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Graphical Abstract Upper panel: Schematic representation of the interaction between the various arrhythmia and conduction abnormal-
ities with four electrical abnormalities and their consequences for remodelling and developing heart failure. Red text in boxes indicates the thera-
peutic approaches that treat the electrical abnormalities and thereby also heart failure. CRT, cardiac resynchronization therapy. Lower panel:
Flow chart of recommended checks for the eligibility of heart failure with reduced ejection fraction patients for the various electrical therapies
based on the evidence presented in the upper panel and guidelines.
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Abstract

Electrical disturbances, such as atrial fibrillation (AF), dyssynchrony, tachycardia, and premature ventricular contractions (PVCs), are present in
most patients with heart failure (HF). While these disturbances may be the consequence of HF, increasing evidence suggests that they may also
cause or aggravate HF. Animal studies show that longer-lasting left bundle branch block, tachycardia, AF, and PVCs lead to functional derange-
ments at the organ, cellular, and molecular level. Conversely, electrical treatment may reverse or mitigate HF. Clinical studies have shown the
superiority of atrial and pulmonary vein ablation for rhythm control and AV nodal ablation for rate control in AF patients when compared with
medical treatment. Ablation of PVCs can also improve left ventricular function. Cardiac resynchronization therapy (CRT) is an established adjunct
therapy currently undergoing several interesting innovations. The current guideline recommendations reflect the safety and efficacy of these ab-
lation therapies and CRT, but currently, these therapies are heavily underutilized. This review focuses on the electrical treatment of HF with
reduced ejection fraction (HFrEF). We believe that the team of specialists treating an HF patient should incorporate an electrophysiologist in
order to achieve a more widespread use of electrical therapies in the management of HFrEF and should also include individual conditions of
the patient, such as body size and gender in therapy fine-tuning.

Keywords heart failure • tachycardia • atrial fibrillation • premature ventricular contractions • ventricular dyssynchrony •
resynchronization therapy • ablation

Introduction
Heart failure (HF) has many causes, the most commonly considered
being volume overload, inflammation, ischaemia, valvular dysfunc-
tion, or genetic derangements. Treatment is largely based on restor-
ing coronary blood flow, treatment of valvular abnormalities, and use
of HF medications.

Electrical disorders are frequent in patients with HF. Approximately
one-third of HF patients has ventricular conduction abnormalities,1,2

one-third to half has atrial fibrillation (AF),3 and almost a half may suffer
from premature ventricular contractions (PVCs).4 These electrical dis-
turbances may contribute to, or are the primary cause of, the HF syn-
drome. This also implies that treatment of them could be either first
line or adjunct therapy for HF.

In this review, we consider four different kinds of electrical
cardiomyopathy:

• Tachymyopathy: reversible cardiac dysfunction solely due to an in-
crease in ventricular rates occurring during frequent atrial tachycar-
dia (AT) (more commonly) and ventricular tachycardia (VT).

• Irregulopathy: cardiac dysfunction caused by irregular heart
rhythm occurring in AF, frequent PVCs and premature atrial con-
tractions (PAC’s).

• Atrioventricular (AV) dissociation (lack or low contribution of at-
rial contraction to filling): clinically occurring in significantly pro-
longed PR interval, ventricular paced beats retrogradely
conducted to the atria and during VT, PVC, and AF.

• Cardiac dysfunction caused by non-synchronous ventricular
activation and contraction: clinically, this is most prominent
in left bundle branch block (LBBB), but also right bundle
branch block (RBBB), and intraventricular conduction delay
(IVCD), chronic right ventricular (RV) pacing, and during VT
and PVC.

Figure 1 depicts the putative mechanism to the depression of cardiac
pump function by LBBB, frequent PVC, AT, VT, and AF, thus resulting in
one of these cardiomyopathies. However, in a given patient, a different

combination of these mechanisms could be the causative condition of
HF. The clearest example of an electrical therapy that improves patient
outcomes is cardiac resynchronization therapy (CRT). CRT is an effect-
ive therapy for patients with HF with reduced ejection fraction (HFrEF)
and electrical dyssynchrony and results in considerable improvement of
quality of life, reversemyocardial remodelling, aswell as lowermorbidity
and mortality. Correction of the other electrical disturbances provides
similar although less well-proven benefits. Catheter ablation is a well-
established option for AF and other supraventricular tachycardias
(SVTs). Similarly, ablation of myocardial substrate (areas that give rise
to the origin of PVCs, VT, and SVTs) may contribute to the treatment
of HF.

This review paper aims to explain from a pathophysiological perspec-
tive how electrical disorders andHFrEF intertwine to better understand
the potential value of ‘electrical therapies’ for HFrEF. Selection of the
best therapy/ies for electrical abnormalities in HFrEF patients must oc-
cur in the context of other HF interventions and comorbidities
(Graphical Abstract). As recently suggested by the position paper jointly
developed by the Heart Failure Association of the European Society of
Cardiology (ESC), the growing HF treatment armamentarium requires
the setting of a multidisciplinary HF team at each centre and the early
referral/evaluation.9 Continued and better coordination of the complex
care of such patients in daily clinical practice is a challenge yet essential
to deliver effective and timely management. We hope to contribute to
better coordination between the various subspecialities within cardi-
ology by emphasizing the considerable potential for electrical therapies
in the treatment of HFrEF.

