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We find the relation between reliability and entropy production in a realistic model of elec-
tronic memory (low-power MOS-based SRAM) where logical values are encoded as metastable non-
equilibrium states. We employ large deviations techniques to obtain an analytical expression for the
bistable quasipotential describing the non-equilibrium steady state and use it to derive an explicit
expression bounding the error rate of the memory. Our results go beyond the dominant contribution
given by classical instanton theory and provide accurate estimates of the error rate as confirmed by
comparison with stochastic simulations.

PACS numbers:

I. INTRODUCTION

A common strategy to reduce the energy consumption
of electronic computing devices is to reduce the voltage
at which they are powered. However, this strategy is lim-
ited by the fact that as the operation voltage is reduced,
different sources of electrical noise start to play an in-
creasingly important role [1–4]. The most fundamental
and unavoidable one is given by the thermal fluctuations
intrinsic to any device. It originates from the interaction
with degrees of freedom that are not explicitly described,
but that can be normally assumed to be at thermal equi-
librium. A rigorous description of intrinsic thermal noise
in complex and non-linear electronic circuits is thus a fun-
damental problem in modern engineering, of great impor-
tance for the search of new efficient computing schemes
[3–7]. However, it is also a hard problem that is usually
given approximate treatments involving different kinds
of approximations that are difficult to control, and that
in general compromise thermodynamic consistency [8, 9].
This issue was recently addressed by the development of
a general theoretical framework to construct thermody-
namically consistent stochastic models of non-linear elec-
tronic circuits [9].

In this work we make use of that framework to ana-
lyze the tradeoff between reliability and dissipation (i.e.
entropy production) of low-power static random access
memory (SRAM) cells. Due to their speed and low en-
ergy consumption, SRAM cells are employed as internal
memory in virtually all modern processors. The occur-
rence of errors induced by thermal noise in low-power im-
plementations has been mainly studied using numerical
methods based on stochastic simulations [4, 10]. The rea-
son is that in low-power regimes current fluctuations are
Poissonian and cannot be faithfully described as Gaus-
sian noise [11], which considerably complicates analytical
treatments. However, since one is typically interested in
determining the rate of errors in regimes where errors are
rare, the amount of computational time demanded by the
stochastic simulations can be extremely large [4]. In this
contribution we report two main results. First, we obtain

an analytical description of the steady state fluctuations
of the memory, fully capturing the non-equilibrium tran-
sition from a monostable phase into the bistable phase
that allows the representation of a bit. Secondly, we show
how to employ the previous result to analytically esti-
mate the error rate of the memory. By comparing with
exact stochastic simulations, we show that our analyti-
cal estimation correctly describes the scaling of the error
rate with the voltage that powers the memory. Then,
we show that the error rate is exponentially suppressed
as the square of the dissipation (for large dissipation).
To get there, we make use of advanced methods from
stochastic thermodynamics [9], large deviations theory
[12–16], and first-passage time statistics [17–19].

II. BASIC MODEL

We consider the usual model of a SRAM memory
cell core: two inverters, or NOT gates, connected in a
loop (see Figure 1-(a)). In particular, we consider the
implementation based on complementary metal-oxide-
semiconductor (MOS) transistors. In this case, each in-
verter is itself composed of an nMOS transistor and a
pMOS transistor. The circuit is powered by applying a
voltage bias ∆V = Vdd − Vss. The deterministic and
linear stability analysis of the circuit (see Appendix A)
shows that for low values of ∆V the circuit has a unique
fixed point, but when ∆V is above a critical value there is
a transition into bistability, which is employed to encode
a single bit of information. The transistors are modelled
as externally controlled conduction channels with asso-
ciated capacitances (see Figure 1-(b)). The charge con-
duction through each transistor channel is modelled as a
bidirectional Poisson process. Thus, to each (n/p)MOS

transistor we associate two Poisson rates λ
n/p
± (VGS, VDS),

where the subindices ± correspond to the forward and
backward conduction directions, and VGS and VDS are
the gate-source and drain-source voltage drops, respec-
tively. For fixed voltages Vdd and Vss the circuit has
two independent degrees of freedom: the voltages v1 and
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FIG. 1: (a) A bistable logical circuit constructed with two
NOT gates, representing a bit, and its CMOS implementa-
tion, where each NOT gate is constructed with one pMOS
(top) and one nMOS (bottom) transistors. (b) Each transis-
tor (in this example an nMOS one) is modelled as a con-
duction channel between drain (D) and source (S) termi-
nals, with associated rates λn

±. The gate-body (G-B) inter-
face is represented as a capacitor Cg, and another capacitor
Co takes into account the output capacitance. Other para-
sitic capacitances could also be taken into account, for ex-
ample between drain and gate. With this model and taking
Vss = −Vdd, the total electrostatic energy of the full circuit is
Φ(v1, v2) = (C/2)(v21 + v22) + CV 2

dd, with C = 2(Co + Cg).

v2 at the outputs of each inverter. These are discrete
stochastic quantities, that in principle can only take the
values mve, where m is any integer and ve = qe/C (qe is
the positive electron charge and C a value of capacitance
characterizing the device, see Figure 1-(b)).

