on 
AHI cutoffs with an alternative endpoint parameter calculation 
that corrects for near-boundary AHIs. Concretely, we allocated 
two possible OSA severity categories to near-boundary Expert 
Analysis’ AHIs. This process was called near-boundary double-
labeling (NBL). For example, an Expert Analysis’ AHI of 14.9 
would receive the label of mild OR moderate OSA rather than just 
mild OSA. As a result, if a HSAT detects moderate OSA, this scoring 
should be considered in agreement with the Expert Analysis. For 
endpoint parameters that are evaluated at a single AHI cutoff, 
the same NBL principle can be applied. For example, if the agree-
ment at AHI cutoff 15 is evaluated and if the Expert Analysis’ 
AHI is very close to 15, the ground truth AHI severity category is 
similarly likely to be either mild or moderate and is as such to be 
considered in default agreement with HSAT’s or Local Analysis’ 
AHI categorization at cutoff 15.

When implementing boundary corrections, it is important to 
establish adequate ranges for near-boundary-zones (NBZ), for 
which Expert Analysis’ AHIs falling within should receive NBL. 
We determined the NBZ from analyzing the double-scored PSG 
data obtained in this study.

In a first step, we estimated the probability that a second 
scoring of the PSG data would end up in a different OSA severity 
category from the Expert Analysis (OSA severity disagreement 
probability). For each AHI value ranging from 0 to 40 (the refer-
ence AHI), evaluated at increments of 0.2 events per hour, we 
gathered the observed AHI differences of the two PSG scorings 
(i.e. the Expert and Local scorings) for which one of the two 
scorer’s AHI was within a range of 5 events per hour of that 
reference AHI. We included those AHI differences in what was 
named the nearby sample set for that particular reference AHI. 
We could then fit a normal distribution onto the nearby sample 
set of each reference AHI by taking the reference AHI as the 
mean of the distribution with a standard deviation equal to that 
found within the nearby sample set of AHI differences. From the 
resulting AHI disagreement probability distribution, we could 
straightforwardly calculate, for each reference AHI, the OSA se-
verity disagreement probability. The range of 5 to determine the 
nearby sample set was not reduced to a narrower range as this 
would require a larger dataset to maintain the smoothness of 
the OSA severity disagreement probability curve (expressed as 
the number of slope sign changes of the curve). Normality of the 
nearby sample set was evaluated by means of the Anderson–
Darling test. For the purpose of this study, we defined the NBZ 
as those AHI ranges for which there is a one out of three (33%) 
OSA severity disagreement probability. The reason for this 
cutoff choice is twofold. Although this cut-off may differ with 
individual practitioners’ preferences, only double-labeling those 
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AHI values where the OSA severity disagreement probability is 
50% would result in no double labeling, as only those reference 
values with exactly the boundary cut-offs (5.0, 15.0, and 30.0) 

would be double-labeled. Conversely, an OSA severity disagree-
ment probability cut-off of 15% on this dataset would double-
label all AHIs except for very severe OSA patients.

Sample size determination

Statistical power was determined by postulating that a 10% de-
crease in OSA severity categorization accuracy should be de-
tected as statistically significant with an alpha 0.05 and a power 
of 0.8. Assuming a minimum 4-way categorization accuracy par-
ameter value of 0.75 for the Local Analysis, a minimum sample 
size of 165 participants was found.

Results

Participant inclusion and population statistics

Figure 2 provides a flowchart highlighting the number of re-
cruited participants as well as administrative and technical fail-
ures, including the reason for failure. Out of the 228 participants 
who gave informed consent, concurrent PSG and PAT HSAT data 
were successfully acquired for 180 participants. For respectively 
4 and 7 participants, there was an issue with the flow or SpO2 
channel of the PSG, rendering scoring impossible. For 9 partici-
pants, PSG was only single-scored or the link between the PAT 
HSAT and PSG could no longer be retrieved. Three participants 
received a defective PAT HSAT sensor that did not acquire any 
data. Two participants detached the PAT HSAT sensor early in 
the study. For 7 participants who gave informed consent, even-
tually no PAT HSAT data acquisition was started. For 16 partici-
pants in the European branch of the study, an early prototype 
version of the PAT HSAT data acquisition app experienced sta-
bility issues resulting in a loss of data. For 13 out of the 180 suc-
cessful inclusions, the PAT HSAT recordings were not considered 
technically adequate since less than 4  h of interpretable data 
could be acquired. As a result, technically adequate data were 
acquired for 167 participants. Of these 167 technically adequate 
inclusions, 74 were performed in the United States and 93 in 
Europe. As elaborated in Table 1, participants were predomin-
antly male (63%), of middle age (mean 56  years, STD 15), and 
overweight (mean BMI 30.7 and STD 6.3). The mean AHI was 32.7 
(STD 26.8). Twenty-two participants had no OSA, 37 participants 