Pathobiology
The pathophysiology of cardiomyopathies associated with arrhyth-
mias or electrical disturbances frequently has overlapping intrinsic
cardiac triggers, primarily including irregular rhythm associated
with post-extrasystolic potentiation (PESP), abnormal ventricular
mechanics due to ventricular dyssynchrony, tachycardia, and AV un-
coupling (Figure 1A).4 Experimental models to understand the conse-
quences of these triggers have shown common cardiac remodelling
at the organ, tissue, and cellular level (especially oxidative and

2 F.W. Prinzen et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/advance-article/doi/10.1093/eurheartj/ehac088/6546052 by H
asselt U

niversity user on 31 M
arch 2022



50

60

70

80

90

100

0 2 4 6 8

LBBB, normal HR

50% PVC, 
mean HR 50% increased

A pacing 180 bpm

V pacing 180 bpm

LV
EF

 (r
el

at
iv

e
to

ba
se

lin
e)

 

Time (weeks) 

AF

6 m

A

B

Figure 1 Upper panel (A): Schematic representation of the interaction between the various arrhythmia and conduction abnormalities with the
four pathophysiological mechanisms / triggers and their consequences for remodelling and developing heart failure. Red text in boxes indicate the
therapeutic approaches that primarily treat the electrical abnormalities, but thereby also of failure. CRT, cardiac resynchronization therapy. Lower
panel (B): Relative reduction in left ventricular ejection fraction after five electrophysiological interventions in experimental studies in dogs: left bun-
dle branch block by radiofrequency ablation and maintained normal heart rate,5 atrial (A) and ventricular (V) pacing at 180 b.p.m. for 3 weeks,6 a
pacing protocol simulating premature ventricular contractions with an average premature ventricular contraction burden of �50%7 and chronic
atrial fibrillation for 6 months.8
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metabolic stress, eccentric hypertrophy, calcium mishandling)
(Table 1) that leads to contractile dysfunction and autonomic remod-
elling.10–15 Figure 1B shows data from several experimental studies in
dogs. Data from these studies indicate that ventricular dyssynchrony

(LBBB) without an essential change in heart rate causes a �20% rela-
tive decrease in left ventricular ejection fraction (LVEF), while also ra-
pid atrial and ventricular pacing and a 50% burden of PVCs cause 25–
33% decreases in LVEF.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Pathophysiologicalmechanisms of cardiomyopathies associatedwith arrhythmias or electrical disturbances

Tachy-cardiomyopathy PVC-mediated
cardiomyopathy

AF-mediated
cardiomyopathy

LBBB-mediated
cardiomyopathy

Triggers Rhythm Fast but regular Irregular Irregular Regular

Post-extrasystolic
potentiation

Absent Presenta Variable Absent

AV coupling Preservedb Dissociatedc,d Non-existent Preservede

LV dyssynchrony Only present in VT Intermittentc,f None Continuous

Myocardial blood flow Reducedf ?? Likely reduced reduced (septum)

Haemodynamic
compromise

Present, low EF (?) Likely present (?) Likely present Present, low EF

Intrinsic autonomic
nerve activity

(?) Unchanged Significantly increasedf g g

Cardiac intrinsic effects

Tissue Inflammation Presenta Absent g g

Fibrosis Increaseda Mildf g Variable

Oxidative, metabolic
stress

Present (?) Likely present (?) Likely present Present

Cellular Ventricular electrical
remodelling

Present Presentf g Present

Ca2+ transient Reducedf Reducedf g Reducedf

Action potential
duration

Increasedf Prolongedf

(heterogeneous)

g Heterogeneousf

β-adrenergic signalling Decreasedf g g Decreased

Organ Hypertrophy Eccentrica Eccentricf g Asymmetric, eccentric

Ejection fraction Reduceda Reduceda Reducedd Reduceda

Extrinsic (non-cardiac) effects

Neurohumoral +; BNP; Symp; RAAS +; BNP; Symp; RAAS +; BNP; Symp; RAAS +; BNP; Symp; RAAS

Recovery LV ejection fraction Normalizeda Normalizeda Normalizedd Normalizeda

Dimensions Partially dilateda Normalizeda g Normalizedd

Diastolic dysfunction Persistentd g g g

Electrical remodelling g g g Partial reversal

Hypertrophy Reactivea g g Partial reversal

Fibrosis Reactive/persistenta (?) Persistentf g g

AF, atrial fibrillation; AV, atrioventricular; BNP, B-type natriuretic peptide; EF, ejection fraction; LBBB, left bundle branch bock; LV, left ventricular; PVC, premature ventricular
contraction; Symp, sympathetic tone; RAAS, renin–angiotensin–aldosterone system; VT, ventricular tachycardia.
aPatient and animal data.
bUstained VT will frequently have AV dissociation.
cDuring PVCs only.
dPatient data.
eAV delay is frequently prolonged.
fAnimal data.
gUnknown.
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Irregular rhythm
Irregular rhythm is the result of PVCs, premature atrial contractions
(PACs), and AF.4,16–18 An important aspect of irregular rhythm is
PESP, a phenomenon that refers to an increase in contractility that
is associated with Ca2+ overload.16,19,20 The role of PESP as a trigger
for the development of HF is supported by a study in isolated myo-
cytes and intact myocardium showing that irregular cycles of excita-
tion and contraction induce an altered profile of gene and protein
expression including down-regulation of sarcoplasmic reticulum
ATPase 2a pump (SERCA) and an abnormal ratio of phosphorylated
to total phospholamban (PLB).21 Using a combination of echocardio-
graphic imaging and computer simulations, Lyon et al.22 showed that
during AF, left ventricular (LV) peak strain is larger with larger RR
interval in the preceding heartbeat. Importantly, this relationship is
more variable at fast than at slow heart rates, because of insufficient
reserve capacity of LV diastolic filling time. Therefore, the effect of
cardiac loading may vary depending on both acute beat-to-beat
changes in RR interval and mean preceding heart rate.23