At any given time the state of the system is described
by a probability distribution P (v1, v2, t) over the state
space. Its evolution is given by the following master equa-
tion

dtP (v1, v2, t) = PA|v1−ve,v2 + PB|v1+ve,v2

+ PA∗|v1,v2−ve + PB∗|v1,v2+ve

− P (A+B +A∗ +B∗)|v1,v2 ,
(1)

where we are using the compact notation PA|v1,v2 =
P (v1, v2, t)A(v1, v2), and A∗(v1, v2) = A(v2, v1). The
transition rates A(v1, v2) and B(v1, v2) are combinations
of the Poisson rates assigned to the transistors:

A(v1, v2) = λp+(v1, v2) + λn−(v1, v2)

B(v1, v2) = λp−(v1, v2) + λn+(v1, v2).
(2)

In order to guarantee thermodynamic consistency, the

Poisson rates λ
n/p
± (v1, v2) must satisfy the so called local

detailed balance (LDB) conditions. As an example, for
the pMOS transistor in the first inverter, this condition
reads:

λp+(v1, v2)

λp−(v1 + ve, v2)
= e−δQ/(kbT ), (3)

where δQ = Φ(v1 + ve, v2) − Φ(v1, v2) − qeVdd,
Φ(v1, v2) is the electrostatic energy of the system, and
we have considered the environment of the transistor to
be in equilibrium at temperature T . For Vss = −Vdd,
as we will consider in the following, the electrostatic en-
ergy is Φ(v1, v2) = (C/2)(v2

1 + v2
2) + CV 2

dd. Thus the
LDB condition of Eq. (1) relates the rates of the tran-
sitions v1 � v1 + ve to the difference in internal energy
between those states, and the work qeVdd realized by the
voltage sources during the forward transition. Then, δQ
is the total energy change associated to that transition,
and since by energy conservation it must be provided by
the environment of the device, it is the heat interchanged
with it. A condition analogous to Eq. (3) is imposed to
all the transistors present in the circuit. A general pro-
cedure to construct thermodynamically consistent rates
based on the I-V curve characterization of a given de-
vices was recently identified in [9]. For the case of MOS
transistors in subthreshold operation, one obtains:

λp+(v1, v2) = (I0/qe) e
(Vdd−v2−Vth)/(nVT )

λp−(v1, v2) = λp+(v1, v2) e−(Vdd−v1)/VT e−(ve/2)/VT ,
(4)

and λn±(v1, v2) = λp±(−v1,−v2). In the previous equation
VT = kbT/qe is the thermal voltage and I0, Vth, and n
are parameters characterizing the transistor (respectively
known as specific current, threshold voltage, and slope
factor). An incorrect procedure to construct transition
rates, which is however used in some numerical simu-
lations [4, 10], is to employ the rates directly obtained
from the I-V curve characterization, without enforcing
the LDB conditions. In that way one finds rates that are
obtained from the ones of Eq. (4) by removing the fac-

tor e−(ve/2)/VT appearing in λ
p/n
− . Although this factor

is in many situations very close to 1, it can become rele-
vant for small devices or at low temperatures, and it is in
fact responsible for the charging effects in single-electron
devices [20–22]. Also, neglecting that factor leads to sys-
tematic errors in the determination of the steady state.
For example, in modern CMOS fabrication processes ca-
pacitance values as low as C ' 50 aF can be attained
[23], which correspond to elementary voltages as high as
ve ' 3 mV. At room temperature we have VT ' 26 mV
and therefore ve/VT ' 0.1 and e−(ve/2)/VT ' 0.95.

For mathematical simplicity, the parameters I0, Vth

and n are considered to be the same for all the four tran-
sistors involved in the circuit. That is, we are not taking
into account any variability associated with the fabrica-
tion process [24]. It should be possible to extend our
results to systems with asymmetric parameters.
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III. STEADY STATE DISTRIBUTION AND
LARGE DEVIATIONS PRINCIPLE

To find the steady state of the memory one option is
to construct the generator of the master equation in Eq.
(1) and compute its eigenvector of zero eigenvalue (see
Figure 1-(a)). Analytical progress is possible by con-
sidering a macroscopic limit and employing the princi-
ple of large deviations. This limit consists in assuming
that the elementary voltage ve is negligible compared to
all other voltage scales, which in this case are the ther-
mal voltage VT and the powering voltage Vdd (thus, the
limit ve → 0 used in the following must be interpreted
as ve/VT → 0 and ve/Vdd → 0 for fixed VT and Vdd).
Physically, this corresponds to large devices, for which
the typical capacitance C is large and thus ve is small.
Also, from Eq. (4) we have that the Poisson rates are
proportional to (I0/C)v−1

e . As explained in Appendix B,
the specific current I0 can also be considered to be pro-
portional to the size of the device, and therefore we see
that the transition rates scale as v−1

e . Under these con-
ditions, as ve → 0, the deterministic equations of motion
are recovered from the master equation in Eq. (1) (see
Appendixes A and B), and one also expects the distri-
bution Pss(v1, v2) to become strongly peaked around the
deterministic stationary values [19, 25]. In this context,
the LD principle states that departures from the deter-
ministic values are suppressed exponentially in v−1

e . This
is expressed mathematically as the existence of the limit
f(v1, v2) = limve→0 −ve log(Pss(v1, v2)), or equivalently
[14]:

Pss(v1, v2) � e−(f(v1,v2)+o(ve))/ve . (5)

Therefore, as ve → 0, the values of v1 and v2 will be per-
fectly localized at a global minimum of the rate function
f(v1, v2). Indeed, the minima of f(v1, v2) correspond to
the deterministic fixed points (see Appendixes A and B).
We will refer to the function f(v1, v2) as a quasipoten-
tial describing the steady state distribution. This is in
analogy to an equilibrium situation, where the steady
state must be the equilibrium Boltzmann distribution
Peq(v1, v2) ∝ exp(−Φ(v1, v2)/kbT ) and thus, by Eq. (5),
f(v1, v2) should match the true potential energy Φ(v1, v2)
scaled by the thermal voltage VT . Also, the interpreta-
tion of f(v1, v2) as a potential has a deeper justification
on the fact that it always is a Lyapunov function for the
deterministic dynamics [25], as the true potential energy
is for equilibrium settings.