Figure 2. Flowchart of participant recruitment. This flowchart depicts how many par-

ticipants gave informed consent (228), for how many participants PSG and PAT HSAT 

data acquisition was successful (180), and for how many participants the PAT HSAT 

was technically adequate (> 4  h of interpretable data). Additionally, the flowchart 

summarizes the reasons for data acquisition failure. SpO2 = blood oxygen saturation.

Table 1. Demographic and clinical characteristics of participants in 
dataset

 Mean STD Min Max 

Age 56 15 21 84
BMI 30.7 6.3 18.2 53.8
AHI 32.7 26.8 0.0 114.9
 N (%)    
No OSA 22(13%)    
Mild OSA 37(22%)    
Moderate OSA 33(20%)    
Severe OSA 75(45%)    
Black 43 (26%)    
White 124 (74%)    
Hispanic, Latino, or Spanish 92 (55%)    

AHI = apnea–hypopnea index; BMI = body mass index; N = number of partici-

pants; OSA = obstructive sleep apnea; STD = standard deviation.
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Figure 3. OSA severity error probability. This figure displays for each AHI the probability that a second PSG scoring would result in an AHI with a different OSA severity 

category. The red zones highlight those AHI values for which this probability is larger than 33% (dotted line).
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had mild OSA, 33 participants had moderate OSA, and 75 parti-
cipants had severe OSA.

In the US branch of the study, 26% of participants identi-
fied as black, 74% as white, and 55% as Hispanic, Latino, or 
Spanish.

Near-boundary determination

Figure 3 displays the results of the near-boundary AHI determin-
ation is described in the Methods section. The figure displays 
for each AHI the OSA severity disagreement probability. The 
red zones highlight those AHI values for which this probability 
is larger than 33%. As such, these near-boundary zones can be 
summarized as displayed in Table 2.

The values presented in this table were used when calcu-
lating primary endpoint parameters using near-boundary 

Table 3. Endpoint parameter result summary table

Endpoint parameter NBL 

3% Rule 4% Rule

PAT HSAT Local PSG PAT HSAT Local PSG 

4-way categorization ac-
curacy

off 0.70 (0.63–0.77) 0.77 (0.70–0.83) 0.78 (0.72–0.84) 0.81 (0.76–0.87)
on 0.81 (0.75–0.87) 0.88 (0.83–0.93)* 0.89 (0.84–0.93) 0.89 (0.84–0.93)

4-way Cohen’s Kappa off 0.56 (0.46–0.66) 0.66 (0.57–0.76)* 0.70 (0.62–0.79) 0.75 (0.67–0.83)
on 0.72 (0.64–0.81) 0.83 (0.76–0.90)* 0.85 (0.78–0.91) 0.85 (0.78–0.91)

Cutoff AHI 5 Se off 0.93 (0.89–0.97) 0.95 (0.93–0.99) 0.95 (0.91–0.99) 0.97 (0.94–1.00)
on 0.97 (0.94–1.00) 0.99 (0.98–1.00) 0.97 (0.94–1.00) 0.98 (0.96–1.00)

Sp off 0.72 (0.54–0.91) 0.72 (0.54–0.91) 0.80 (0.68–0.92) 0.84 (0.73–0.95)
on 0.85 (0.71–0.95) 0.88 (0.74–1.00) 1.00 (0.96–1.00)* 0.88 (0.79–0.98)

NPV off 0.62 (0.42–0.80) 0.73 (0.54–0.91) 0.85 (0.75–0.96) 0.90 (0.81–0.99)
on 0.85 (0.71–0.99) 0.95 (0.87–1.00) 0.90 (0.81–0.99) 0.95 (0.88–1.00)

PPV off 0.96 (0.92–0.99) 0.96 (0.93–0.99) 0.93 (0.88–0.97) 0.94 (0.90–0.98)
on 0.97 (0.94–1.00) 0.98 (0.96–1.00) 1.00 (0.97–1.00) 0.99 (0.93–1.00)

Acc off 0.90 (0.86–0.95) 0.93 (0.89–0.97) 0.91 (0.87–0.95) 0.93 (0.90–0.97)
on 0.95 (0.92–0.98) 0.98 (0.95–1.00) 0.98 (0.95–1.00) 0.96 (0.93–0.99)

