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Abstract: Observational data over 15 years of rotavirus vaccine introduction in Belgium have in-
dicated that rotavirus hospitalisations in children aged <5 years plateaued at a higher level than
expected, and was followed by biennial disease peaks. The research objective was to identify factors
influencing these real-world vaccine impact data. We constructed mathematical models simulating
rotavirus-related hospitalisations by age group and year for those children. Two periods were defined
using different model constructs. First, the vaccine uptake period encompassed the years required to
cover the whole at-risk population. Second, the post-uptake period covered the years in which a new
infection/disease equilibrium was reached. The models were fitted to the observational data using
optimisation programmes with regression and differential equations. Modifying parameter values
identified factors affecting the pattern of hospitalisations. Results indicated that starting vaccination
well before the peak disease season in the first year and rapidly achieving high coverage was critical
in maximising early herd effect and minimising secondary sources of infection. This, in turn, would
maximise the reduction in hospitalisations and minimise the size and frequency of subsequent disease
peaks. The analysis and results identified key elements to consider for countries initiating an optimal
rotavirus vaccine launch programme.

Keywords: rotavirus vaccination; implementation; optimisation; high income country; long-term effect

1. Introduction

Development and implementation of an appropriate vaccination programme with
high vaccine coverage should help to control transmissible infections in a population [1].
Vaccination should reduce infection spread, with the possibility of disease elimination and
even disease eradication [2] as has occurred previously with vaccines against childhood
infections such as smallpox, polio, measles, varicella, and others [3]. However, vaccine
success is not always guaranteed because infections and their transmission vary. Moreover,
not all developed vaccines will stop infection spread immediately and sustainably. For
example, the flu vaccine must be adjusted each year and there is still uncertainty over who
should be vaccinated to achieve the best results for disease control [4].

Newer vaccines developed against diseases caused by rotavirus, Streptococcus pneu-
moniae, human papillomavirus or meningococci were also subject to similar issues around
optimum implementation to reach maximum disease control benefit as quickly as possi-
ble [5,6]. Recent findings indicated that rotavirus vaccine implementation has resulted in
different outcomes depending on the initiation of its launch [7]. When the new rotavirus
vaccines first came onto the market in high-income countries (HICs) in 2006, there was
confidence that these vaccines, with their mode of action generating an ‘infection-like’
reactivity that does not lead to severe health outcomes, would move to disease elimina-
tion [8,9], as predicted by the first published dynamic models based on results from testing
the vaccine in Phase III studies in HICs [10,11]. However, these promising modelling
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outcomes were questioned when the first results on medium-term effects of the vaccines
were reported [12–14]. Universal mass vaccination (UMV) campaigns in HICs were initi-
ated in the United States of America (USA), Belgium, and Austria in 2006, but the results
of those programmes differed from the predicted modelling results after a few years of
vaccine implementation [15–17]. To explain the causes of the discrepancies between the
real-world data on rotavirus vaccination compared with the early model predictions, we
constructed a mathematical model for the early years after vaccine introduction including
variables that could affect the outcome [18], based on observed data from the country with
the longest detailed observations of rotavirus vaccination impact over time (the RotaBIS
study in Belgium) [19]. In the analysis presented here we have extended this research by
developing a second mathematical model covering later years. The analysis also discusses
data from other HICs that initiated a UMV campaign such as Finland, United Kingdom
(UK), Austria, Australia, and the USA, for comparison with the analysis findings. These
countries were selected based on access to adequate published data [17,20–24]. The differ-
ent strategies and experiences in different countries indicate that it was not obvious that the
impact of rotavirus vaccination would be affected by the details of the vaccine programme
launch. There is a need to understand the factors driving the real-world impact of rotavirus
vaccination to identify an optimal strategy for vaccine introduction.

This research should help HICs that have not yet introduced rotavirus vaccination but
now wish to begin a vaccination campaign such as Switzerland, France, the Netherlands,
or Denmark [25] to identify an optimal vaccine implementation pathway. In principle, our
recommendations could also be applicable to vaccination against other infections that may
follow similar exposure routes and vaccination effects.

2. Materials and Methods
2.1. Key Features of Rotavirus Disease and the Vaccine

To understand the potential impact of vaccination over time, some background on
rotavirus disease and the vaccine is needed. Rotavirus disease is mainly seen in very young
children aged less than two years, often accounting for close to 80% of all the child rotavirus
hospital disease events in the at-risk population aged under five years. The hospital disease
age spread followed a Weibull distribution up to the age of 60 months (Figure 1 (RotaBIS
data)) [26].
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Rotavirus disease is seasonal in temperate climate conditions with a peak each year
at the end of winter, from February to late April in the Northern Hemisphere [27]. The
primary sources of infection in the at-risk population are infants aged between three and
14 months because that age group is most susceptible [28]. Older children in the at-risk
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population can also spread the virus and act as secondary infection sources. In the pre-
vaccination period, the importance of this secondary infection source is limited due to the
dominance of the younger age group [19].

There are two commercially available oral rotavirus vaccines commonly used in HICs,
a 2-dose live attenuated vaccine derived from a single human strain (Rotarix®, GSK, Wavre,
Belgium) and a 3-dose live attenuated human-bovine assorted vaccine with five strains
(RotaTeq®, Merck Vaccines, Kenilworth, NJ, USA) [25]. The vaccines have a limited age
indication for administration. Vaccination should be given prior to six months of age for
the 2-dose vaccine, and prior to eight months of age for the 3-dose vaccine, because of the
risk for a severe adverse event caused by the vaccine, intussusception, which increases
with age [29]. As a result, when the vaccine is introduced, it cannot be administered as
a catch-up vaccine to the whole at-risk population at once. Coverage needs to be built
up gradually in the child population as successive cohorts of infants are vaccinated when
eligible. The seasonality of rotavirus disease requires the selection of a starting point for
the vaccine programme that can reach high accumulated vaccine coverage before the next
disease peak season by maximising vaccine administration to all infants born from the
start of the vaccination to the first disease peak season. High vaccine coverage in the peak
season is crucial, because this is the time of highest virus transmission within the at-risk
group, and this should be reduced by the vaccination [19].