Plugging Eq. (5) into Eq. (1), imposing dtPss = 0,
and only keeping the lower order terms in ve, we obtain
the following differential equation for f(v1, v2):

0 =
(
e∂v1f − 1

)
a(v1, v2) +

(
e−∂v1f − 1

)
b(v1, v2)

+
(
e∂v2f − 1

)
a(v2, v1) +

(
e−∂v2f − 1

)
b(v2, v1),

(6)

where a(v1, v2) = limve→0 veA(v1, v2), and the same for
b(v1, v2). The same equation can be obtained by more

general path integral methods, in terms of a Hamiltonian
defining an action in the space of all possible stochastic
trajectories [15, 25–27]. This equation cannot be solved
exactly. However, an approximate solution can be found
by exploiting the fact that the variables x = (v1 − v2)/2
and y = (v1 + v2)/2 are, except for some trivial correla-
tions discussed below, approximately independent. Thus,
as explained in Appendix B, from Eq. (6) the rate func-
tions g(x) and h(y) corresponding to the partial dis-
tributions P (x) =

∑
y Pss(y + x, y − x) � exp(−g(x)/ve)

and Q(y) =
∑
x Pss(y + x, y − x) � exp(−h(y)/ve) can

be found to be

dxg(x) = 2 log

(
a(−x, 0) + b(x, 0)

a(x, 0) + b(−x, 0)

)
,

dyh(y) = 2 log

(
b(xmin, y) + b(−xmin, y)

a(xmin, y) + a(−xmin, y)

)
,

(7)

where the change of variables in the functions a and b
is understood, and xmin in the expression for dyh is the
minimum of g(x). The given expression for dxg(x) is
actually exact, since it only relies on the fact that the
most probable value of y for any x is always y = 0 in
the limit ve → 0 (as can be seen from the symmetry of
the exact steady state, see Figure 1-(a)), and does not
require x and y to be considered independent variables.

The variables x and y will be always correlated be-
cause, since v1/ve and v2/ve are integer random vari-
ables, their difference 2x/ve and sum 2y/ve will always
have the same parity. If, however, when restricted to a
given parity, x and y can be considered independent, and
if both parities have the same probability, then the full
probability distribution Pss(v1, v2) can be reconstructed
from the partial distributions P (x) and Q(y) as

Pss(y + x, y − x) = 2P (x)Q(y)Par(x, y), (8)

where Par(x, y) is one if 2x/ve and 2y/ve have the same
parity, or zero if they do not. Eq. (8) allows to approxi-
mately reconstruct the full steady state distribution from
the partial rate functions g(x) and h(y). As shown in Ap-
pendix C, this approximation becomes exact for typical
fluctuations in the low-noise regime ve/VT � 1, and is
extremely accurate in general.

The results in Eq. (7) are in principle valid for any

Poisson rates λ
n/p
± . Remarkably, for the particular MOS

rates of Eq. (4), the expression for dxg can be integrated
exactly, resulting in:

g(x) =
x2+2Vdd x

VT
+

2nVT
n + 2

[L(x, Vdd)−L(x,−Vdd)] , (9)

where L(x, Vdd) = Li2 (− exp((Vdd + x(1 + 2/n))/VT )),
and Li2(·) is the polylogarithm function of second or-
der. This is the first important result of this work, and
will allow us to analytically estimate the error rate of
a low-power SRAM memory cell in the next section.
In turn, the rate function h(y) can be seen to satisfy
h(y) = h0 y

2/VT +O(y4) (an expression for h0 in terms
of the circuit parameters is given in Appendix B).
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(a) (b) (c)

FIG. 2: (a) Exact steady state obtained by numerical integration of the master equation (Vdd/VT = 1.2, ve/VT = 0.1, n=1).
(b) Partial distributions for the variables x and y as obtained from the exact global distribution in (a), and from the analytical
results of Eq. (7). (c) Quasipotential g(x)/ve for different values of Vdd (ve/VT = 0.1, n=1).

In Figure 2-(a) we show the exact steady state distribu-
tion Pss(v1, v2) obtained by numerically evolving Eq. (1)
for ve/VT = 0.1, Vdd/VT = 1.2, and n = 1. We see that
for these parameters the most probable values are dis-
tributed around v1 = −v2 ' ±Vdd, i.e., the possible solu-
tions to the deterministic equations of motion (Appendix
A). In Figure 2-(b) we compare the exact partial distri-
butions P (x) and Q(y) for the variables x = (v1 − v2)/2
and y = (v1 + v2)/2, respectively, with the ones obtained
from the quasipotentials g(x)/ve and h(y)/ve. We see
that the agreement is remarkable despite the value of ve
being only one order of magnitude lower than VT and Vdd

(states with only a few tens of electrons are occupied). Fi-
nally, in Figure 2-(c) we show the quasipotential g(x) for
different values of the powering voltage Vdd. We see that
there is a transition between a unimodal steady state and
the bimodal distribution compatible with bistability, that
for n = 1 happens at Vdd = ln(2)VT (the data-retention
voltage), as can also be seen from the analysis of the
deterministic equations (Appendix A).