Kappa off 0.60 (0.43–0.79) 0.69 (0.52–0.86) 0.76 (0.65–0.88) 0.83 (0.73–0.93)
on 0.82 (0.70–0.94) 0.90 (0.80–1.00)* 0.93 (0.87–1.00) 0.89 (0.81–0.97)

Cutoff AHI 15 Se off 0.91 (0.85–0.96) 0.94 (0.89–0.98) 0.94 (0.90–0.99) 0.94 (0.90–0.99)
on 0.94 (0.89–0.98) 0.95 (0.92–0.99) 0.96 (0.92–1.00) 0.97 (0.93–1.00)

Sp off 0.76 (0.65–0.87) 0.85 (0.76–0.94) 0.91 (0.85–0.97) 0.86 (0.78–0.94)
on 0.83 (0.73–0.93) 0.90 (0.82–0.98) 0.95 (0.90–1.00) 0.90 (0.83–0.96)

NPV off 0.82 (0.72–0.92) 0.87 (0.79–0.96) 0.93 (0.88–0.99) 0.93 (0.87–0.99)
on 0.87 (0.79–0.96) 0.91 (0.84–0.99) 0.95 (0.90–1.00) 0.96 (0.91–1.00)

PPV off 0.88 (0.81–0.94) 0.92 (0.87–0.97) 0.92 (0.87–0.98) 0.89 (0.82–0.95)
on 0.91 (0.86–0.96) 0.95 (0.90–0.99) 0.96 (0.92–1.00) 0.92 (0.86–0.97)

Acc off 0.86 (0.80–0.91) 0.90 (0.86–0.95) 0.93 (0.89–0.97) 0.90 (0.86–0.95)
on 0.90 (0.85–0.94) 0.93 (0.90–0.97) 0.95 (0.92–0.99) 0.93 (0.90–0.97)

Kappa off 0.68 (0.56–0.80) 0.79 (0.69–0.89)* 0.86 (0.78–0.93) 0.81 (0.72–0.90)
on 0.77 (0.67–0.88) 0.85 (0.77–0.94)* 0.90 (0.84–0.97) 0.87 (0.79–0.94)

Cutoff AHI 30 Se off 0.91 (0.84–0.97) 0.91 (0.84–0.97) 0.86 (0.77–0.95) 0.95 (0.89–1.00)
on 0.93 (0.88–0.99) 0.95 (0.90–1.00) 0.91 (0.83–0.98) 1.00 (0.96–1.00)*

Sp off 0.91 (0.86–0.97) 0.92 (0.87–0.98) 0.96 (0.93–1.00) 0.95 (0.90–0.99)
on 0.94 (0.88–0.99) 0.96 (0.92–1.00) 0.97 (0.93–1.00) 0.95 (0.91–0.99)

NPV off 0.92 (0.87–0.98) 0.92 (0.87–0.98) 0.93 (0.88–0.98) 0.97 (0.94–1.00)
on 0.95 (0.90–0.99) 0.96 (0.92–1.00) 0.96 (0.92–0.99) 1.00 (0.97–1.00)

PPV off 0.90 (0.83–0.96) 0.91 (0.84–0.97) 0.92 (0.85–1.00) 0.90 (0.82–0.98)
on 0.92 (0.86–0.98) 0.95 (0.90–1.00) 0.92 (0.85–1.00) 0.90 (0.82–0.98)

Acc off 0.91 (0.87–0.95) 0.92 (0.87–0.96) 0.93 (0.89–0.97) 0.91 (0.91–0.98)
on 0.93 (0.90–0.97) 0.95 (0.92–0.99) 0.95 (0.91–0.98) 0.96 (0.94–0.99)

Kappa off 0.82 (0.73–0.91) 0.83 (0.75–0.92) 0.84 (0.75–0.93) 0.88 (0.81–0.96)
 on 0.87 (0.79–0.94) 0.90 (0.83–0.97) 0.88 (0.80–0.95) 0.92 (0.86–0.98)

This table displays all endpoint parameter values and their confidence intervals (between brackets) for PAT HSAT and the Local PSG and for the 3% rule and the 4% 

rule, with and without NBL. An asterisk signifies a significant outperformance of the endpoint parameter (within the same scoring rule selection). Acc = accuracy; 

AHI = apnea–hypopnea index; Kappa = Cohen’s Kappa; NBL = near-boundary double-labeling; NPV = negative predictive value; PAT HSAT = home sleep apnea test 

based on peripheral arterial tonometry; PPV = positive predictive value; PSG = polysomnography; Se = sensitivity; Sp = specificity.