The level of vaccine coverage during the first peak season after introduction has
additional consequences for the level of indirect (also called herd) effect of the vaccination.
Indirect effects can lead to important added protection of non-vaccinated at-risk children.
Once the vaccine coverage has reached the 5-year implementation in the at-risk population,
a new situation of infection spread and disease manifestation appears, depending on
the initial coverage achieved. This is no longer a situation of coverage build-up, but a
post-vaccine uptake period. A new state of infection equilibrium is achieved between
susceptible, infected/infectious, and recovered children, exposed to a much lower rate of
infection risk because of the vaccination [30].

2.2. Data Sources: The RotaBIS Study

RotaBIS is a database study initiated in 2007 and conducted in 11 hospitals in Belgium
(eight general hospitals with a paediatric ward, three paediatric hospitals). The centres had
546 paediatric beds, representing 30.6% of a total of 1793 paediatric beds in Belgium [13]. All
children aged ≤5 years were eligible for inclusion when hospitalised for diarrhoea if they
had a rotavirus detection test performed at one of the participating centres. From 2005 until
the end of 2006, enrolled children were considered the pre-vaccination study group and
those enrolled from 2007 until the end of 2019 were the post-vaccination study group.
The following information was recorded for each sample: patient’s birth date and gender;
sample date; rotavirus test result; and date of admission and discharge. Hospitalisation
was classified as AGE-driven if the stool sample was collected within 48 h of hospitalisation.
The mean length of stay and total number of hospitalisation days were calculated for
hospitalised patients. Rotavirus infections were considered community-acquired if a stool
sample taken within 48 h of hospital admission was rotavirus-positive.

We compared the absolute numbers of rotavirus-positive test results between the pre-
vaccination and post-vaccination study seasons with the number of positive tests in the pre-
vaccination period as the reference. The underlying assumption is that the coverage area for
each of the hospitals participating in the study remained the same across the whole study
period. Therefore, the most relevant value for the comparison of pre-and post-vaccination
is the average absolute number of positive tests observed per time unit. Vaccine sales data
in Belgium showed that vaccine coverage was low before reimbursement. We therefore
assumed that no children were vaccinated prior to reimbursement in November 2006.

Ethical approval was obtained annually from 2007 when the study was initiated and
from 2018 for a 3-year contract period instead of annual data. Figure 2 summarises the
observed RotaBIS data over time. It shows a rapid initial fall in hospitalisations, which
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levelled off at around year 3. This was followed by a pattern of biennial hospitalisation
peaks starting in year 9 (Figure 2). We designated these two periods as the vaccine uptake
period and the post-uptake period, respectively, with the division set at eight years after
vaccine introduction, as indicated in Figure 2. Figure 2 also plots the results of two
mathematical regressions, the first showing what would be expected with the vaccine
effect fixed at 90%, coverage fixed at 90% and no other factors involved (‘Modelled fixed’),
and the second showing the effect of adding indirect vaccine effect at 85% protection of
unvaccinated children ‘(Ideal’). It can be seen that the observed RotaBIS data differed
markedly from either of these regressions. The objective of our analysis was to investigate
the reasons for these differences. We approached this by developing models to replicate the
observed data, and then modified the parameters in the models to identify the key factors
affecting the outcomes.
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Figure 2. Summary results of the RotaBIS data (‘Observed’) compared with modelled results showing
the effect of fixed vaccine effect at 90% and fixed vaccine coverage at 90% (‘Modelled fixed’) and the
effect of adding the herd effect at 85% protection of unvaccinated children to the 90% vaccine effect and
90% vaccine coverage (‘Ideal’). The vertical dotted line indicates the two sequential post-vaccination
periods modelled separately: the vaccine uptake period in which the coverage is gradually built up
after vaccine introduction and the post-uptake period with a new disease/infection equilibrium.

Combining these two different periods into a single model construct is challenging.
The vaccine impact has a different dynamic, and as a consequence, the infection spread
is also different in each period. We therefore modelled the vaccine uptake period and
post-uptake periods separately, using different model types for each period. The vaccine
uptake period used a linear regression equation with different parameters affecting the
hospitalisation rate per unit time, and is described in detail elsewhere [18]. The present
analysis added a second model for the post-uptake period, using a mathematical time-
differential, compartmental model that replicated the hospitalisation peaks over time
resulting from the impact of the vaccine on infection transmission dynamics.
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2.3. Hypotheses to Test
2.3.1. Hypothesis for the Vaccine Uptake Period

The null hypothesis (H0) was that the effect of vaccination observed during the vaccine
uptake period resulted from a process that includes vaccine waning, which may reduce
the vaccination effect, as often claimed in the literature [7,9,31]. The alternative hypothesis
(Ha) is that the vaccine impact seen is mainly the result of a combination of direct vaccine
effect, indirect herd effect, and secondary sources of infection, with vaccine waning playing
a much smaller role.

2.3.2. Hypothesis for the Post-Uptake Period

Expectations for changes in hospitalisation over time with a vaccine of high efficacy
and coverage are a continuous, proportional decline across the at-risk age groups, resulting
in smaller hospitalisation peaks and time intervals between the peaks [32]. The first dy-
namic models published when rotavirus vaccine was introduced in HICs in 2006 indicated
such a pattern [8]. The null hypothesis H0 is therefore that once a new infection equilibrium
is reached after introducing the vaccine, hospitalisations would decline, leading to local
elimination over time. The alternative hypothesis (Ha) is that there is no further decline
to be observed early in the post-uptake period, but that regular peaks may appear with
smaller height and lower frequency than in the pre-vaccination period if the vaccine cov-
erage at the start was not optimal. This pattern results from the influence of secondary
sources of infection, and should be characterised by a change in the age distribution of
hospitalised cases among the unvaccinated children in the post-uptake peaks compared
with pre-vaccination.

