Use of phosphogypsum in alkali-activated binders: radiological and leaching assessment

Katrijn Gijbels, <u>Wouter Schroeyers</u>, Sheldon Landsberger, Yiannis Pontikes, Pieter Samyn, Sonja Schreurs

9th International Symposium on Naturally Occurring Radioactive Material (NORM IX) 23th -27th September 2019

KNOWLEDGE IN ACTION

wouter.schroeyers@uhasselt.be

1. Introduction

- 2. Materials & methods
- 3. Results
- 4. Conclusion & outlook

Terranova phosphogypsum deposit (DEME, Zelzate, Belgium)

Ang=nl KNOWLEDCE IN ACTION

CO₂ emissions from Ordinary Portland Cement (OPC)

- Alternative?
 Alkali Activated
 Materials (AAMs):
 - Reduce CO₂ emissions by up to 80%
 - Comparable technical performance in many aspects
 - Allow incorporation and recycling of several types of industrial residues.

UHASSEL

NOWLEDGE IN ACTION

Production Alkali activated materials (AAMs)

LEDGE IN ACTIC

https://www.uhasselt.be/CMK

NOWLEDGE IN ACTION

- 1. Introduction
- 2. Materials & methods
- 3. Results
- 4. Conclusion & outlook

Leaching & radon exhalation tests

Leaching test: up-flow percolation CEN/TS 16637-3.

Radon exhalation tests (SARAD RadonScout)

Experimental methods

- Chemical & radiological analysis:
 - ²³²Th and ²³⁸U:
 - Thermal and epithermal neutron activation analysis (NAA)
 - Long-living) radionuclides:
 - HPGe
 - Non-radiological elements:
 - Quantitative analysis via ICP-OES and ion chromatography
- Microstructural analysis:
 - N₂ sorption measurements
 - Mercury intrusion porosimetry (MIP)
 - Scanning electron microscopy (SEM)

- 1. Introduction
- 2. Materials & methods

3. Results

4. Conclusion & outlook

Radon concentration & exhalation rate in accumulation chamber during hardening of fresh pastes

OWLEDGE IN ACTIO

Exhalation rate of samples in dry condition after 28 days curing

OWLEDGE IN ACTIO

Release of naturally occurring radionuclides upon leaching

- Alkaline environment:
 - Potassium: large release [charge balancing ion]
 - Thorium (Th⁴⁺): leachable and non-leachable complexes [hydroxide & hydroxo-carbonate complexes]
 - Na₂SiO₃ activated: more leachable thorium complexes, (compared to NaOH)

UHASSE

OWLEDGE IN ACTIC

- Uranium (U⁶⁺): retained
 [in calcium-silicate-hydrate
 structure or absorbed on silicate
 surfaces]
- Radium: retained [similar to Ca]
- Lead: retained [precipitation Pb(OH)₂]

Relative release of non-radiological elements

 From phosphogypsum: F and Ca are well retained in AAM structure (in contradiction to S)

UHASSE

OWLEDGE IN ACTIO

16

Compressive strength

KNOWLEDGE IN ACTION

- 1. Introduction
- 2. Materials & methods
- 3. Results
- 4. Conclusion & outlook

Conclusion & outlook

- AAMs: by selecting an appropriate activator, it is possible to control:
 - Porosity
 - Radon emissions
 - Leaching behavior
- Note: Alkali activator/precursor ratio of 0.6 was chosen because of a decline in the workability upon PG incorporation

In follow-up studies:

- We are trying to **reduce the alkalinity** of the solutions
- Increase the PG content, while simultaneously achieving good mechanical properties and immobilization of hazardous (radiological) elements

Would like to know more?

- Gijbels K., Iacobescu R.I., Pontikes Y., Vandevenne N., Schreurs S., Schroeyers W. (2018). Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. https://doi.org/10.1016/j.conbuildmat.2018.06.162
- Gijbels K., Landsberger S., Samyn P., Iacobescu R.I., Pontikes Y., Schreurs S., Schroeyers W. (2019). Radiological and non-radiological leaching assessment of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. https://doi.org/10.1016/j.scitotenv.2019.01.089
- Gijbels K., Iacobescu R.I., Pontikes Y., Schreurs S., Schroeyers W. (2019). Alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. <u>https://doi.org/10.1016/j.conbuildmat.2019.04.194</u>