IV. ERROR RATE

If the initial state of the system is close to one of
the two possible metastable NESSs, let us say v1 =
−v2 ' Vdd, the ensuing dynamics will be character-
ized by two different time scales. First, a fast relax-
ation on the local basin of attraction will take place.
Indeed, from the deterministic equations (Appendix A)
we see that this relaxation develops at a rate λeq '
τ−1
0 (ve/VT ) e2Vdd/VT that increases exponentially with

Vdd, where τ0 = (qe/I0) eVth/(nVT ) is a natural time scale
for this problem. After this local metastable NESS has
been reached, a slow dynamics consisting of rare tran-
sitions to the other possible metastable NESS follows.
Since the metastable NESSs are associated to the values

of the stored bit, this rare transitions are considered er-
rors. We are interested in computing the error rate λerr

in terms of the circuit parameters. This is a hard prob-
lem that has been mainly treated numerically [4, 10], and
for which a rigorous stochastic treatment is crucial. It is
possible to see that, to leading order in v−1

e , the rate of es-
cape out of a NESSs centered around vmin = (vmin

1 , vmin
2 )

can be obtained from the quasipotential f thanks to the
following result [25, 28]:

lim
ve→0

ve log(τ0λerr) = −(f(v∗)− f(vmin)), (10)

where v∗ is a saddle point of the quasipotential (which
in this case is v∗ = (0, 0)). The factor exp(−(f(v∗) −
f(vmin))/ve) is also the dominant contribution to the
probability of a trajectory, or ‘instanton’, going from
vmin to v∗ [25]. This result can be considered a gener-
alization to NESSs of the classical Arrhenius’s law [29],
and in this case leads to the ‘dominant’ estimate of the
error rate

λD
err = τ−1

0 e−(g(0)−g(xmin))/ve , (11)

that can be readily evaluated from Eq. (9). However, this
estimate misses any contribution to λerr that is subexpo-
nential in v−1

e , but that might be anyway relevant for
finite values of ve. For equilibrium systems some subex-
ponential factors are provided by the classic Eyring-
Kramers formula [30–32], in terms of the curvature of the
energy surface at the fixed and saddle points. For out of
equilibrium systems with Gaussian noise, subexponential
corrections are discussed in [28, 33]. In our case, since
we are dealing with a discrete out of equilibrium system
subjected to shot noise, we resort to the general method
explained in the following.

The first step to compute λerr is to provide an opera-
tional definition of what an error is. We consider that the
state of the memory is read by monitoring the output of



5

(a) (b) (c)

FIG. 3: (a) Sample trajectory generated with the Gillespie simulation of the stochastic dynamics (top, Vdd/VT = 1.2, ve/VT =
0.1, n=1), and decay of the survival probability PS(t) for the protocol described in the text, for different values of Vdd (bottom).
Solid lines were obtained by Eq. (12) and the dots from data generated with the Gillespie algorithm (ve/VT = 0.1, n=1). (b)
Different estimates of the error rate as a function of Vdd for ve/VT = 0.1 and n=1. The dots indicate the inverse of the mean
TTE, 〈τ〉−1, as obtained from Gillespie simulations. The solid blue line corresponds to the minimum eigenvalue λ0 of the
partial generator −WHH, and the violet line to the metastable rate λMS

err of Eq. (14). The dashed grey line shows the dominant
contribution in the ve/VT → 0 limit of Eq. (11). (c) Estimates of the error rate as a function of Vdd for different values of
ve/VT (n=1).

the first inverter, i.e., the voltage v1. A zero or positive
value of v1 is identified with the logical state H (‘high’),
and a negative value with the logical state L (‘low’). This
logical encoding induces natural projection operations in
the state space, that we construct as follows. Each mi-
croscopic state (v1, v2) is mapped to a vector |v1, v2〉. A
given probability distribution P (v1, v2) is represented as
the vector |P 〉 =

∑
v1,v2

P (v1, v2)|v1, v2〉, while the gen-

erator of the master equation in Eq. (1) is represented as
a matrix W acting over these vectors. Thus, the steady
state distribution |Pss〉 satisfies 0 = W|Pss〉. The or-
thogonal projectors corresponding to the logical states
H and L are, respectively, ΠH =

∑
v1≥0,v2

|v1, v2〉〈v1, v2|
and ΠL =

∑
v1<0,v2

|v1, v2〉〈v1, v2| (where 〈a| is just the

transpose of |a〉). Note that ΠjΠk = δj,kΠj and that
ΠH + ΠL = 1. Then, we can consider the projections of
the steady state to each of the logical subspaces: |PHss 〉 =
ΠH |Pss〉/〈1|ΠH |Pss〉 and |PLss〉 = ΠL|Pss〉/〈1|ΠL|Pss〉 (|1〉
is just the vector with unit components). Now we give
the following operational definition of an error: at time
t = 0 we prepare the system at a state drawn from the
metastable distribution |PHss 〉 (for which the voltage v1 is
always positive or zero), and monitor its evolution until
v1 becomes negative. This event is considered an error,
and the random time τ at which it takes place is recorded.
We are interested in the distribution of τ , which can be
considered a first-passage problem [18, 19]. As explained
in [19], one possible approach to obtain the statistics of
τ is to consider an alternative dynamics with absorbing
boundary conditions at the interface between the logical
subspaces. Thus, the survival probability of not observing

any error up to time t is given by

PS(t) = 〈1|eWHHt|PHss 〉. (12)

