

Towards a new guidance for establishing a NORM inventory

Task group 2 – IAEA NORM project

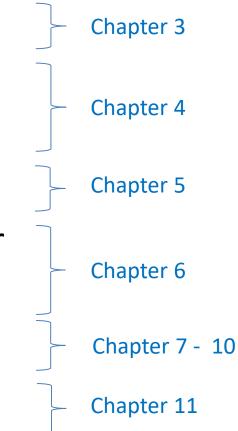
Wouter Schroeyers, Hasselt University, Belgium

►► UHASSELT

9th International Symposium on Naturally Occurring Radioactive Material (NORM IX) 23th -27th October 2018

Task 2: Guidance on the Assembly of Relevant NORM Information by Member State (NORM Inventories)

Develop a document providing guidance on the need and process for assembling information regarding NORM management infrastructures and NORM inventories


- Discuss value and use of comprehensive NORM inventories, including legacy sites
- Identify important elements of a NORM inventory
- Develop step-by-step guidance
- Identify potential sources of information and strategies for addressing data gaps
- Compile lessons-learned from Member States

Desired Outcome:

 Development of comprehensive national-level inventories to inform NORM policy and strategies, and support development of effective NORMmanagement infrastructure

- 1. General methodology flow chart
- 2. Inventory information
- 3. Sources of information
- 4. Sampling and measurement strategy
- 5. Dedicated inventory methodology for specific industries
- 6. Case studies
- 7. Lessons learned

- 1. General methodology flow chart
- 2. Inventory information
- 3. Sources of information
- 4. Sampling and measurement strategy
- 5. Dedicated inventory methodology for specific industries
- 6. Case studies
- 7. Lessons learned

General methodology flow chart

Start-up phase -Fixing & limiting scope of the study

> 1st datamining phase -Before contacting companies

> > 2nd datamining phase -Contacting industry

> > > Keeping the inventory up to date

Start-up phase Consortium for inventory building

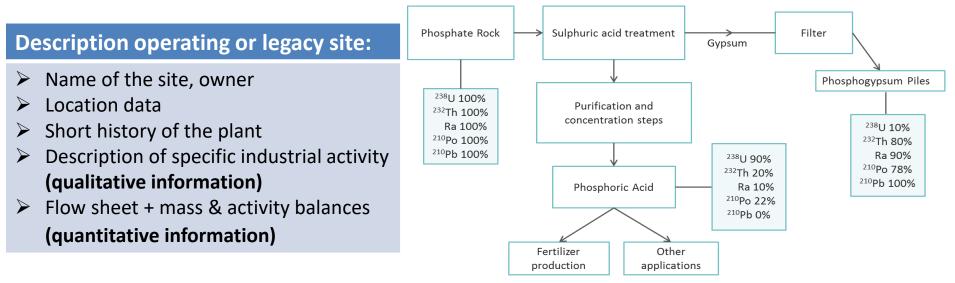
(Independent) non- legislator	(connected to) legislator
Companies: no obligation to provide information	Legislative power: define notification requirements
Experts: knowledge on field & industrial network.	Not always right background for inventory building
More open attitude from companies (trust = crucial)	Needs to know where to start and which industries to include
Non-disclosure agreements: Company determines which information to give	Companies might provide the minimal required information (limited to well-known issues).

Start-up phase Initial reading

Industrial sectors of concern

- Mining and processing of uranium and other natural resources
- Extraction of rare earth elements
- Production and use of thorium and its compounds
- Production of niobium, ferroniobium, and tantalum
- Production of oil and gas
- The zircon and zirconia industries
- Manufacture of titanium dioxide pigment
- The phosphate industry
- Production of iron and steel, tin, copper, aluminium, zinc and lead
- Combustion of fossil fuel and biomass
- Water treatment
- Geothermal energy production
 - Building on experiences from neighboring countries

Updated list of industries for IAEA Environet project

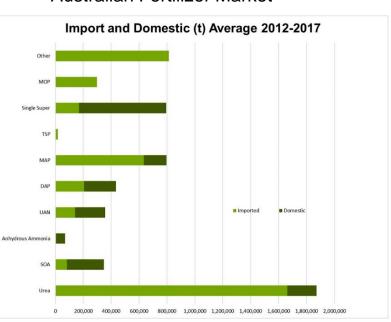

Safety Reports Series No.78

Radiation Protection and Management of NORM Residues in the Phosphate Industry

7

Start-up phase Define scope of the inventory study

Availability location related data?


- ✓ Address, (GPS) coordinates, altitude, dimensions, aerial map, accessibility, land registry,...
- Too much detail is not useful, achievable or manageable

→ Relevant for radiation protection, waste management?

- Simplifications in data representation for complex decay chains (significant disequilibrium)
- Production rates for specific periods considering modifications in industrial processes or the ore selection.

1st datamining phase Before contacting companies

Australian Fertilizer Market

The graph shows average fertilizer sales in Australia for the calendar years 2012 to 2017. *Domestic single super is manufactured from imported phosphate rock.

https://www.fertilizer.org.au/Fertilizer-Industry/Australian-Fertilizer-Market

Gathering data to assure a targeted survey

Tracking companies of concern:

- Existing surveys and licences
- Contacting industrial federations
- Import/ export statistics and trade registers
- Legacy sites: national databases

Via **sentinel goods:**

- Phosphorus/potassium fertilizers for fertilizer industry
- Clinker production for cement industry

1st datamining phase Before contacting companies

Phosphate mining and fertilizer complex in Cajati and its phosphogypsum stack in 04/19/2016 (source: Google Earth).