Table 2. OSA severity categories when applying near-boundary 
double-labeling

OSA severity categories using NBL AHI Range N (%) 

Normal 0.0 ≤ AHI < 2.4 12 (7.2%)
Normal OR Mild (NBZ) 2.4 ≤ AHI < 7.0 21 (12.6%)
Mild 7.0 ≤ AHI < 12.4 17 (10.2%)
Mild OR Moderate (NBZ) 12.4 ≤ AHI < 17.4 15 (9.0%)
Moderate 17.4 ≤ AHI < 26.6 21 (12.6%)
Moderate OR Severe (NBZ) 26.6 ≤ AHI < 35.2 14 (8.4%)
Severe  35.2 ≤ AHI 67 (40.0%)

The near-boundary zone is defined as the zone for which the probability that 

a second scoring of the AHI would fall in a different OSA severity category ex-

ceeds 33%. NBZ are highlighted in italics.

AHI = apnea–hypopnea index; N = number of paricipants within each cat-

egory (according to Expert Analysis); NBL = near-boundary double-labeling; 

NBZ = near-boundary zones; OSA = obstructive sleep apnea.
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double-labeling. For AHIs ranging from 0 to 12 and from 33 to 40, 
the normal distribution assumption of the nearby sample set 
was not met according to the Anderson–Darling test. A violation 
of this assumption might render the error probability estimates 
less accurate in those regions.

Primary endpoint parameters

Table 3 displays all primary endpoint parameters calculated for 
PAT HSAT as well as the Local PSG Analysis, for both the 3% Rule 
and 4% Rule, and for both the regular endpoint parameter calcu-
lation and the alternative calculation with NBL. Whenever PAT 

Table 4. OSA severity category confusion matrix

 

PAT HSAT | Local PSG—3% Rule PAT HSAT | Local PSG—4% Rule

No Mild Mod. Severe No Mild Mod. Severe 

Expert PSG | NBL off No 16 | 16 4 | 5 2 | 1 0 | 0 35 | 37 9 | 3 0 | 4 0 | 0
Mild 9 | 5 16 | 24 12 | 8 0 | 0 5 | 3 21 | 23 7 | 7 0 | 0
Mod. 1 | 0 8 | 6 16 | 20 8 | 7 1 | 1 3 | 4 26 | 23 4 | 6
Severe 0 | 1 1 | 0 6 | 6 68 | 68 0 | 0 1 | 0 7 | 3 48 | 53

Expert PSG | NBL on No 22 | 21 2 | 2 2 | 1 0 | 0 37 | 39 0 | 1 0 | 4 0 | 0
Mild 3 | 0 21 | 29 8 | 5 0 | 0 3 | 1 31 | 27 4 | 4 0 | 0
Mod. 1 | 0 5 | 4 22 | 26 6 | 4 1 | 1 2 | 2 32 | 29 4 | 6
Severe 0 | 1 1 | 0 4 | 3 70 | 71 0 | 0 1 | 0 4 | 0 48 | 53

This table displays the confusion matrix comparing the OSA severity category as determined by the Expert PSG analysis to respectively PAT HSAT (bold font) and 

Local PSG analysis (normal font) for the 3% rule (L) and the 4% rule (R), with NBL (Bottom) and without NBL (Top). Mod. = moderate sleep apnea; NBL = near-boundary 

double-labeling; OSA = obstructive sleep apnea; PAT HSAT = home sleep apnea test based on peripheral arterial tonometry; PSG = polysomnography.
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Figure 4. Bland–Altman plots of AHI determined by PAT HSAT (L) and Local Analysis (R) versus Expert Analysis for the 3% rule (Top) and the 4% rule (Bottom). The dotted 

line represents the mean Limits of Agreement. The dashed line represents the mean difference or bias. Average AHI = average of AHI Expert and pAHI PAT HSAT (L) or 

AHI Expert and AHI Local (R); LLA = lower limit of agreement; pAHI = AHI estimated by peripheral arterial tonometry.
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HSAT or Local Analysis significantly outperformed one another, 
the outperforming endpoint parameter is highlighted with an 
asterisk.