2.4. Replicating the Observations through Modelling
2.4.1. Modelling the Vaccine Uptake Period

To model the vaccine uptake period, we used a regression equation with known input
variables with values estimated based on the RotaBIS data (Table 1), in which the dependent
variable was the hospitalisation number. The model is described in detail elsewhere [18],
and the full equation is defined as follows:
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i = year
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y = rotavirus hospitalisations post − vaccination
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Other codes are explained in Table 1.
As shown, the equation had two groups of independent variables affecting the out-

come. The first group was related to the vaccination programme. Some variables had a
positive direct impact on hospitalisations (vaccine efficacy and coverage), but others had
a negative direct impact by reducing the vaccine effect (waning). The second group was
related to the indirect impact of the vaccine, again, with positive effects in reducing the
hospitalisations in unvaccinated children (the herd effect) and negative effects (presence of
secondary sources of infection that cannibalise the herd effect). The value estimates of the
variables were obtained from the RotaBIS study examining the impact of vaccination on
hospitalisation in Belgium since the vaccine introduction in late 2006 [13,16,33–35] (Table 1).



Viruses 2022, 14, 425 6 of 23

Table 1. Defining the baseline parameter value estimates from the RotaBIS study (adapted from [18]).

Uncertainty

Variable/Force Code Value BE Min Max

Vaccine efficacy VE 95% 95%
Vaccine coverage 1st year Cov1j 52% 49% 54%

Vaccine coverage subsequent years Covij 83% 82% 85%
Herd effect (0–2 m 1st year) HEA 15% 13% 17%

Herd effect (older unvaccinated 1st year) HEB 31% 29% 33%
Herd effect (older unvaccinated subsequent years) HED 33% 30% 45%

Herd effect (0–2 m subsequent years) HEC 75% 60% 80%
Secondary infection source (2nd year older) SIA 35% 30% 45%

Secondary infection source (0–2 m subsequent years) SIB 27% 25% 35%
Waning cohort Wn 12% 5% 20%

BE, Belgium; m, months.

2.4.2. Modelling the Post-Uptake Period

The post-uptake period, as above-mentioned, is characterised by a new dynamic
infection equilibrium in the at-risk population that may show hospitalisation peaks, as
seen in the pre-vaccination period but at a much reduced height and frequency. The model
must therefore simulate the observed hospitalisation peaks and be able to demonstrate
that marginal changes in vaccine coverage affect the hospitalisation numbers. We selected
a dynamic Susceptible–Infectious (SI) model, constructed using the Hamer–Soper (H–S)
model type in which model predictions could remain stable over time [32,36]. This model
allows us to identify the variables that produce the hospitalisation peaks at the observed
frequency. However, with the H–S model, the list of variables is limited. A key variable
was the peak hospitalisation number reached in the post-uptake peaks. We analysed the
observed data of the RotaBIS study by week during the post-uptake period to define
this peak value, which was around 50 hospitalisations per week in the at-risk population
(Figure 3) [19].
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A H–S model assumes constant replenishment of susceptible individuals via new-
borns. The rate of new events (=hospitalisations) is jointly proportional to the number of
susceptibles and the number of infectious individuals. The number of recoveries was also
proportional to the number of events. Those not recovering were assumed to be equally
contagious over the duration of an event. Those recovered were assumed to be immune
and no longer contributed to the disease spread. The model design is presented in Figure 4,
together with the two time-differential equations. Values had to be defined for the growth
rate of susceptibles per time unit (α), the force of infection (λ), and the rate of recovery (γ).
However, the latter is not critical because recovered individuals had no further impact on
the disease spread.
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The H–S equations were:

xk+d = xk + α − yk+1

yk+d = λxkyk − γyk

The data input for the second model (Table 2) was also extracted from the RotaBIS
database, complemented with an assumed value for the force of infection that replicated
the dynamic process.

Table 2. Data input for the H–S model simulating the hospitalisation peaks in the post-uptake period.

Variable Name Code Value Minimum Maximum

Average existing susceptible/wk x0 120 32 180
Existing infectious/diseased/wk y0 1 1 22

Birth rate increase/wk α 20 5 35
Force of Infection λ 0.00833 0.00300 0.00900
Time unit (days) wk 3.5

Wk, week.

2.5. Analysis

The overall aim was to obtain three output results with the two models developed. The
first one was to identify datasets for each model that achieved a best fit with the observed
data for each period. This should help to identify the key factors affecting the results. A
second aim was to evaluate the effect of improving vaccine coverage by 10 percentage
points during the post-uptake-period, in a situation resembling the RotaBIS study data.
The third area to explore was the effect on hospitalisations in the post-uptake period of
improving vaccine coverage at the start of the first year in the vaccine uptake period to an
ideal situation.

2.5.1. Analysis of the Vaccine Uptake Period

To fit the model-generated data as closely as possible to the observed hospitalisation
data at each annual time point, we used constrained optimisation, in which the objective
function was to minimise the difference in hospitalisations between the observed and
modelled data accumulated over the first eight years of the vaccine introduction. A best-fit
software programme in Microsoft Excel, called Solver, was used to identify the value for
each variable selected to produce the optimal match with the observational data while
complying with specific constraints. These constraints were introduced at two levels. The
first level specified the minimum and maximum range within which the values of the
variables may vary in the regression equation (the four direct vaccine effect variables).
The second level was related to the annual time- and age-specific fit of the data (the
four indirect vaccine effect variables). Table 3 shows a matrix of age groups and annual
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observations, with eight areas having a common vaccine and/or disease effect during the
vaccine uptake period. The colour code for each area will help to explain the sensitivity
analysis conducted for each area. Table A1 in Appendix A provides more details of the
optimisation analysis performed.

Table 3. Defining the areas in the model grid with their regression equations (adapted from [18]).

A B C D E F G H I

Age Groups Pre Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8
1 0–2 months 113 1 2
2 3–12 months 678
3 13–24 months 413 5 7
4 25–36 months 102 3
5 37–48 months 27 6 8
6 49–60 months 12 4

Total observations 1345
Relative 100%

Subgroup Area # Cell numbers Definition

Direct vaccine effect

5 B2, C3, D4 First vaccinated birth cohort no waning
6 E5, F6 First vaccinated birth cohort with waning
7 C2-I2, D3-I3, E4-I4 Subsequent vaccinated birth cohorts no waning
8 F5-I5, G6-I6 Subsequent vaccinated birth cohorts with waning

Indirect vaccine effect

1 B1 Pre-vaccinated period first birth cohort (0 to 2 m) no
secondary source of infection

2 C1-I1 Pre-vaccinated period subsequent birth cohorts (0 to
2 m) with secondary source of infection

3 B2-B6 First year herd effect no secondary source of infection
(13 to 60 m)

4 C4-C6, D5-D6, E6 Subsequent years herd effect with secondary source
of infection (25 to 60 m)

m, months, Pre, pre-vaccination.