Ventricular dyssynchrony
Ventricular dyssynchrony refers to an uncoordinated contraction
within and between the two ventricles and is present when ventricular
activation occurs outside the normal conduction system such as in
LBBB, VT, chronic RV pacing, pre-excitation syndrome, and PVCs.
Dyssynchrony causes disruption and progression of dyssynergic wall
motion, resulting in contractile dysfunction and HF, most extensively
studied in LBBB. Studies in animal models of dyssynchronous HF
have reported changes in Ca2+ dynamics (SERCA and PLB) and gap
junction remodelling, particularly in the late-activated, high-stress LV
free wall24–26 that could partly explain the deterioration of LV function
and propensity to arrhythmias.10

Tachycardia
Animal and clinical studies have shown that the mechanism of tachy-
myopathy is multifactorial, including subclinical ischaemia due to un-
derperfusion caused by short diastolic periods and reduced blood
pressure combined with increased demands, abnormalities in cellular
energetics, redox stress, and calcium overload.6,27 These stressors
lead to a cascade of mechanisms that ultimately trigger a wide range
of maladaptive reprogramming, leading to prolongation of the action
potential, abnormal excitation–contraction coupling, and depression
of contractile function.10–13 Tachycardia plays a role in HFrEF in pa-
tients with sustained AT or VT and AF without adequate rate con-
trol. Rapid rates may be accompanied by rate-dependent bundle
branch block (dyssynchrony) that further reduces pump efficiency
and worsens haemodynamics.

Atrioventricular dissociation
Theoptimal coupling between atria and ventricles implies the comple-
tion of atrial contraction and subsequent atrial filling of the ventricles
before the onset of systole. Atrioventricular dissociation can be com-
plete (random intervals between the atrial and ventricular contrac-
tion) or a constantly prolonged interval between the two (in the
case of prolonged PR interval on the ECG). Atrioventricular dissoci-
ation can result in increased atrial pressure,28 inadequate ventricular
filling, and/or diastolic mitral regurgitation,29 all factors that decrease

ventricular stroke volume and, therefore, may contribute to the de-
velopment of HF. Ventricularly paced beats with retrograde conduc-
tion to the atrium, a cause of pacemaker syndrome, may have similar
effects. Finally, a prolonged PR interval causes a long pause between
the end of atrial contraction and onset of ventricular contraction,
causing diastolic mitral regurgitation and suboptimal ventricular
filling.30,31

Understanding the role of other potential triggers of these cardio-
myopathies, including haemodynamic compromise, decreased myo-
cardial flow, and intrinsic autonomic nerve activity, is challenging due
to the overlap with the primary triggers described above.

Tachycardia-mediated cardiomyopathy
The time to develop and the severity of tachycardia-mediated car-
diomyopathy (T-CM) are dependent on the type, rate, and duration
of tachycardia.32 Although likely underestimated, the prevalence of
T-CM has been reported in close to 3% of all patients referred for
catheter ablation.33 Although less common, AT and permanent junc-
tional reciprocating tachycardia are also frequently associated with
T-CM with a prevalence as high as 59 and 23%, respectively.34,35

Nevertheless, AF and atrial flutter are some of the most frequent
causes of T-CM due to their high prevalence in the adult popula-
tion.36 Tachycardia-mediated cardiomyopathy typically presents
with palpitations, HF symptoms, and severe LV systolic dysfunction.
Tachycardia-mediated cardiomyopathy should be strongly consid-
ered in patients with poor LV systolic function and persistent or fre-
quent paroxysmal tachycardia without other obvious aetiology.
Importantly, T-CM diagnosis can only be confirmed if LV recovery
is documented within few weeks or months after treatment.

The main treatment of T-CM is the elimination of tachycardia with
either antiarrhythmics and/or catheter ablation. In the ESC guidelines,
catheter ablation has a IB indication to reverse LV dysfunction in AF
patients when T-CM is probable.37 However, standard HF medical
therapy should not be ignored to maximize LV recovery. While elim-
inating tachycardia will resolve LV systolic dysfunction and HF symp-
toms, persistent myocardial fibrosis will remain and in part
contribute to an 8–12% risk of sudden cardiac death (SCD) in patients
with VT despite resolution of T-CM.4,32,38 Surveillance of recurrent
tachycardia after treatment is key, since its recurrence can result in
a more rapid and severe clinical presentation.4,38 Therefore, catheter
ablation should be strongly considered in patients with arrhythmias
known to have a high success rate (e.g. atrial flutter, AT, AV recipro-
cating tachycardia).

Premature ventricular
contraction-mediated cardiomyopathy
Premature ventricular contractions are the most frequent ventricu-
lar arrhythmia and commonly associated with HF, ventricular ar-
rhythmias, and SCD.4,39,40 Frequent PVCs are recognized as a
reversible cause of LV systolic dysfunction referred to as
‘PVC-mediated cardiomyopathy’ (PVC-CM), where PVC suppres-
sion will improve and even normalize LV function. The prevalence
of PVC-CM is estimated between 10 and 29% in patients with fre-
quent PVCs (.5–10%).4,40,41While PVC burden is the most consist-
ent predictor of PVC-M, various factors, including genetics,
comorbidities, cardiac phenotype, or PVC features and length of
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exposure, play a role in the susceptibility or resilience to develop
PVC-CM.42,43 In addition, PVCswith a longerQRS duration and epicar-
dial location are more frequently associated with PVC-CM,4,41,44 sup-
porting the role of LV dyssynchrony in PVC-CM (Table 2 and Figure 1).