The 4-class accuracy using NBL as well as the Cohen’s Kappa 
(with and without NBL) was significantly lower for PAT HSAT 

compared to the Local analysis for the 3% Rule. The specificity 
at AHI cutoff 5 after NBL was significantly higher for PAT HSAT 
for the 4% Rule. The Cohen’s Kappa for the same cutoff after NBL 
was significantly lower for PAT HSAT for the 3% Rule. Another 
significant underperformance of PAT HSAT was found for AHI 
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Figure 5. Scatter plots of AHI determined by PAT HSAT (L) and Local Analysis (R) versus Expert Analysis for the 3% rule (Top) and the 4% rule (Bottom). The dotted line 

represents the points for which the y-axis values equal the x-axis values of the graph (identity line). ICC(A,1) = Intraclass correlation coefficient of type (A,1); pAHI = AHI 

estimated by peripheral arterial tonometry.

Table 5. Summary of Bland–Altman and correlation analysis of AHI

 

3% Rule 4% Rule

PAT HSAT Local PSG PAT HSAT Local PSG 

All AHIs Bias 2.03 −0.35 0.49 −1.60
ULA 23.1 19.1 19.8 15.1
LLA −17.1 −18.1 −13.5 −25.2
ICC(A,1) 0.93 (0.90–0.95) 0.93 (0.91–0.95) 0.95 (0.94–0.96)* 0.93 (0.90–0.95)

AHIs < 30 Bias −1.29 −1.81 −1.77 −2.40
ULA 10.9 8.6 8.5 6.6
LLA −17.0 −16.8 −14.1 −19.1
ICC(A,1) 0.74 (0.63–0.82) 0.79 (0.69–0.86) 0.81 (0.72–0.87)* 0.68 (0.55–0.77)

This table displays the bias, ULA, LLA, and ICC(A,1) from the Bland–Altman and correlation analysis comparing the pAHI of PAT HSAT and the AHI of the Local 

PSG Analysis to the Expert PSG Analysis. When confidence intervals were calculated they are displayed between brackets. An asterisk signifies a significant out-

performance of the endpoint parameter (within the same scoring rule selection). These parameters are calculated for the 3% Rule and the 4% Rule and for all 

AHIs as well as only AHIs < 30 (as determined by Expert PSG Analysis). AHI = apnea–hypopnea index; ICC(A,1) = intraclass correlation coefficient of type (A,1); 

LLA = lower limits of agreement; pAHI = AHI estimated by peripheral arterial tonometry; PAT HSAT = home sleep apnea test based on peripheral arterial tonometry; 

PSG = polysomnography; ULA = upper limits of agreement.
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cutoff 15 for the calculation of Cohen’s Kappa both with and 
without NBL. Finally, the sensitivity of the Local Analysis at AHI 
cutoff 30 calculated with NBL was significantly higher than PAT 
HSAT’s for the 4% rule. No other statistically significant differ-
ences were found.

The impact of near-boundary AHIs on performance calcula-
tions becomes apparent from the performance gain reported in 
all endpoint parameters when applying NBL. For 84% of all re-
ported endpoint parameter values, the value for the 4% Rule was 
higher than or equal to that of the 3% Rule. Table 4 displays the 
confusion matrices for the OSA severity of PAT HSAT compared 
to the Expert Analysis as well as for the Local Analysis compared 
to the Expert Analysis. The confusion matrices were generated 
for the 3% Rule and the 4% Rule as well as for OSA severity cat-
egorization with and without application of NBL, resulting in 
four different confusion matrices.

Secondary endpoint parameters

AHI

AHI. Figures 4 and 5 as well as Table 5 show the results of a 
Bland–Altman and correlation analysis for both scoring rules. 
A significantly higher ICC(A,1) was found for PAT HSAT compared 

to the Local PSG for the 4% Rule. Removing AHIs larger than 30 
significantly reduced the ICC(A,1) for both PAT HSAT and Local 
Analysis, which highlights the misleading influence of extreme 
values on this parameter. The width of the limits of agreement 
significantly reduced after removing AHIs larger than 30.

TST. Figure 6 shows the Bland–Altman and correlation analysis 
for the TST estimate. A significantly lower correlation was found 
for PAT HSAT as well as a wider distance between the limits of 
agreement.