Scenario analysis was conducted to explore the effect on outcomes of vaccine coverage
achieved in the first year. We introduced for that effect, a linear relationship between the
herd effect and first-year vaccine coverage, in which a one percentage point rise in vaccine
coverage in the first year resulted in a 1.64 percentage point increase in herd effect. This
was estimated based on RotaBIS data. Vaccine coverage achieved during the peak season
in the first year was around 52% and the maximum coverage that could be obtained by
starting the vaccination earlier was 85%, while the herd effect measured in the first year was
31% and in an ideal scenario could reach 85%. A second linear relationship was introduced
between this change in herd effect and the effect of secondary sources of infection in
subsequent years in the same unvaccinated age groups. For each percentage point increase
in herd effect, the reduction in the cannibalising effect of the secondary infection sources
was 1.06 percentage points. The cannibalising effect of secondary sources of infection on
herd effect in RotaBIS was estimated at 35% in the second year of observation, reaching 0%
when the maximum herd effect was attained [37].

Sensitivity analysis evaluated four conditions separately: no herd effect; no secondary
sources of infection; no waning present in the regression analysis; and a simulation of the
compensation needed in waning to substitute the effect of removing secondary sources
of infection to reach the observed hospitalisation result after eight years. We called this
simulation the adjusted waning process.

2.5.2. Analysis of the Post-Uptake Period

The first analysis evaluated the changes in age distribution in the hospitalisations
between the pre-vaccination period and the peaks in the post-uptake period. We split
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hospitalisations into 13 age-groups and compared the distribution of hospitalisations
between the pre-vaccination period and the first peak in the post-uptake period.

To run the dynamic model, data on estimated susceptibles at year 9 post-vaccination,
when the stabilising dynamic infectious disease processes of the post-uptake period were
operational, were needed. These were not available in the RotaBIS dataset, and were
estimated using the following calculations. The pre-vaccination period in the RotaBIS study
had around 1385 rotavirus hospitalisations per year in the child population up to five years
old. This number represented about 2.5% of the at-risk child population, and therefore, a
stable annual population number of 55,000 children was estimated as the input data for
the population aged up to five years [26]. Each year, around 11,000 new children entered
the group (55,000 divided by 5) and the same number left when reaching the age of five
years. At year 8 post-vaccination, the newborn population had a vaccine coverage rate
that reached 85%. In the remaining population aged up to one year, there was a slightly
lower coverage of 83%. Therefore, in the group aged 0–1 years at year 9, the susceptible
group was estimated at 1760 children, and in the total population aged up to five years,
the average number of unvaccinated children was around 10,340 or 19% of the total at-risk
child population. The number of susceptibles needed to induce a hospitalisation peak of
the size observed in the RotaBIS data was deduced from the start of the hospital peak.
The values for the variables α, λ, γ, and yk in the two equations of the H–S model were
adjusted until the model output produced hospitalisation peaks of a size and frequency
that matched the observed data.

Replicating the observed biennial peaks in the model, we identified the drivers of
their appearance and how those peaks could be reduced by changing their input values. It
should be noted that the observed data reported in Figure 2 were annual numbers, while
the data presented in this second model were weekly. The latter should sum each year to
the observed annual data.

Sensitivity analysis investigated the effect of changing the pool of susceptibles by
10 percentage points by increasing vaccine coverage by 10 percentage points on the number
of hospitalisations in the post-uptake period.

Finally, a scenario evaluation assessed whether increasing the vaccine coverage from
the first year in the vaccine uptake period affected the hospitalisation peaks during the
post-uptake period. This was simulated by reducing the number of susceptibles in the H–S
model by increasing vaccine coverage by 15 percentage points, 30 percentage points, or to
a maximum coverage rate of 95%.

2.6. Statistical Tools

We used @Risk from Palisade to simulate the distributions and STATA software to
statistically evaluate the datasets.

3. Results

Table 4 shows the observed data from RotaBIS by year and age group. The two models
developed needed to be fitted to replicate these data as closely as possible [19].
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Table 4. Observed data from the RotaBIS study by year and age group. Pre-vaccination (blue), vaccine
uptake period (green), post-uptake period (orange), and under the influence of secondary sources
of infection in the vaccine uptake period (yellow), causing the new peaks in the post-uptake period
(brown) (adapted from [18]).

Age Groups Pre Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13
0–2 m 113 94 62 56 44 65 54 44 48 56 28 55 52 27

3–12 m 678 340 152 129 127 133 103 97 70 137 75 123 125 95
13–24 m 413 311 208 100 139 134 114 107 74 186 85 180 119 96
25–36 m 102 56 67 49 33 44 33 33 31 67 17 42 37 35
37–48 m 27 16 18 19 19 12 9 15 4 13 8 18 9 9
49–60 m 12 2 12 8 10 7 7 4 1 10 4 6 8 6

Total 1345 819 519 361 372 395 320 300 228 469 217 424 350 268
Relative

reduction 100% 61% 39% 27% 28% 29% 24% 22% 17% 35% 16% 32% 26% 20%

m, months; pre, pre-vaccination; y, year.

3.1. The Vaccine Uptake Period
3.1.1. Model Fit

Table 5 shows the results of the model fit for the vaccine uptake period (baseline values
with adjusted values obtained by running the Solver software). Figure 5 shows the near
equivalence between the observed data and the optimal model fit data. The sum of the
observed totals for the first eight years post-vaccination was 3314 (Table 4, sum of ‘Total’
for Y1–Y8), with a result of 3311 for the model with a root mean square deviation equal to
0 (Table 6).

Table 5. Data input in the model simulation.