Premature ventricular contraction-mediated cardiomyopathy can
present with or without fatigue, HF symptoms, syncope, and
SCD.4,17,39,45 Frequently, patients are referred for bradycardia due
to bigeminy where heart rate is underestimated (i.e. pseudo-
bradycardia) due to the lack of pulse pressure generated by PVC.
The time to develop PVC-CM is unknown, but probably months
or years of exposure to frequent PVCs are needed.17,44

Premature ventricular contraction-mediated cardiomyopathy
diagnosis should be suspected if PVC burden is .5–10% and
other causes of HF are excluded, and confirmed only if PVC sup-
pression improves and even normalizes LV function. A major
diagnosis challenge is when PVCs cannot be successfully elimi-
nated. A frequent dilemma is to determine whether the PVCs
are a bystander or the cause of CM. Some PVCs and clinical fea-
tures (e.g. absence of scar) can assist to differentiate these two
scenarios (Table 2).4,17

Treatment
Successful treatment of PVC-CM requires at least an 80% reduction
in PVCs due to a significant day-to-day PVC variability.4,46While PVC
ablation or antiarrhythmic drugs offer overall a good long-term sup-
pression, standard HF guideline-directed medical therapy is essential
and should be optimized, but beta-blockers and antiarrhythmic drugs
are often unsuccessful in suppressing PVCs or not toler-
ated.4,17,41,44,47 Premature ventricular contraction ablation is, there-
fore, preferred due to higher PVC reduction rate and low
recurrence.47,48 Premature ventricular contraction ablation is a low-
risk procedure (1.5–2.8%) with estimated acute and long-term sup-
pression between 80–90% and 60–90%, respectively.4,41,44

However, PVC ablation can be challenging due to the inability to
reach PVC origin [e.g. intramural location, LV summit (most basal
part of the septum and LV wall)] or catheter instability. Specific tech-
nologies, such as cryoablation and contact force sensor catheters,
can assist in improving success and overcome some limitations.49

Moreover, intracardiac echocardiography frequently assist PVC abla-
tion within papillary muscle origin.50

Premature ventricular contraction ablation has been reported to
reverse remodelling with the improvement of LV and mitral valve
function, B-type natriuretic peptide levels, and renal function.4,41,47

Factors that predict the PVC-CM diagnosis also forsee response to
PVC ablation.4 Importantly, a scar mass ,9 g (cardiac magnetic res-
onance) predicts LV recovery.51 Besides improving LV function, PVC
ablation may also improve survival or long-term outcomes as sug-
gested by the Congestive heart failure: Survival trial of antiarrhythmic
therapy (CHF-STAT) study and the Grupo de Estudio de la
Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA)
trial.40,52 Future clinical studies are clearly needed to better under-
stand the clinical impact of PVC-CM and its treatment.

Atrial fibrillation
Atrial fibrillation and HF often coexist, and are accompanied by
worse adverse outcomes. Several options are available to treat AF
divided into rate and rhythm control. Both strategies have invasive
(ablation) and non-invasive (pharmacological) approaches.

Although rate control is a management strategy in AF,53 the op-
timal heart rate target in AF patients is unclear yet. Rate control is
the background treatment for all AF patients, including those re-
ceiving treatment with a rhythm control strategy. Randomized
trials did not show a difference in the composite endpoint of clinical
events, New York Heart Association class, or hospitalizations
between the strict (target heart rate ,80 b.p.m. at rest and
,110 b.p.m. during moderate exercise) and lenient (heart rate tar-
get ,110 b.p.m.) arm irrespective of activity level.54,55 Notably,
only a small portion of patients included in these studies had
HFrEF. Still, the ESC HF guidelines recommend ‘lenient rate con-
trol’ (meaning ,110 b.p.m. at rest) as the initial approach, regard-
less of HF status (with the exception of tachycardia-induced
cardiomyopathy).56

Pharmacological approaches for rhythm and rate control appear
equivalent strategies with respect to outcome.57–59 Available studies
showed a low success in maintenance of sinus rhythm, but the pres-
ence of sinus rhythm was associated with better LV function57,59,60

and survival.61 The slight increase in LVEF and beneficial

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Clinical and premature ventricular
contraction features to identify premature ventricular
contraction-mediated cardiomyopathy

CM resulting
in PVCs

PVCs causing CM

Patient
characteristics

Older with
known heart
disease

Healthy otherwise

Comorbidities CAD,
myocarditis,
RV dysplasiaa

No prior cardiac
hx

Echocardiogram Segmental
hypokinesis,
LVEF ,25%

Global hypokinesis,
LVEF 35+
10%b

Cardiac MRI (late
gadolinium
enhancement)

Significant scar Absence or
minimal scar
burden (≤9 g)

PVC frequency ,5000/24 h
(,5%)

≥10 000/24 h
(≥10%)