Here, the matrix WHH is the partial generator ΠHWΠH

reduced to the H-subspace. The vectors |1〉 and |PHss 〉
are also reduced to the same subspace. The probability
to observe an error between times t and t + dt is p(t)dt,
where p(t) = −dtPS(t). Then the average time to an
error (TTE) is

〈τ〉 =

∫ ∞
0

τp(τ)dτ =

∫ ∞
0

PS(τ)dτ. (13)

At variance with the full generator W, the partial gener-
atorWHH does not conserve probability (since it continu-
ously leaks into the L-subspace), and therefore its largest
eigenvalue is strictly lower than 0. Indeed, we can write
PS(t) =

∑
k Cke

−λkt, where −λk are the eigenvalues of
WHH (with 0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · ), and Ck are con-
stants that depend on the initial state (with

∑
k Ck = 1).

Thus, for large times we have PS(t) ' C0 exp(−λ0t).
From this, it follows that for long times the distribution
of τ is approximately exponential with rate λ0. This
already provides a method to estimate the error rate:
one should construct the generatorWHH and numerically
compute the eigenvalue of smallest absolute value, which
can be done efficiently with several routines since the ma-
trix WHH is sparse. Note that λ0 is independent of the
initial state. It is possible to obtain analytically another
estimate of the error rate by exploiting the metastability
of the initial state |PHss 〉. For this, we consider an approx-
imation in which the state |P (t)〉 = eWHHt|PHss 〉 evolving
according to the generator WHH is assumed to be always
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proportional to |PHss 〉 (the initial distribution), but with
a time dependent normalization. In that case the sur-
vival probability satisfies dtPS(t) = 〈1|WHH|PHss 〉PS(t)

and therefore we can write PS(t) = e−λ
MS
err t, with the

‘metastable’ rate λMS
err = −〈1|WHH|PHss 〉. This is equiva-

lent to assume that the error rate is constant and equal
to the initial one, and consequently depends explicitly
on the initial state. Note that by the conservation of
probability of the full generator (〈1|W = 0), and the
property ΠL + ΠH = 1, we have the alternative expres-
sion λMS

err = 〈1|WLH|PHss 〉, where WLH is the reduction of
the matrix ΠLWΠH to the appropriate subspaces. This
last expression for λMS

err can be evaluated using Eq. (8)
for the steady state, with the following result:

λMS
err = 4

∑
v2

B(0, v2) P (−v2/2)Q(v2/2), (14)

where B(v1, v2) is given in Eq. (2), and P (x) and Q(y)
are the LD approximations to the partial distributions,
i.e., P (x) ∝ exp(−g(x)/ve) and Q(y) ∝ exp(−h(y)/ve).
It is instructive to see how Eq. (14) reduces to Eq. (11)
for ve → 0. First, we notice that Q(y) becomes strongly
peaked around y = 0 for ve → 0, and therefore we
can approximate λMS

err ' 4B(0, 0)P (0). In turn, we have
P (0) = exp(−g(0)/ve)/N with N =

∑
x exp(−g(x)/ve),

that for ve → 0 becomes N ' exp(−g(xmin)/ve). Then,
we recover the result of Eq. (11), with τ−1

0 replaced by
the factor 4B(0, 0) (which is subexponential, since the
rates scale as v−1

e ).
In general there is no definite relation between the

estimates λ0 and λMS
err , and the mean TTE 〈τ〉. How-

ever, for the particular protocol we are considering, in
which the initial state is |PHss 〉, the instantaneous decay
rate of the survival probability λ(t) = −dt log(PS(t)) is
a monotonously decreasing function. This is easily un-
derstood: the steady state distribution has a non-zero
value at the boundary v1 = 0 between logical subspaces.
Then, the initial occupation of the states at or close to
the boundary will quickly leak into the L-subspace, with
a rate that decreases as the occupation of those states
decrease, reaching its asymptotic value λ0 for long times.
In that case, from Eq. (13) it follows that the inverse of
the average TTE is bounded by λ0 and λMS

err :

λ0 ≤ 〈τ〉−1 ≤ λMS
err . (15)

Thus, λMS
err provides an upper bound to the inverse mean

TTE.
In Figure 3-(a) we show a sample trajectory obtained

by the Gillespie algorithm, and the decay of the sur-
vival probability, computed with two methods. The solid
lines were obtained from Eq. (12), by constructing the
reduced generator WHH. The dots were obtained from
Gillespie simulations in which initial states were drawn
from the steady state distribution and the time to an er-
ror was recorded. We see that the decay rate decreases
monotonously from the initial one to the asymptotic one
given by λ0. From the same data we compute the mean

TTE 〈τ〉. In Figure 3-(b) we compare 〈τ〉−1
with the

different estimates of the error rate, as a function of Vdd.
We see that λ0 is an excellent estimate of 〈τ〉−1

. The
metastable rate λMS

err of Eq. (14) consistently overesti-
mate the true error rate, but displays the same scaling
with Vdd. In contrast, we see that the dominant esti-
mate of Eq. (11) largely overestimate the error rate for
low Vdd, while it underestimate it for large values of Vdd.
Figure 3-(c) shows 〈τ〉−1

, λ0 and λMS
err as a function of

Vdd for different values of ve.