Starting point: Mining/extraction & import of raw materials

Non-radiological information:

*Type of material, chemical properties, volumes, available sites,...

*Type of Excavation process (open pit, borehole, underground mining)

*Circumstances (exploitation technology, ventilation)

→ first impression expected NORM related issues

2nd datamining phase Contacting industry

Challenge: getting industrial partners involved

- Added value for a company to participate to the inventory study?
- Dealing with industrial confidentiality: reach agreement with industry regarding what happens with the collected information

Strategies for implementing a:

- Questionnaire: tailored to the industrial sector under study
- Measurement campaign
- Site visits

Keeping the inventory up to date

https://www.ilamindia.in

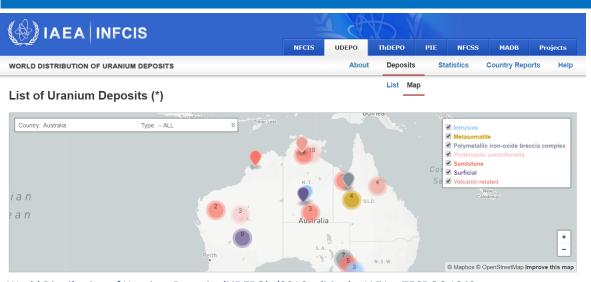
Changes in the industrial landscape:

Updating the inventory every 5-10 years

Include radiological information in:

- Licencing requirements
- Notification requirements

To keep the inventory alive:


- Participate in the international networks
- Maintain the connection with local industry & local researchers
- Keep track of updates in international documents

- 1. General methodology flow chart
- 2. Inventory information
- 3. Sources of information
- 4. Sampling and measurement strategy
- 5. Dedicated inventory methodology for specific industries
- 6. Case studies
- 7. Lessons learned

Sources of information Radiological & non-radiological

World Distribution of Uranium Deposits (**UDEPO**), (2016 edition) – IAEA – TECDOC 1843 https://infcis.iaea.org/ Guidance on using specific sources of information

- World distribution of uranium & thorium deposits (IAEA: UDEPO & ThDEPO)
- NORM databases
- Detection portal data
- Airborne gamma ray spectroscopy studies

▶ ...

Under preparation:

- Assessing reliability of radiological information
 - Old measurement results are not necessary representative for current industrial activity
 - Reliability of the used measurement protocol?

Sampling and measurement strategy

> Adapted sampling plan (bulk materials, liquids,...):

- Trace elements
- Impact segregation by wind, moisture content variations, particle size effects,...
- Modification in the selection of ores, industrial process
- QA for sampling and measurement procedures
- Under preparation: Section on low-cost approaches

- 1. General methodology flow chart
- 2. Inventory information
- 3. Sources of information
- 4. Sampling and measurement strategy
- 5. Dedicated inventory methodology for specific industries
- 6. Case studies
- 7. Lessons learned

Strategies for specific industrials sectors

 \geq

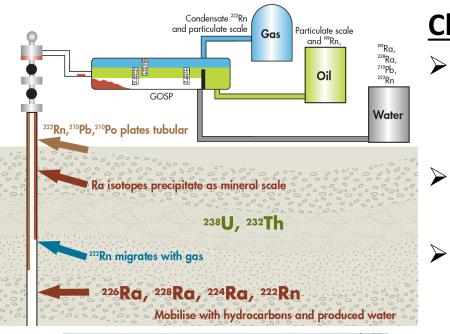


Photo from Oilfield services inc.

Challenges primary oil production:

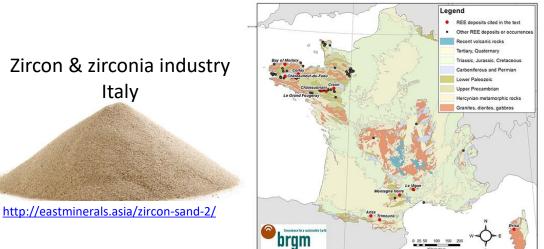
- Oil field equipment = sealed
 - Need external measurements
 - NORM occurrence is highly variable
- NORM deposits may accumulate very quickly or slowly during several years
- Guidance on identifying relevant practices:
 - More NORM in past practices related to pipe rattling

OGP Guidelines for the management of NORM in the oil & gas industry - Report 412 Sept, 2008

Country specific case studies

Phosphate mines and producers in operation in Brazil

http://www.dnpm.gov.br/dnpm/sumarios/sumario-mineral-2015



https://bahr.no/en/

AEA

Overview of national case studies & how to deal with country specific situations

Rare earth processing France

http://www.eurare.eu/countries/france.html

More case studies are welcome!!!

- 1. General methodology flow chart
- 2. Inventory information
- 3. Sources of information
- 4. Sampling and measurement strategy
- 5. Dedicated inventory methodology for specific industries
- 6. Case studies
- 7. Lessons learned

Lessons learned

https://metode.org/

Coming up next:

The Cosmic NORM inventory...

- Inventory building approaches need to be modified for specific industries & countries
- A need for dedicated strategies to get industrial participants on board of an inventory study
- A need for cost effective sampling and measurement stategies
- Interested in contributing to the TEC-DOC in preparation? Providing case studies?

Contact:

wouter.schroeyers@uhasselt.be