PVC pattern Multifocal Monomorphic

QRS morphology Non-specific RVOT/LVOT/
epicardial

Response to PVC
suppression

No change in LV
function

Improvement of
LV function

CAD, coronary artery disease; CM, cardiomyopathy; LVEF, left ventricular ejection
fraction; RV, right ventricular; RVOT, right ventricular outflow tract; LV, left
ventricular; LVOT, left ventricular outflow tract; MRI, magnetic resonance imaging.
aPVCs can cause a superimposed PVC-mediated cardiomyopathy even patients with
other comorbidities.
bWhile PVC-mediated cardiomyopathy does not typically present with severe left
ventricular systolic dysfunction (LVEF ,25%), LVEF alone should not exclude the
diagnosis of PVC-mediated cardiomyopathy. Reproduced with permission from
Huizar et al.17
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consequences of maintaining sinus rhythm may not translate into
long-term effect on mortality and morbidity due to the adverse ef-
fects associated with antiarrhythmics.
Electrophysiological approaches for rate and rhythm control

provide more specific and definitive solutions. The rhythm control
option of catheter ablation has been tested in several prospective
randomized controlled trials (RCTs).62–64 All these relatively small
studies consistently showed greater improvement of LV function,
and quality of life in the catheter ablation arm compared with med-
ical therapy. Moreover, in HF in patients with AF and LVEF ≤35%,
catheter ablation provided a significantly lower composite end-
point of mortality and hospitalization than pharmacological ther-
apy. Notably, the recent long-term results of the Catheter
Ablation Versus Medical Rate Control in Atrial Fibrillation and
Heart Failure-An MRI-Guided Multicenter Randomized
Controlled Trial (CAMERA-MRI) study showed an absolute in-
crease in LVEF with catheter ablation of 16.4+ 13.3% compared
with 8.6+ 7.6% in medical therapy (P= 0.001).65 At 4.0+ 0.9
years of follow-up in the catheter ablation group, the absence of
ventricular late gadolinium enhancement was associated with
a greater improvement in absolute LVEF (19+ 13 vs. 10+ 11%;
P= 0.04) and LVEF normalization in 19 patients (58%) vs. 4 pa-
tients (18%; P= 0.008) compared with the late gadolinium
enhancement-positive group. Therefore, recent clinical practice
guidelines recommend catheter ablation as an alternative to
pharmacological therapy at Level of evidence I for patients with
paroxysmal or persistent AF and HF.37

When medication for rate control fails, ablation of the AV node
and pacemaker implantation can be considered. The procedure is
relatively simple and has a low complication rate and low long-term
mortality risk, especially when the pacemaker is implanted a few
weeks before AV node ablation and the initial pacing rate after abla-
tion is set at.70 b.p.m. While this will not restore sinus rhythm and
AV coupling, the procedure does not worsen LV function and may
even improve LVEF in selected patients.66 Most studies have included
older patients with limited life expectancy. For younger patients, ab-
lation of the AV node should only be considered if there is urgent
need for rate control and all other pharmacological and non-
pharmacological treatment options have been carefully considered.
The choice of pacing therapy (RV or biventricular pacing) depends
on patient characteristics. The results of the APAF-CRT study, which
was performed in severely symptomatic patients with permanent AF
and within 1 year of HF hospitalization irrespective of LVEF, showed
that AV node ablation combined with CRT is preferred.67,68 In this
study, patients with narrow QRS complex had a 62% lower risk
for the combined endpoint of mortality, HF hospitalization or wor-
sening of HF, and a 72% lower risk of all-cause mortality and HF
hospitalization in the ablate and pace group when compared with
the pharmacological rate control group. Forty per cent of the study
patients had LVEF ≤35%. The combination of biventricular pacing
and AV node ablation also shows superior outcomes in patients
with a conventional CRT indication who obtain the suboptimal le-
vel of biventricular stimulation due to AF with intrinsic conduc-
tion.69 More physiological pacing, such as His bundle pacing
(HBP) and left bundle branch pacing (LBBP) (see below), may
evolve as an attractive alternative pacing mode, as currently tested
in ongoing clinical trials.

Dyssynchrony and resynchronization
therapy
Disease prevalence
In a Swedish registry, LBBB and IVCD were found in�25 and�15%
of patients with HFrEF, respectively.2 The presence of both LBBB
and IVCD increased the risk of all-cause mortality by�30%. In trans-
cutaneous aortic valve implantation procedure, new-onset LBBB
may even increase the risk of mortality by �50%.70 The pathophysi-
ology paragraph describes the serious consequences of ventricular
dyssynchrony. Therefore, ventricular dyssynchrony is an important
therapeutic target in patients with HFrEF. It has been estimated
that at least 400 patients per million of the population would be eli-
gible for CRT, but in practice, only Germany and Italy at least ap-
proach such implantation numbers in Europe.71

Cardiac resynchronization therapy
According to current guidelines,71 good candidates for CRT are
those with HFrEF and an abnormal QRS complex (LBBBmorphology
and/or QRS duration .130 ms). Likewise, because activation se-
quence in RV pacing mimicks that of LBBB, CRT is indicated for pa-
tients who are RV paced for a significant portion and have LVEF
,35% and patients with LVEF ,40% with high-degree AV block
who have an indication for ventricular pacing.71

As reviewed in the guideline documents, randomized trials have
clearly and consistently shown the benefit of CRT with regard to
HF symptoms, HF hospitalization, and survival.71 Many studies report
that approximately one-third of patients receiving CRT are non-
responders in terms of LV reverse remodelling, clinical improvement,
or both. Lately, however, the response definitions have been chal-
lenged since recent evidence indicates that patients who are stable
during CRT also benefit from this therapy.72 Therefore, perception
of lack of response such as in patients with ischaemic heart disease
who more commonly present with IVCD should not preclude pa-
tients from this potentially life-saving treatment.