FIG. 4: Electrical current through each transistor in steady
state conditions as a function of Vdd.

V. ENTROPY PRODUCTION

We now study the steady state entropy production
of the memory. At steady state, the average current I
through both inverters is the same. Thus, the rate at
which heat is dissipated in the environment is Q̇ = 4VddI,
and the entropy production rate is just Σ̇ = Q̇/T . From
the deterministic solution for n = 1, it follows that in
the monostable phase the electric current increases ex-
ponentially with Vdd, I = (qe/τ0)(eVdd/VT −1), while it is
constant in the bistable phase, I = qe/τ0 (see Appendix
A). In Figure 4 we show that the same constant value
is achieved also for n 6= 1. In addition, we show the
average current obtained by computing the mean value
of I(v1, v2) = qe(λ

p
+(v1, v2)− λp−(v1, v2)) using the exact

steady state distribution Pss(v1, v2). This average cur-
rent also reaches a constant value for large Vdd, that is
above the deterministic one due to finite-ve effects. In-
terestingly, it displays a bump right after the onset of
bistability. The origin of this maximum in the average
current is precisely the occurrence of errors, since each
switching event in which the memory flips its state has
an associated dissipation. As Vdd increases, errors be-
come rare and the average current tends to the value
corresponding to any of the metastable NESSs with a
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definite logical value.
Thus, for large Vdd the electrical current I is just con-

stant, and therefore the entropy production Σ̇ is propor-
tional to Vdd. Also, from Eq. (9) it is possible to see that,
to dominant order in Vdd � VT , ∆g = g(0)− g(xmin) '
(2/(n + 2))(V 2

dd/VT ). Then, it follows that for large en-
tropy production rates the error rate scales as:

λMS
err ∝ e

− 2
n+2

V 2
dd

veVT

= e
− 2

n+2

kbT

(4I)2/C
(Σ̇/kb)

2

.

(16)

Here we have ignored terms in log(λerr) that are constant

or linear in Σ̇ or equivalently Vdd, that can be easily in-
cluded. Indeed, the previous equation is compatible with
what was obtained in ad-hoc treatments based on Gaus-
sian noise [1], up to model-dependent constant factors in
the exponent. However, in general one must employ the
result in Eq. (14), that can be readily evaluated.

VI. DISCUSSION

We used the theory of stochastic thermodynamics
to construct a thermodynamically consistent stochastic
model of a technologically relevant kind of electronic
memory, subjected to Poissonian thermal noise. Large

deviations theory was then employed to obtain an an-
alytical expression for the steady state of the memory,
that allowed to estimate the rate at which errors occur.
We have thus explicitly solved a problem that has been
so far only treated using expensive numerical simulations
[4].

From a wider perspective, our work shows how modern
developments in statistical physics can contribute to solve
important problems in electronic engineering. Although
our focus has been on the problem of memory reliability,
our methods and results are also relevant for the design
of non-conventional stochastic computing schemes, where
naturally occurring thermal fluctuations are exploited as
a resource [5, 9, 34–36]. For instance, we note that our
results directly apply to the low-power binary stochas-
tic neuron proposed in [9] which is based on a SRAM
memory cell core identical to the one studied here.
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Appendix A: Deterministic treatment of the CMOS SRAM cell

In this section we derive the deterministic equations for a CMOS SRAM cell working in the sub-threshold regime.
We first consider a single inverter with input voltage vg and output voltage v, and symmetric powering with voltages
Vdd = −Vss. The current Ip(v, vg) through the pMOS transistor for given v and vg is [37]:

Ip(v, vg) = I0e
−Vth/VT e(Vdd−vg)/(nVT ) (1− e−(Vdd−v)/VT ), (A1)

while for the nMOS transistor we have In(v, vg) = Ip(−v,−vg). From this we can construct the deterministic
dynamical equations for the voltages v1 and v2 of the CMOS SRAM cell discussed in the main text:

C
dv1

dt
= Ip(v1, v2)− In(v1, v2)

C
dv2

dt
= Ip(v2, v1)− In(v2, v1).

(A2)

We first solve for the stationary solution satisfying dv1/dt = dv2/dt = 0. By symmetry, this solution must satisfy
v1 = −v2 = v∗. Thus, we need to find v∗ such that Ip(v

∗,−v∗) = In(v∗,−v∗). In the following, for simplicity, we
consider the case n = 1. In that case, the possible solutions are v0 = 0 and, only if Vdd > VT log(2),

v± = Vdd + VT log

(
1/2±

√
1/4− e−2Vdd/VT

)
. (A3)

Note that v+ = −v−, since actually these are the two solutions in the bistable phase. We now consider v1 = v+ + δv1

and v2 = v− + δv2 and expand Eq. (A2) to first order in δv1/2, finding:

d

dt

[
δv1

δv2

]
=
I0e
−Vth/VT

CVT

[
2− e2Vdd/VT −2

−2 2− e2Vdd/VT

] [
δv1

δv2

]
(A4)

The eigenvalues of the matrix in the previous equation are −e2Vdd/VT and 4− e2Vdd/VT , which shows that the solution
considered is indeed stable for Vdd > VT log(2) (a similar analysis shows that the solution v0 becomes unstable at the
same point), and that small departures relax back to it at a rate λeq ' τ−1

0 (ve/VT )e2Vdd/VT , with τ0 = (qe/I0)eVth/VT .
From the previous solution it can be seen that the stationary current through each transistor is In = Ip =

(qe/τ0)(eVdd/VT − 1) for Vdd ≤ VT log(2) (monostability), and In = Ip = qe/τ0 for Vdd > VT log(2) (bistability).