Discussion

Endpoint analysis highlights and discussion

We found that, for both the 3% and the 4% Rule, most primary 
endpoint parameters showed a close agreement with PSG. The 
disparity between PAT HSAT and the Local Analysis’ perform-
ance was the smallest for the 4% Rule. This is unsurprising 
since the 4% Rule differs from the 3% Rule in that the latter does 
not consider arousals. The scoring of cortical arousals suffers 
from significant inter-scorer variability [16], trickling through to 
a larger inter-scorer variability for hypopnea scoring. The NPV 
at AHI cutoff 5 of 62% for PAT HSAT and 73% for the Local PSG 
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Figure 6. Bland–Altman (Top) and Scatter (Bottom) plots of TST determined by PAT HSAT (L) and Local Analysis (R) versus Expert Analysis. Top: the dotted line repre-

sents the mean Limits of Agreement. The dashed line represents the mean difference or bias. Bottom: the dotted line represents the points for which the y-axis values 

equal the x-axis values of the graph (identity line). Average TST = average of TST Expert and TST PAT HSAT (L) or TST Expert and TST Local (R); ICC(A,1) = Intraclass 

correlation coefficient of type (A,1); LLA = lower limit of agreement.
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Analysis (using 3% Rule) highlights a tendency of both to under-
score OSA. However, only one patient classified as negative by 
PAT HSAT or the Local Analysis was diagnosed with moderate 
OSA by the Expert Analysis, therefore supporting the conclu-
sion that it is unlikely to misdiagnose a patient with moderate 
OSA as having no OSA. These findings contrast with recent find-
ings of Zhang et  al. [17] which reported a strong overscoring 
of mild OSA by WatchPAT with a specificity at AHI cutoff 5 of 
only 29%.

The 4-way categorization accuracy of 70% (3% rule) and 
78% (4% rule) of PAT HSAT was significantly stronger than the 
4-way categorization accuracy of 61% reported by the most re-
cent large-cohort manufacturer-sponsored validation study 
of WatchPAT, or the 53% accuracy reported by the largest in-
dependent validation study [7]. A  significantly lower ICC(A,1) 
as well as significantly wider LoA interval was found for the 
total sleep time estimate of PAT HSAT compared to the Local 
PSG Analysis. This confirms the previously reported underper-
formance of PAT HSAT compared to PSG [8, 17] in estimating 
sleep time, which is unsurprising as PAT HSAT makes use of 
actigraphy which is merely an approximation of true sleep time 
as estimated by EEG. Therefore, PAT HSAT cannot be considered 
a valid substitute for PSG as it pertains to the assessment of 
sleep (stages).

Finally, the strong increase in most endpoint parameter 
values when applying NBL further illustrates the need to ad-
equately handle near-boundary AHIs. These findings warrant 
further discussion on whether patients with an AHI in NBZ 
would benefit from further diagnostic evaluation to increase 
confidence in therapy decision making.

Strengths and limitations of study

A first strength of this study is its adequately powered multicentric 
design, incorporating centers located in Europe as well as the 
United States. A second strength is its unique approach in double 
labeling of PSG so as to allow for the comparison of the agree-
ment of PAT HSAT with PSG to the inter-rater agreement of PSG. 
A third strength lies in its critical assessment of clinical endpoint 
parameters, including only endpoint parameters which serve the 
purpose of assessing whether the device can safely and effect-
ively help navigate the patient through the diagnostic pathway. 
A fourth strength of the study is its unique approach to dealing 
with spurious endpoint parameter variability caused by refer-
ence AHIs close to OSA severity boundaries.

A limitation of the study is the lack of assessment of the im-
pact of multi-night testing on the endpoint parameters, as PAT 
HSAT is typically administered for multiple nights. Inter-night 
variability has been shown to be a significant contributor to 
diagnostic errors [18].

Conclusion
This multicentric validation study of the PAT HSAT was designed 
to robustly assess whether the device can adequately navigate 
the patient through the diagnostic pathway, i.e. whether it can 
adequately determine the OSA severity.

The unique cornerstones of its design are the double-labeling 
of PSG so as to establish a performance target for HSAT, adequate 
treatment of AHIs close to the OSA severity category boundaries, 

and the avoidance of reliance on misleading clinical endpoint 
parameters such as Pearson and Spearman correlation coeffi-
cients [15]. Replication of these design cornerstones increases 
transparency of clinical endpoints and can enable more gener-
alization and standardization of future HSAT validation studies.

For both the 3% and the 4% Rules, most endpoint parameters 
showed a close agreement with PSG when compared with the 
inter-rater variability of the PSG. The 4-way categorization ac-
curacy of PAT HSAT was strong, in particular in comparison to 
reported performances of similar HSATs, but nevertheless lower 
than the inter-rater agreement of PSG (70% vs 77% for the 3% 
Rule and 78% vs 81% for the 4% Rule).
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