Patient selection
The most important factor that determines the CRT effect is the
presence of an ‘electrical substrate’ in the patient, i.e. the amount
of viable tissue that can be resynchronized. The largest benefit is
commonly observed in patients with a ‘true’ LBBB and no evidence
of ischaemic heart disease, and commonly women (see below).
However, currently used ECG criteria (QRS duration and LBBB)
have weaknesses. QRS duration poorly expresses the amount of re-
synchronizable tissue and its critical value is body size-dependent.73

The definition of LBBB based on ECG criteria is complicated by its
subjective assessment and multiple ECG criteria of LBBB that lead
to widely different percentages of LBBB patients in cohorts of
CRT patients.74,75 Recent studies indicate that the electrical sub-
strate may be better identified when using the area under the QRS
complex (Figure 2).76,80,81 These promising results may be explained
by the fact that QRS area reflects late LV activation, independent of
QRS morphology.82 QRS area is also inversely related to the pres-
ence of ischaemic heart disease and scar size,83,84 factors that reduce
CRT response. A randomized study is required to provide final proof
of this approach, while standard addition of the calculation of QRS
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area to ECG equipment would greatly enhance the use of this
parameter.

A previously proposed approach for improving patient selection
was the use of markers of mechanical dyssynchrony in addition to
ECG criteria, in particular using speckle tracking echocardiography.
After initial promising results, large randomized trials have not
been able to show a consistent benefit when using time-to-peak
shortening as a measure of dyssynchrony.85,86 Simpler markers,
such as apical rocking and septal flash, are improving the prediction
of CRT response in single-centre evaluation,87 but suffer from rela-
tively low intercentre agreement.88 Interesting new developments
are the use of deformation patterns in addition to electrical dyssyn-
chrony criteria89 and myocardial work,88 but these need to be con-
firmed in randomized studies.

Atrial fibrillation patients do not derive the same benefit from
CRT, which may be due to several factors such as insufficient amount
of biventricular stimulation (as discussed above), fusion or pseudofu-
sion beats without proper biventricular stimulation, and lack of atrial
contribution to ventricular filling.

Right ventricular pacing even in a percentage as low as 20% may
induce RV dyssynchrony and by time HF.71 Therefore, patients
with LVEF≤40% in need of RV pacing such as those with high-degree
AV block should be given CRT pacing (Recommendation IA in pacing
guidelines). This recommendation includes patients in AF.71

Therapy delivery
Apart from delivery of at least 95% biventricular stimulation, a se-
cond factor determining the outcome of CRT is the position of

3

5

6

1

2

7
4

1+2 conven�onal epicardial CRT
1+3 endocardial CRT
1+4 wireless endocardial CRT
5 His bundle  pacing 
6 LBB pacing
7  LV septal pacing

CRT: pa�ent selec�on CRT: pacing sites

QRS area

A

B

Figure 2 Upper panels: Electrocardiographic selection criteria for cardiac resynchronization therapy and their relation to outcome (combined
endpoint of survival free from left ventricular assist device implant, heart transplant, or death) in a study on�1500 patients. (A) Conventional criteria
(left bundle branch block and QRS duration.150 ms), (B) area under the QRS complex (QRSarea). The presence of left bundle branch block is a
determinant of cardiac resynchronization therapy outcome, in particular if QRS duration is.150 ms, but QRSarea.109 µV s is a stronger deter-
minant of cardiac resynchronization therapy outcome than left bundle branch block.76 Lower panels: Schematic overview of the current options for
cardiac resynchronization therapy. Positions 1 and 2 indicate the conventional right ventricular and left ventricular pacing locations. Endocardial
cardiac resynchronization therapy can be achieved by introducing a conventional pacing lead through the foramen ovale and the mitral valve
into the left ventricle (3) or using a wireless pacing electrode (4) that is stimulated using an ultrasound transducer.77 His bundle (5), left bundle branch
(6), and deep left ventricular septal pacing (7) is performed using a 4 Fr lead introduced transvenously and screwed in the septum. Small studies also
investigated the combination of His bundle pacing (HOT-CRT)78 or left bundle branch pacing with left ventricular pacing (LOT-CRT).79
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the LV lead. The optimal LV position appears to differ between pa-
tients, therefore requiring a personalized approach. There is general
agreement that the best (epicardial) LV lead position is the viable re-
gion with the latest intrinsic activation. However, two studies at-
tempting to validate this tailored approach were small and results
were not clearly better than the default use of the (postero) lateral
vein, because the choice of veins to implant the lead is limited (usually
two veins, not all of them being suitable for most leads).90 A larger
study, comparing strategies of LV lead positioning using electrical de-
termination of the latest activated region with that of mechanically
latest activated region outside a scar, found no significant difference
between these strategies.91 Multipoint pacing (MPP) has been stud-
ied in an RCT setting, but its use was not superior to conventional
CRT for reverse remodelling, despite earlier promising findings in
smaller studies. However, because most LV leads implanted are
quadripolar, reprogramming the device to MPP may be an option
in case of poor response. The SMART-MSP study showed that of
the patients that did not respond to CRT after 6 months, half could
be converted to responders by activating MPP. These patients had a
significantly lower risk of HF decompensation at the subsequent
6-month follow-up.92