Variable/Force Code Baseline Value Model Adjusted Value

Vaccine efficacy VE 95% 95%
Vaccine coverage 1st year Cov1j 52% 52.6%

Vaccine coverage subsequent years Covij 83% 82.8%
Herd effect (0–2 m 1st year) HEA 15% 16.8%

Herd effect (older unvaccinated 1st year) HEB 31% 30.5%
Herd effect (older unvaccinated

subsequent years) HED 33% 33.0%

Herd effect (0–2 m subsequent years) HEC 75% 78.8%
Secondary infection source (2nd year older) SIA 35% 34.8%

Secondary infection source (0–2 m
subsequent years) SIB 27% 26.5%

Waning cohort Wn 12% 18.2%
m, months.

Table 6. Sum of results by area for the modelled and observed data and the RMSD.

Area Modelled Observed Difference RMSD
1 94 94 0.00 0
2 374 373 0.84 −628
3 385 385 0.00 0
4 132 134 −2.03 541
5 597 597 0.00 0
6 23 26 −2.75 136
7 1653 1653 0.00 0
8 52 52 0.46 −48

Sum 3311 3314 −3.48 0.000
RMSD, root mean square deviation.
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Figure 5. Observed versus modelled and adjusted data for the vaccine uptake period from pre-
vaccination to year 8 post-vaccination.

To bring the modelled curve to the level of the observed data, we had to include the
impact of secondary sources of infection (Table 1, SIA = 35% and SIB = 33%). The latter
infected those who were normally protected by the herd effect of the first vaccination,
resulting in a 6% decrease in vaccine effect during the observation period or 210 additional
hospitalisation events that could have been avoided. As a result, with vaccine coverage
of 52% during the peak season in the first year, secondary infections appeared, causing a
reduced herd effect in unvaccinated children in the years after the first vaccination year
(yellow cells in Table 4). This is plotted in Figure 5, showing the adjusted line that obtained
the best model fit with the observed data.

The model output identified the time-point at which the hospitalisation curve levelled
off to a plateau, instead of continuing to decrease at the same rate as previous years. This
plateau occurred in year 3 after the first two years of vaccination had reduced the bulk of the
disease burden. The hospitalisation level at which the plateau appeared was determined
by the coverage rate obtained during the peak season in the first year, as explored in the
scenario analysis.

3.1.2. Hypothesis Testing

The fact that the model needed to include secondary sources of infection to obtain
the best match to the observed data is consistent with our alternative hypothesis (Ha), that
secondary sources of infection affect vaccine effect during the vaccine uptake period.

3.1.3. Scenario Analysis

The scenario analysis in which we improved the vaccine coverage in the first year,
leading to a higher herd effect and to a reduced secondary infection rate, shifted the
hospitalisation curve lower and to the left. We applied an increase in first-year vaccine
coverage rate to the model in steps of 15 percentage points (Figure 6). The second step
(Max) came close to the maximum vaccine effect (90% vaccine effect, 90% vaccine coverage,
and 85% first-year coverage) shown in Figure 2 as ‘Ideal’.
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Figure 6. Progressively improving the vaccine coverage in the first year of vaccination resulted
in greater herd effect and fewer secondary infections during the first years of vaccination, in turn,
reducing hospitalisations.

3.1.4. Sensitivity Analysis

Table 7 shows the results of the sensitivity analysis on the variables that determined
the four areas that were not fully restricted by the constrained rules of the optimisation
model (the indirect vaccine effect). This analysis defined the variables that had the most
impact on the course of the curve during the vaccine uptake period. Depending on the
first-year vaccine coverage, the secondary sources of infection played a role in pushing
the decreasing curve in the opposite direction to the herd effect. Vaccine waning, here
simulated from the third year onwards, had little to no impact because the bulk of the
disease was already covered by the vaccination before waning could start having an impact.
The results of the adjusted waning scenario in the absence of secondary infection sources
show that waning must increase by 200% of its current value (Table 4) to reach the same
result as the observed data. Table 7 shows the results of a limited adjusted waning, in
which waning was increased by 100%. The number of hospitalisations still only reached
3164, well short of the 3314 in the observed data.

Table 7. Impact of herd, secondary infection, and waning on hospitalisations.

Area Observed Modelled
No

Secondary
Infections

No Herd
Effect

Limited
Adjusted
Waning

No
Waning

1 94 94 94 113 94 94
2 373 378 168 790 168 378
3 385 385 385 554 385 385
4 134 132 77 192 77 132
5 597 597 597 597 597 597
6 26 23 23 23 40 20
7 1653 1653 1653 1653 1653 1653
8 52 52 52 52 150 31

Total 3314 3314 3050 3976 3164 3289
Difference 0 264 −661 150 25

3.2. The Post-Uptake Period
3.2.1. Model Fit

Table 8 shows the adjusted values that produced the model fit for the hospitalisation
peaks in the post-uptake period, with a value for the area under the curve that was
equivalent to the 469 hospitalisations in the observed data at year 9 post-vaccination
(Table 4).
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Table 8. Data input adjustment for the best-fit of the H–S model simulating the biennial peaks in the
post-uptake period and the data input for the pre-vaccination peaks.

Post-Uptake Period Pre-Vaccination

Variable Name Code Baseline Value Adjusted Value

Average existing
susceptible/wk x0 120 120 1020

Average existing
disease

events/wk
y0 1.0 0.4 1.4

Birth rate
increase/wk α 20 19.9 10.4

Force of
Infection λ 0.00833 0.00833 0.00098

Time unit (days) wk 3.50 3.50 1.24
Wk, week.

Figure 7 shows the profile comparison of the susceptibles and the disease events/
hospitalisations using the same H–S model for the pre-vaccination period and the post-
uptake period. Pre-vaccination, the disease event peaks occurred on an annual basis, while
the post-uptake period of the RotaBIS study showed biennial disease peaks. Vaccination
had a major impact on reducing the number of susceptibles in the post-uptake period
compared with pre-vaccination.
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3.2.2. Hypothesis Testing

Figure 8 shows the age distributions in the hospital peaks of the pre-vaccination period
compared with the first small hospitalisation peak in the post-uptake period (year 9 post
vaccine introduction (Table 4)). This analysis tests the hypothesis that regular biennial
peaks may occur due to an age-shift in the distribution, which occurs because unvaccinated
age groups (not directly affected by vaccination) become the primary source of infection.
The same relative age distribution in the second hospitalisation peak of the post-uptake
period in year 11 post-vaccine introduction was observed as in year 9 (data not shown).