Thus, the current in the bistable phase is constant and the total entropy production is Σ̇ = 2(2Vddqe/τ0).

Appendix B: Macroscopic limit and large deviations principle

The conduction channel of a MOS transistor in typical designs has two associated dimensions: its width W and its
length L [37, 38]. The capacitance between the gate terminal and the body of the transitor (which is typically the
largest one) scales as the area of the channel: C ∝WL. Also, the current through the channel for fixed drain-source
and gate-source voltages is proportional to the channel width, and inversely proportional to the channel length [37].
Thus, the parameter I0 used to characterize the I-V curve of the transistor scales as I0 ∝ W/L. For the following
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discussion we are going to consider a family of devices with fixed channel length, but variable channel width. Thus,
we can consider W as a scale parameter, with respect to which both the capacitance C and the current I0 are
proportional. In that case, as considered in the main text, the elementary voltage ve = qe/C scales as W−1, while

the Poisson rates λ
n/p
± (v1, v2) associated to the transistors scale as W . Under those conditions, the master equation

in the main text can be rewritten as:

dtP (v, t) =
∑
ρ

v−1
e [ωρ(v − ve∆ρ, ve)P (v − ve∆ρ)− ωρ(v, ve)P (v)] . (B1)

In the previous equation, v = (v1, v2)T is the state vector, and the index runs over the possible transitions. For
example, the values ρ = 1, · · · , 4 correspond to the forward transitions of each transistor, while ρ = −1, · · · ,−4 to
the reverse transitions. The vectors ∆ρ encode the change in voltage associated to each transition. The scaled rates
ωρ(v, ve) are related to the original Poisson rates ωρ(v, ve) by λρ(v, ve) = v−1

e ωρ(v, ve). Thus, the scaling of the rates
with respect to W (or equivalently, with respect to ve), is taken into account in the factor v−1

e , in such a way that
the limit limve→0 ωρ(v, ve) is well defined (the limit ve → 0 here and below must be interpreted as ve/VT → 0 and
ve/Vdd → 0 for fixed VT and Vdd). Note that the explicit dependence of the rates in the elementary voltage ve stems
from the charging effects discussed in the main text.

Under these conditions, the solution of the master equation in Eq. (B1) satisfies a large deviations principle in the
macroscopic limit ve → 0. In order to see this, we introduce the large deviations ansatz P (v, t) � exp(−(f(v, t) +
o(ve))/ve) into Eq. (B1), and only keep the dominant terms in ve → 0. We note that in that limit P (v − ve∆ρ, t) �
P (v, t) exp((∆ρ)i∂vif(v, t)). Therefore, the master equation in Eq. (B1) reduces to the following dynamical equation
for the rate function:

dtf(v, t) =
∑
ρ

ωρ(v, 0)
[
1− e(∆ρ)i∂vif(v,t)

]
. (B2)

It is worth noting that for general jump processes with scaling properties as the ones satisfied by Eq. (B1), the validity
of the large deviation principle can be formally proven [25].

For the particular circuit under consideration, we can see from the previous equation that the steady state rate
function f(v1, v2) should satisfy

0 =
(
e∂v1f − 1

)
a(v1, v2) +

(
e−∂v1f − 1

)
b(v1, v2) +

(
e∂v2f − 1

)
a(v2, v1) +

(
e−∂v2f − 1

)
b(v2, v1), (B3)

as presented in the main text, where the functions a(v1, v2) and b(v1, v2) were defined as the appropriate combination
of the scaled transition rates. The previous equation cannot be solved exactly. However, it can be employed to
solve for reduced rate functions derived from f(v1, v2), exploiting the symmetry of the problem and the contraction
principle of large deviations theory. We begin by changing variables to x = (v1 − v2)/2 and y = (v1 + v2)/2. Then,
∂1/2f = (±∂xf + ∂yf)/2. Defining α = e∂xf/2 and β = e∂yf/2, the previous equation becomes:

0 = (αβ − 1) a(x, y) +
(
α−1β−1 − 1

)
b(x, y) + (β/α− 1) a(−x, y) + (α/β − 1) b(−x, y), (B4)

where the change of variables of the functions a(x, y) and b(x, y) is implicit. Now, we are interested in computing
the partial distributions P (x) and Q(y) for the variables x and y. The contraction principle states that if the full
distribution Pss(x, y) satisfies a large deviation principle with rate function f(x, y), then the partial distribution
P (x) =

∑
y Pss(x, y) also satisfies a large deviation principle with rate function g(x) = infy f(x, y) [14]. Then,

assuming that f is sufficiently regular and that infy f(x, y) = miny f(x, y), we have g(x) = f(x, ymin|x), where ymin|x
is a minimum of f(x, ·) and therefore satisfies ∂yf(x, ymin|x) = 0. Thus, ymin|x is the most probable value of y for a
given value of x. As discussed in the main text, the symmetry of the steady state is such that ymin|x = 0 for all x.
Thus, evaluating the previous equation at y = 0, since β|y=0 = 1, we obtain:

α|y=0 = e∂xf |y=0/2 = edxg(x)/2 =
a(−x, 0) + b(x, 0)

a(x, 0) + b(−x, 0)
, (B5)

from where we easily obtain the expression for dxg(x) given in the main text. Note that from the previous expression
is evident that dxg(x) is an odd function, and therefore g(x) is even. The rate function h(y) for the partial distribution
Q(y) can also be obtained. It is given by h(y) = f(xmin|y, y), where xmin|y is a minimum of f(·, y). In this case a
symmetry argument is lacking, and to proceed we must neglect correlations between x and y. Then, xmin is considered
to be independent of y, and thus it can be computed as the minimum of g(x). In the bistable phase there are actually
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two equivalent values of xmin, that lead to the same function h(y). Thus, evaluating Eq. (B4) at x = xmin, since
α|x=xmin = 1, we obtain:

β|x=xmin
= e∂yf |x=xmin

/2 = edyh(y)/2 =
b(xmin, y) + b(−xmin, y)

a(xmin, y) + a(−xmin, y)
. (B6)

For the Poisson rates corresponding to MOS transistors in subtreshold operation, that enter into the definition of
the functions a(x, y) and b(x, y), the integration of dxg(x) can be performed exactly, leading to the compact expression
given in the main text. This is not the case for dyh(y). However, it is possible to obtain the leading behaviour of h(y)
around y = 0, which is given by:

h(y) =
2

n

(n− 1)(1 + e2(1+1/n)xmin/VT ) + e(Vdd+xmin)/VT + e(Vdd+xmin(1+2/n))/VT

1 + e2(1+1/n)xmin/VT + e(Vdd+xmin)/VT + e(Vdd+xmin(1+2/n))/VT
y2/VT +O(y4). (B7)

Finally, we note that the most probable values according to the large deviations solution (x = xmin and y = 0,
which correspond to v1 = −v2 = xmin) match the deterministic solutions obtained in the previous section.

Appendix C: Validity of the separability assumption

In this section we discuss the accuracy of the separability assumption used above to derive equation Eq. (B6) for the
rate function h(y), and also involved in the reconstruction of the full probability distribution in Eq. (8) in the main
text. We stress the fact that the expression for the rate function g(x) is exact and independent of such assumption.

We begin by considering the regime of small fluctuations around the deterministic fixed points. We first note
that for small perturbations around the fixed points, the deterministic dynamics completely decouples the variables
x = (v1 − v2)/2 and y = (v1 + v2)/2, as can be seen from Eq. (A4). However, fluctuations might still induce
correlations. To see that this is not the case for typical fluctuations, we will compute the Gaussian fluctuations
around the fixed points by expanding Eq. (B2). Thus, if v∗ are the fixed point voltages, the rate function f(v) can
be expanded as:

f(v) =
1

2
(v − v∗)TC(v − v∗) +O(|v − v∗|3) (C1)

in terms of the matrix {C}ij = d2
vivjf(v∗). Then, the Gaussian covariance matrix is given by veC

−1. Accordingly, the

covariance matrix for the variables x and y is veMC−1MT , with M =
( 1/2 −1/2

1/2 1/2

)
. We will show now that MC−1MT

is a diagonal matrix, and therefore the variables x and y are uncorrelated to the Gaussian level. Expanding Eq. (B2)
to second order in v − v∗ we obtain:

0 = C−1A+ATC−1 +B, (C2)

where the matrices A and B are given by

{A}ij =
∑
ρ

∂viωρ(v
∗, 0)(∆ρ)j and {B}ij =

∑
ρ

ωρ(v
∗, 0)(∆ρ)i(∆ρ)j . (C3)

In this particular model one can see that B = b1 is always proportional to the identity matrix. In particular for
n = 1 we have b = 4(ve/τ0)eVdd/VT sinh(Vdd/VT ). Also, the matrix A is the one appearing in Eq. (A4) (in the bistable
phase, i.e., for Vdd ≥ VT log(2)). The matrix C ′−1 = MC−1MT satisfies an equation analogous to Eq. (C2), but in
terms of the transformed matrices A′ = (MT )−1AMT and B′ = MBMT . Solving that equation one can easily show
that the matrix C−1 is indeed diagonal.

The difference between the exact steady state distribution P ex
ss (v) and the approximated reconstruction Pss(v)

given by Eq. (8) in the main text can be quantified by the Hellinger distance 0 ≤ H ≤ 1, which is computed as

H2 = 1 −
∑

v

√
P ex

ss (v)Pss(v). Since the separability assumption holds for Gaussian fluctuations, and they are the
dominant ones in the macroscopic limit ve/VT → 0, it follows that H → 0 in the same limit. For finite values of ve,
the accuracy of the reconstruction of Eq. (8) can be tested numerically. As an example, in Figure 5 we compare the
exact steady state distribution P ex

ss (v) with the reconstruction Pss(v) for Vdd/VT = 1.2 and ve/VT = 0.1, and we also
show the difference P ex

ss (v)− Pss(v). In this case, the Hellinger distance is H = 1.94× 10−2 � 1.
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FIG. 5: (a) Exact steady state distribution P ex
ss (v) for Vdd/VT = 1.2 and ve/VT = 0.1. (b) Reconstruction Pss(v) based on Eq.

(8) and the analytical expressions for the rate functions g(x) and h(y), for the same parameters. (c) Difference P ex
ss (v)−Pss(v).