Several approaches have been employed to deliver LV pacing at
the endocardium in order to create more physiological activation
in CRT. However, implantation of a lead, using a trans-atrial septal
approach, resulted in transient ischaemic attacks and non-disabling
strokes in 6.8 and 3.8% of cases.93 The conceptually novel approach
of implanting encapsuled piezo-electric (receiver) crystals to the LV
endocardium that is activated using ultrasound seems more promis-
ing in the prevention of coagulation problems. TheWiSE-CRT94 and
SELECT-LV studies77 showed the feasibility and efficacy of this ap-
proach, although peri-procedural/device-related events occurred in
�8% of patients, and additional 10% events in the post-procedural
phase. Currently, this novel technology is tested in a large prospect-
ive study.95

Recently evolving and physiologically superior approaches to re-
synchronization are endocardial CRT,96 HBP,97 LBBP,97 and deep
LV septal pacing (LVSP)98,99 (Figure 2).
The excellent electrocardiographic and functional benefit of re-

synchronization using a single ventricular lead (HBP,100,101 LBBP,102

and LVSP)99 is explained by the increasing evidence that in about
two-thirds of CRT candidates, the ‘LBBB’ is actually located very
proximal in the left bundle branch or even His bundle103 in combin-
ation with a more physiological sequence of activation (septum. LV
free wall and endocardium. epicardium).104 These single-lead re-
synchronization approaches may expand the acceptance and applica-
tion of CRT, using a simple dual-chamber pacemaker. Of these three
approaches, HBP is practically more difficult and long-term reliability
has come into question.105 In that regard, LBBP and LVSP appear
more promising, because of lower dislodgement rate and lower
and more stable lead performance, but long-term data are even
less than for HBP.

Device optimization
Device optimization implies programming of the interval between at-
rial and ventricular stimulation (AV delay) and, for biventricular pa-
cing, between RV and LV stimulation (VV delay) and multi-site LV
stimulation (LV1–LV2) in quadripolar leads. Conventionally, such

optimization is performed a single time using echocardiography (if
any). However, studies showed limited to no benefit of such one-time
optimization compared with using the default setting.106 More prom-
ising results have been obtained in studies where device-based algo-
rithms were used that perform optimization in an automated and
ambulatory fashion. Adaptive CRT adjusts AV delay and withholds
RV pacing to create a fusion of LV stimulation with intrinsic conduc-
tion. This approachwas shown to increase device longevity and to re-
duce the risk of developing AF.107 Also the SyncAV algorithm
dynamically adjusts AV delays to the intrinsic conduction, but also
has the option of a programmable offset, aiming at creating a triple
wavefront of activation. This algorithm improved electrical resyn-
chronization,108 but until now reports on clinical benefits have
been published. The SONR algorithm employs an accelerometer in-
tegrated into the RV or RA pacing lead. Using the amplitude of the
SonR1 signal (equivalent to the first heart sound), the SONR algo-
rithm automatically determines the optimal combination of AV and
VV delay in an ambulatory fashion. The RESPOND-CRT trial rando-
mized almost a thousand patients to SONR or echocardiography op-
timization.While SONRmarginally increased CRT response (NYHA
class) by 5% points (P= 0.13), and lowered combined risk of death
and hospitalization (P= 0.12), hospitalization alone had a 35% risk re-
duction (P= 0.01).109

Other electrical therapies
Cardiac contractility modulation (CCM) consists of the delivery of
non-excitatory electrical signals in the absolute ventricular refractory
period to the RV septum.110 The FIX trials were performed in pa-
tients with New York Heart Association (NYHA) Class III–IV HF,
with an LVEF ≥25 to ≤45% and QRS duration ,130 ms. In these
studies, CCM was associated with a small improvement in exercise
tolerance and quality of life.111

The poor cardiac function creates imbalances in the autonomic
nervous system. During recent years, several approaches for modu-
lations of the autonomic nervous system have been investigated in
patients not eligible for CRT, in particular vagal nerve stimulation, re-
nal (sympathetic) nerve ablation, and baroreceptor stimulation.
Despite promising results in preclinical models, clinical trials showed
only limited or no benefits. A randomized clinical trial failed to show
significant reverse remodelling by vagal nerve stimulation over a
6-month follow-up.112 There is no randomized clinical trial showing
a significant benefit of renal denervation in HF patients. Baroreceptor
stimulation, performed with a novel electrical stimulation device with
electrodes in the vicinity of the carotid baroreceptors, was shown to
significantly improve the quality of life and exercise capacity and to
reduce N-terminal pro-B-type natriuretic peptide in HF patients,113

but studies indicating significant improvements in hard clinical end-
points are yet lacking.

Recommendation and implementation of
electrical therapies for heart failure
Current ESC/European Heart Rhythm Association (EHRA) guidelines
recommend catheter ablation of AF to reverse LV dysfunction, inde-
pendent of their symptom status (Class I) and in selected AF patients
withHF to improve survival and reduceHF hospitalization (Class IIa).37

Catheter ablation for SVTs is recommended (Class IB) in patients with
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reduced LV function and frequent or persistent elevated heart rate
above 100 b.p.m. consistent with T-CM.114

Catheter ablation for PVCs is recommended in symptomatic or
asymptomatic patients with frequent monomorphic PVCs and sus-
pected PVC-CM (Class I), as well as non-responders of CRT due
to suboptimal biventricular pacing (Class IIa).115

Similarly, CRT is recommended (on the top of optimal medical
therapy) in symptomatic HFrEF patients in sinus rhythm and QRS
duration ≥130 ms (Class I–II depending on QRS width and morph-
ology).71 Other groups that may be considered for CRT include
NYHA Class III–IV HFrEF patients in AF and a QRS duration
≥130 ms, provided a strategy to ensure biventricular capture is in
place, and occasionally as an upgrade to a conventional pacemaker
or an implantable cardioverter defibrillator in patients who develop
worsening systolic function with .20% RV pacing.71

Based on the abovementioned evidence and guideline recommen-
dation, we propose the decision schedule presented in Figure 3. Each
HFrEF patient should be checked for treatment of dyssynchrony,
persistent tachycardia, AF, and PVCs.