The Figure 8 shows the marked age-shift, with a decrease in the percentage of hos-
pitalisations accounted for by the high-transmitter group aged 3–14 months from 59% in
the pre-vaccination period to 35% in year 9 post-vaccination ((Chi-square: 74.15; Df: 1;
p < 0.0001). This is consistent with our alternative hypothesis (Ha). Conversely, the
group aged 15–23 months increased in relative size, from 19% pre-vaccination to 35%
post-vaccination. Both age-groups together (3 to 23 months) formed an important suscepti-
ble population group during the disease peak season in the post-uptake period, causing
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the hospitalisation peaks every two years. In absolute terms, the peaks were small (n = 305)
compared with the primary source in the pre-vaccination period (n = 828). It therefore
takes a longer time (two years) before the susceptible group is sufficiently large during
the peak season to induce a hospitalisation peak. This age-redistribution results in the
peaks occurring regularly in frequency and in size every two years instead of annually as
in the pre-vaccination period. As shown in Figure 9, the older age-group (13–23 months)
contributed most to the primary source of infection in the post-uptake period, whereas
the younger group (3–12 months) was directly protected by the vaccine and had a smaller
effect. The older group was not under the immediate effect of the vaccination, and therefore
the size and reproductive number of this group determined the frequency and size of the
hospitalisation peaks.
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3.2.3. Sensitivity Analysis

Figure 10 shows the results of the sensitivity analysis in the post-uptake period.
Reducing the number of unvaccinated susceptible newborns by 10 percentage points
during the post-uptake period by increasing the vaccine coverage rate indicated small
improvements in hospital reduction in the short-term (Figure 10).
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centage points in the post-uptake period.

With differential equations, changing one variable input often affects more than one
result at the same time. If the number of newborn susceptibles was changed by a higher
vaccine coverage, it had an impact on the number of susceptibles in the group, but also on
the reproductive number. This reduction in the number of susceptibles extended the time
taken to increase the number of susceptibles, which in turn resulted in smaller hospital
peaks over time, proportional to the number of susceptibles available to cause the peak
(Figure 10).

3.2.4. Scenario Analysis

Figure 11 shows the effect of increasing vaccine coverage in the first year of vaccination
on hospitalisations over 10 years (520 weeks) in the post-uptake period, compared with the
H–S model fitted to the observed RotaBIS data (‘Observed’).
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Figure 11. Modelled disease events in the post-uptake period given the condition of hospitalisations
in the vaccine uptake period, showing the model fitted to the observed data from RotaBIS, and the
effect of reducing susceptibles by increasing first-year vaccine coverage by 15 percentage points,
30 percentage points and to the maximum (95%) modelled (‘Reduced Max’).
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Decreasing the number of susceptibles by increasing first-year vaccination coverage
by 15 percentage points, 30 percentage points and to 95%, concentrated in the group aged
3–12 months, systematically reduced the frequency and height of the peaks in the post-
uptake period. Frequency reduced from biennial disease peaks to every four years, every
eight years, and every 10 years as the number of susceptibles was reduced. There was
also a dramatic reduction in the height of the peaks, resulting from the lack of susceptibles
present in the older age-groups, which caused the greater height in the simulation fitted to
the observed data. The analysis illustrates that if the vaccination had been introduced at
higher coverage from the first year of vaccination, thereby minimising susceptibility in the
group aged 13–23 months, the likelihood is that repetitive disease peaks would be much
reduced in size and frequency for a considerable time into the post-uptake period.

4. Discussion

The mathematical modelling analysis presented here suggests an explanation for the
higher than expected plateau and subsequent biennial peaks in rotavirus hospitalisations
observed in the RotaBIS study after the introduction of rotavirus vaccination in Belgium.
Our findings indicate that the most important determinant of rotavirus vaccination impact
is the coverage rate in the first year. Achieving a high vaccine coverage rate as quickly as
possible before the first rotavirus disease seasonal peak maximises the impact of vaccination
on reducing rotavirus hospitalisations in at-risk children for many years after vaccine
introduction. Conversely, increasing vaccine coverage in later years has relatively little
effect. Our model findings indicate that secondary sources of infection are consistent with
the observed RotaBIS data, while vaccine waning is not a satisfactory explanation. The
analysis presented here extends our previous study on the vaccine uptake period [18] by
adding a second mathematical model to cover the post-uptake period.

This study could help decision-makers to design vaccine implementation strategies to
achieve better rotavirus vaccination outcomes than those obtained in Belgium. It should
be noted that the RotaBIS study results were locally interpreted as a vaccination success,
with the reduction in disease-specific hospitalisations of around 73% in the at-risk popula-
tion [38,39]. The small biennial peaks that appeared after a while were considered small
side-effects of the vaccination programme, as vaccination cannot be perfect if the coverage
is not 100%. However, the analysis of data from the RotaBIS study presented here indicates
that the success of the rotavirus vaccination programme in Belgium could have been greater
with a different implementation strategy. An earlier start of vaccination prior to the next
seasonal disease peak season could have initiated a cascade of additional disease events
being avoided. The additional benefit could have been substantial: in the short-term, a
better herd effect; in the medium-term, a much lower plateau in hospitalisations after the
third year of vaccination; and in the long-term, smaller and less frequent new disease
peaks after reaching a new infection equilibrium over time. Comparing the numbers of
hospitalisations over 13 years for the ‘Ideal’ regression line shown in Figure 2 (expected
impact of vaccination with 90% vaccine effect, 90% vaccine coverage and herd effect of 85%
protection of unvaccinated children) with the numbers of hospitalisations observed in the
RotaBIS study indicated that around 3200 more hospitalisations could have been avoided
over the 13-year period, close to a 20% improvement. These findings are potentially useful
for decision-makers in countries considering the introduction of rotavirus vaccination
programmes as they indicate that concentrating on obtaining high coverage as quickly as
possible in the first year is the single most important factor in maximising the benefit of the
vaccination programme.