However, clinical practice is far from optimal.
In the case of CRT, the optimal combination of medical therapy

and CRT is performed in a minority of patients who qualify for
CRT. European data suggest that only one in three eligible patients
actually receives a CRT device.116 Moreover, only 20–30% of pa-
tients implanted with CRT are on maximal guideline recommended
doses before CRT.116 But a delay in CRT implementation may be

suboptimal since HF medication is less effective in achieving reverse
remodelling in patients with LBBB, when compared with HFrEF pa-
tients with narrow QRS.117

A recent joint position statement from several cardiac societies of
the ESC described in-depth theoretical and practical strategies to
achieve more comprehensive CRT referral and post-procedural
care by focusing on four actionable domains: (i) overcoming CRT
under-utilization, (ii) better understanding of pre-implant character-
istics, (iii) abandoning the term ‘non-response’ and replacing this by
the concept of disease modification, and (iv) implementing a dedi-
cated post-implant CRT care pathway.118

Similarly, in old frail patients with HFrEF and AF, the utilization of
medical therapy to preserve sinus rhythm has shown to be detri-
mental compared with AF ablation or AV node ablation plus
CRT.118 Therefore, it seems wise to more frequently consider de-
vice therapy and/or ablation as adjunctive therapies with a synergis-
tic effect rather than consecutive therapies to be used only if
medical therapy fails.

Unfortunately, the diagnosis of T-CM and PVC-CM is frequently
missed due to the lack of using long-term ambulatory monitors to
identify subclinical and intermittent arrhythmias. Appropriate treat-
ment of T-CM and PVC-CM does not only improve LV systolic func-
tion but likely to impact morbidity and mortality.32,40 Therefore,
implementing care pathways, comparable to that for CRT, for the
aforementioned ablation treatments seem advisable. Finally, the im-
plementation of electrical therapies can be further improved by

Figure 3 Schematic representation of judgement that is recommended for optimal treatment of heart failure patients, based on the evidence
presented in this article.

10 F.W. Prinzen et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/advance-article/doi/10.1093/eurheartj/ehac088/6546052 by H
asselt U

niversity user on 31 M
arch 2022



better integration of cardiological and non-specialist care, leading to
better post-implant management.119,120

Gender differences in electrical heart
failure and its treatment
Personalized electrical management of HF should include gender
consideration. Currently, device therapy and ablation are especially
underused in women with HF. Striking is that while women are
less likely to receive CRT, they derive more benefit from this therapy
than men.1 This difference can partly be explained by differences in
risk factors (more non-ischaemic cardiomyopathy, lower scar bur-
den, less LV dilatation, more LBBB). A meta-analysis of three rando-
mized studies by the Food and Drug Administration showed CRT
benefit in women with QRS duration .130 ms while the benefit
for men only started at QRS duration .150 ms.121 This difference
may be explained by the fact that women are generally smaller, in-
cluding their heart and body size.122,123

The lower referral forCRT inwomenmaybe related to sex/gender
bias in referral patterns and women more often having HF with pre-
served ejection fraction than HFrEF.1 In addition, the shorter QRS
duration in women make them (unjustified) fall into the weaker re-
commendations of the CRT guidelines.71,73 Alternatively, there is a
fear that women derive more complications from CRT therapy
thanmen. In theCRT Survey II comprising 11.088 newCRT implanta-
tions, women did have had a higher procedural complication rate, in
particular related to vascular access as evidenced by pneumothorax
(1.4%), coronary sinus dissection (2.1%), and pericardial tamponade
(0.3%).1 The probable cause is the smaller dimensions of vessels in
women compared with men. Nonetheless, women should not be
withheld CRT, and an individual approach in assessing CRT eligibility
based on body size is probably helpful in increasing access to CRT
across gender and ethnicity.
Female patients are also under-referred for AF ablation124 and re-

ceive significantly less ICD therapy than men.124 While only a single
study suggests that PVC-CM is more prevalent in males,125 it is not
clear that there are gender differences in the treatment of PVC-CM
or T-CM.

Conclusions
A review of the literature provides evidence that ‘electrical’ diseases
like AF, AT, PVCs, LBBB, and AV uncoupling may seriously impact
cardiac pump function and may cause or contribute to worsening
HF.
Likewise, electrical therapies, like ablation and resynchronization

pacing, have been shown and are guideline recommended to contrib-
ute to the treatment of HF patients with any of these electrical
diseases.
Despite all this, there is a considerable underutilitzation of these

therapies in the treatment of HF patients. Therefore, we recom-
mend that an electrocardiologist becomes part of the treatment
team of the HF patient. Besides the promotion of the electrical ther-
apies, such a treatment should also pay attention to personal aspects
of the patient such as sex and body size.
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