The analysis also shows the importance of understanding and identifying the pri-
mary sources of infection together with the presence of secondary sources. Therefore, the
objective of a new vaccination programme against rotavirus should be to maximise the
elimination of the primary source of infection in the first year as a necessary condition for
subsequent reduction in the effect of secondary sources. Not achieving that goal immedi-
ately allows the virus to remain in the at-risk population in the older age group acting as
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secondary sources of infection, with the appearance of regular small disease peaks over
time. These new peaks are conditional on the remaining susceptible group, with their con-
tact network and transmission risks defining the reproductive number, resulting in regular
peaks. This new disease pattern, appearing 7–8 years after the vaccine introduction in the
RotaBIS data, is little affected by an increase in vaccination coverage (up to an additional
10 percentage points) in the vaccinated group when coverage is already above 80% during
the post-uptake period. Our analysis showed that this is because the primary infection
source shifted to an older age group when vaccine coverage was not maximised in the first
year. This older age group was larger than the increase in the vaccinated group resulting
from the 10 percentage point increase in coverage, and as they are too old for vaccination,
the vaccine has no immediate impact on it. Data (not yet disclosed) from the period of the
lockdown measures taken to reduce the COVID-19 pandemic in Belgium in 2020 indicated
that rotavirus hospitalisations were significantly reduced for that year, although a new
disease peak would have been expected. Vaccination coverage rates remained high, and
the lockdown measures may have effectively been an opportunistic measure to obtain
long-term maximum control of rotavirus infection spread and disease events in Belgium.
This may indicate that the biennial disease peaks arising from low vaccine coverage in
the first year can be subsequently reduced by drastic measures such as lockdown. If the
biennial rotavirus peaks do not reappear in the future, we may never know whether the
biennial peaks seen in the RotaBIS study would have been maintained over time.

Compared with the previous reporting of the RotaBIS results [19], the following can
be concluded. The two-period modelling presented here, together with the introduction of
secondary sources of infection and a likely timescale for vaccine waning, have provided
a better insight and explanation of the factors affecting rotavirus vaccination impact over
time. This new approach could also be helpful when considering the introduction of other
vaccination programmes.

Comparison with other countries may also be of interest to identify similarities and
differences compared with our results. We were able to collect data from four countries in
Europe that initiated a UMV against rotavirus disease during the past decades, although
results were not reported or published beyond the first four to six years of their vaccination
programme. These countries are Austria (2007) [12,17,40], Finland (2010) [20,41,42], the UK
(2013) [21,43–45], and Ireland (2018) [46]. We also considered Australia (2007) [23,24] and
the USA (2006) [22,47] as they have reported equivalent or longer periods of observation.

Figure 12 shows the results from the four European countries. The comparison was
not straightforward because sufficient details of age distribution of rotavirus disease pre-
and post-vaccination were not always available in the publications, duration of follow-up
differed by country, no systematic pre-vaccination baseline values by age group were
reported, no systematic introduction of rotavirus testing was reported, or results were
very compressed. Briefly, the method used to analyse the published European data was
to determine annual estimates of the reduction in disease-specific hospitalisations for the
same at-risk population (aged <5 years) from the point at which the vaccine was introduced.
We used relative values to allow comparative assessments between the country data.

Figure 12 shows that during the first six years of vaccine introduction in those countries,
no disease event peaks appeared. As the number of years of observation is limited, such
peaks may possibly occur later in their vaccination programmes, as seen in Belgium.
Finland and the UK achieved the best results, close to an ideal situation (‘Best’ in Figure 12)
because they started their vaccination programmes earlier (July–September) compared with
Belgium (November) and Ireland (December) and immediately achieved a high vaccine
coverage of newborns (above 90%). This is in contrast to the Austrian situation, where
reimbursement was also started early (in June 2007), but vaccination coverage progressed
gradually over time (from 50% to 85%). Therefore, despite starting the programme at the
optimal time, the slow coverage build-up meant that the programme could not achieve
the maximum accumulated vaccine coverage during the first peak season post-vaccine
introduction. Ireland started their campaign in December 2018 and could not have achieved
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a substantial vaccination effect in the first year, showing that starting the vaccination
campaign close to the next disease peak season may limit the value of the vaccine in the
first year. Figure 12 supports the importance of starting in good time with the vaccination
and obtaining the maximum vaccine coverage prior to the first disease peak season after
vaccine introduction.
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Figure 12. Evaluation of the five countries in Europe that initiated UMV against rotavirus during the
past decades. UMV, universal mass vaccination.

Figure 12 indicates that the plateaus in the hospitalisation reduction in Finland and
the UK were formed at a lower level compared with Belgium and Austria. Our results
suggest that reaching this low level early after vaccine introduction may have avoided
the creation of groups with secondary sources of infection in the at-risk population, and
therefore, it is likely that these countries may not see small peaks appearing later, as seen in
the RotaBIS study. This could be a valuable topic for future research if more data become
available from these countries over time.

The published analyses from the USA and Australia were mainly concerned with
obtaining the right numbers of rotavirus disease cases with the diagnosis corrected from
the databases available. In Australia, the latest epidemiologic study on the rotavirus
vaccine effect was mainly on acute gastro-enteritis data, in which for the first five years
after vaccine introduction (2007–2012), the peaks by age groups were more attenuated,
except for the group aged more than three years old, four years after the introduction of
the vaccine [24]. It could be that this particular increase, as the authors suggested, was in
an age group not covered by the vaccine because they were too old to be vaccinated [23].
Our evaluation indicates that the Australian data showed a hospital reduction with the
vaccination, in line with data reported in Europe during the first 5–6 years, but we could
not identify from the publications an overall vaccine effect value for the at-risk group per
year and therefore could not investigate whether a comparable plateau formed in year
3 after vaccine introduction.

The USA data, recently reported in 2019, have some other interesting features [22].
First, the data showed peaks appearing in the unvaccinated groups not after a long period
of vaccine uptake such as in Belgium, but 3–4 years after vaccine introduction. A major
difference between the USA situation and Europe is that in the USA, there are recommen-
dations for vaccination, but that does not mean that everyone will immediately follow
the recommendation and obtain vaccination. The models report vaccine coverage rates of
50% at the start, which could be the reason for the early appearance of disease peaks. As
explained in the present analysis of the Belgian data, if vaccine coverage is not high from
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the start, there is potential for early shifts to age groups that act as new primary sources of
infection and are no longer exposed to the direct effect of the vaccine. As such, the results
in the USA are broadly in line with our model findings. Our analysis suggests that these
biennial peaks are likely to persist for a long time and will not soon reach a situation close
to an appropriate control of this infection, as has been suggested [47]. Slight improvement
in vaccine coverage rate will lead to better results, but in the short-term, the improvements
will not be very spectacular. The case of the USA is interesting to demonstrate the potential
trap in rotavirus vaccination, that without high initial coverage in the first year, biennial
peaks can rapidly develop in the post-uptake period, much sooner than expected.

This evaluation of the Belgian data has some limitations. Over a 15-year period, there
could have been changes in disease management among the participating centres, of which
we were unaware, which could have affected the number of disease events hospitalised
such as less severe cases being hospitalised because beds were available. We also made
assumptions that the catchment area was considered the same during the whole observation
period for each participating hospital, which can be questioned because there is a known
overall decrease in newborns noted over the years in Belgium. On the other hand, the
study was simple to implement, and no extra effort was requested from the personnel
in each of the participating centres as we only used data that were already collected in
the hospital databases. Rotavirus tests are reimbursed in Belgium until the age of two
years, which means that the data collected under that age limit could be considered quite
reliable. There was a strong incentive among the participating centres to continue the study
if regular updates about the results were provided. The post-uptake model did not include
an age-structured design and therefore could not replicate the change in age distribution
observed in the RotaBIS data. However, the model was helpful in indicating the direction
of the movements caused by changes in the values of the variables in the model.

5. Conclusions

In summary, our models indicate that the process of reduction in rotavirus-related
hospitalisations through vaccination was driven most strongly by selecting the optimal
starting date of the vaccination and rapidly achieving high vaccine coverage before the
first peak disease season. In this respect, Finland and the UK followed the best approach
among the countries for which data are available, although it is unknown whether this was
a lucky decision or an intentional choice. The coverage rate of their vaccination programme
in children is high in both countries as they have special vaccination programmes in place
for young children. Belgium may have recently received a second chance for better control
of rotavirus disease in the at-risk population with the non-pharmaceutical intervention
measures taken against COVID-19, in addition to maintaining a high rotavirus vaccine
coverage. The USA is an interesting example of how vaccination can deviate from optimal
implementation and the potential difficulty of re-adjusting once a new infection equilibrium
has been reached if vaccine coverage is not high enough at the start. Rotavirus infection
and its vaccine differ from other vaccine-preventable infectious diseases in children in
important ways. The disease burden is concentrated in a very small age group, very young
children aged up to two years; the infection is highly contagious (Rn ≈ >4); the seasonality
of the infection is established but its mechanism remains a mystery; and the vaccine has
a limited age-indication (2 to <8 months old). These features need to be considered to
construct and organise a vaccination programme to obtain optimal disease control from the
start to the long-term. To better understand the results of a vaccination programme, it is
critical to initiate at launch an adequate monitoring programme and evaluation scheme,
provided that sufficient pre-vaccination data have been assembled. This should not be an
expensive extra investment and would greatly help in the assessment of the real value of
this vaccination.
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Appendix A. Detailed Analysis of the Vaccine Uptake Period

In each of the first eight years of the observation period in the RotaBIS dataset, we
defined six age-groups (0–2 months old, 3 to 12 months old, 13 to 24 months old, 25 to
36 months old, 37 to 48 months old, 49 to 60 months old), resulting in a matrix of 48 cells.
The Table groups these 48 cells into eight areas that share common variables specifying
the regression equation. Because each area was linked to a specific period and age group
with no overlap at the individual cell level, the sum of the hospitalisations across specific
areas in the modelled data should be the same as the observed data for those areas with
known values obtained from RotaBIS. This was the case for four of the eight areas (those
related to the direct vaccine effect), and additional constraints were added requiring
the results of these four areas to match the observed data during the model fit (second
part of the Table A1). Running the optimisation process allowed the model to identify
the variables with the largest impact on the outcome at different time points during the
observation period.

Table A1. Defining the areas in the model grid with their regression equations.

A B C D E F G H I

Age groups Pre Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8
1 0–2 months 113 1 2
2 3–12 months 678
3 13–24 months 413 5 7
4 25–36 months 102 3
5 37–48 months 27 6 8
6 49–60 months 12 4

Total
observations 1345

Relative 100%

Subgroup Area # Cell numbers Definition Forces
(code) Equation

Direct vaccine effect

5 B2, C3, D4 First vaccinated birth cohort no
waning VE, Cov1 (1-VE*Cov1)

6 E5, F6 First vaccinated birth cohort with
waning

VE, Cov1,
Wn (1-(VE-Wn) *Cov1)

7 C2-I2, D3-I3, E4-I4 Subsequent vaccinated birth cohorts
no waning VE, Cov2 (1-VE*Cov2)

8 F5-I5, G6-I6 Subsequent vaccinated birth cohorts
with waning

VE, Cov2,
Wn (1-(VE-Wn) *Cov2)
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Table A1. Cont.

A B C D E F G H I

Age groups Pre Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

Subgroup Area # Cell numbers Definition Forces
(code) Equation

Indirect vaccine effect

1 B1
Pre-vaccinated period first birth

cohort (0 to 2 m) no secondary source
of infection

HEA -HEA

2 C1-I1
Pre-vaccinated period subsequent

birth cohorts (0 to 2 m) with
secondary source of infection

HEC, SIB -(HEC-SIB)

3 B2-B6 First year herd effect no secondary
source of infection (13 to 60 m) HEB -HEB

4 C4-C6, D5-D6, E6
Subsequent years herd effect with

secondary source of infection (25 to
60 m)

HED, SIA -(HED-SIA)

M, months, Pre, pre-vaccination.

The Solver add-in in MS Excel indicated the adjustments to be made to each variable
to achieve the best fit through the smallest difference in events between the modelled and
observed data, using the approach of the root mean square deviation (RMSD) being equal
to zero.
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