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Abstract

Healthcare managers are confronted with various Capacity Management deci-

sions to determine appropriate levels of resources such as equipment and staff.

Given the significant impact of these decisions, they should be taken with great

care. The increasing amount of process execution data – i.e. event logs –

stored in Hospital Information Systems (HIS) can be leveraged using Data-

Driven Process Simulation (DDPS), an emerging field of Process Mining, to

provide decision-support information to healthcare managers. While existing

research on DDPS mainly focuses on the fully automated discovery of simu-

lation models from event logs, the interaction between process execution data

and domain expertise has received little attention. Nevertheless, data quality

issues in real-life process execution data stored in HIS prevent the discovery

of accurate and reliable models from this data. Therefore, complementary in-

formation from domain experts is necessary. In this paper, we describe the

application of DDPS in healthcare by means of an extensive real-life case study

at the radiology department of a Belgium hospital. In addition to formulating

our recommendations towards the radiology management, we will elaborate on

the experienced challenges and formulate recommendations to move research on

DDPS within a healthcare context forward. In this respect, explicit attention
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is attributed to data quality assessment, as well as the interaction between the

use of process execution data and domain expertise.

Keywords: Data-driven process simulation, Process mining, Capacity

management, Healthcare processes, Domain knowledge

1. Introduction

Healthcare organisations are confronted with various challenges, including

the increasing and ageing population, as well as the rapid evolution in med-

ical equipment and technologies. At the same time, tightening government

budgets put financial pressure on healthcare budgets [1]. Within this context,5

healthcare managers need to manage their scarce resources efficiently in order

to safeguard high-quality healthcare services [2]. Capacity Management (CM)

decisions in healthcare deal with establishing the suitable levels of resources,

such as equipment and facilities (e.g. X-ray devices, beds, sterile instruments,

operating theatres, etc.), and staff [3, 4]. Depending on the scale and time hori-10

zon of these decisions, correctly estimating the required resources is crucial, as

wrong decisions could severely impact healthcare processes, patient and staff

well-being, and the overall financial situation of the department or healthcare

organisation [5].

Several CM decisions, e.g. regarding the acquisition of new medical devices,15

are of high strategic importance as they will have a long-lasting impact on

the operations of a medical department and, given the close interdependency

between departments [6], even for the hospital as a whole. While having too

limited resource capacity will be detrimental for the quality of the healthcare

services provided by the department (e.g. due to significant rises in waiting20

times), having too much idle capacity is equally undesirable given the significant

investments required in, e.g. the purchase and maintenance of medical devices,

and recurring personnel costs due to sub-optimal use of staff. Consequently, it

is crucial to make well-informed decisions within a context where a multitude

of choices can typically be made.25
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Against this background, Process Simulation can offer valuable decision-

support information for healthcare managers confronted with CM decisions.

In Process Simulation, a computer model of a process is simulated to imitate

the behaviour of a process in a virtual setting. This has the advantage of

being able to test process modifications without having to implement these30

changes in practice [7]. Using Process Simulation, one could, e.g., safely test

whether the removal of an under-utilised medical device would not result in

significantly higher waiting times without having to try this in reality, and

thereby unnecessarily endangering patients’ health.

In order to develop a simulation model, insights into the process behaviour35

should be gathered. This relates, amongst others, to the order of activities,

their duration, and the availability of resources. Information sources such as

consultations with domain experts and observations of the real-life process can

be used to gather the required information. Moreover, as process execution

data is increasingly being captured by Health Information Systems (HIS), this40

data is increasingly considered as an information source [8]. When process

execution data – i.e. an event log – is extensively used during the development

of a simulation model, this is referred to as Data-Driven Process Simulation

(DDPS) [9].

Existing research on DDPS often focuses on the fully automated discovery45

of a simulation model from process execution events [10, 11]. However, in a

real-life healthcare setting, it is widely recognised that process execution data

suffers from a multitude of data quality issues, such as missing data (e.g. an

activity is executed but does not lead to a registration in the system) and

incorrect timestamps (e.g. an activity is recorded in the system some time50

after it has been executed) [12, 13]. The presence of these data quality issues

limits the potential of solely relying on process execution data when developing

a simulation model in a real-life setting. Consequently, the information that the

data provides should be complemented with additional information sources such

as domain expertise [14]. The interaction between process execution data and55

domain expertise when conducting a DDPS analysis received little attention in
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existing research on DDPS.

In this paper, we describe a real-life DDPS project by means of an extensive

case study at the radiology department of a Belgian hospital. Within the context

of the construction of new facilities, the department is confronted with several60

CM decisions: “How much X-ray equipment is needed? How large should the

waiting area be? How many receptionists are needed to ensure a smooth flow of

patients? . . . ”. Besides reporting on the simulation model’s development and

the analysis results, we will elaborate on the experienced challenges and formu-

late recommendations to move research on DDPS within a healthcare context65

forward. In particular, we draw explicit attention to data quality assessment,

as well as the interaction between the use of process execution data and domain

expertise, two elements that are often neglected in DDPS literature. In addi-

tion, we highlight some challenges concerning the operationalisation of DDPS

and directions for future work.70

The remainder of this paper is structured as follows. Section 2 gives an

overview of the related work. The case study applying DDPS to support CM

decisions is outlined in Section 3. The results of this case study and our rec-

ommendations towards the radiology management are presented in Section 4.

An initial conceptualisation of a method for applying DDPS to provide hospital75

management with evidence-based CM recommendations is provided in Section 5.

The paper ends with a conclusion in Section 6.

2. Related Work

This work is related to three key domains, i.e. (i) Capacity Management in

healthcare, (ii) Data-Driven Process Simulation, and (iii) data quality issues in80

event logs. The following subsections give a brief overview of prior research in

these domains.

2.1. Capacity Management in Healthcare

Capacity Management decisions in healthcare deal with establishing the suit-

able resource levels in terms of equipment (e.g. sterile instruments), facilities85
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(e.g. operating theatres), and staff (e.g. nurses) [3, 4]. Depending on the time

horizon, these decisions can be (i) strategical, (ii) tactical, or (iii) operational

[4, 15]. Strategical decisions have a long planning horizon and typically re-

quire significant capital investment [4], such as resource capacity expansions

(e.g. the acquisition of a new computed tomography (CT) radiology device [16],90

cardiotocography (CTG) machines [17], or even the design of entire facilities

[18, 19]). Tactical decisions are situated between strategical and operational de-

cisions concerning the planning horizon [4]. Typical decisions made on a tactical

level are staff planning [17, 20, 21] or block planning for operating theatres [22].

Finally, operational planning involves short-term decisions. On this level, there95

is low flexibility as the resource levels are fixed [4]. Examples of operational

decisions are patient appointment scheduling [23, 24], staff scheduling [25, 26],

inventory replenishing [27], and emergency scheduling [28].

Several Operations Research (OR) techniques can be applied to support

decisions makers confronted with CM assignments, such as Markov processes,100

queueing models, mathematical programming, and computer simulation [15, 17].

Due to the stochastic nature of healthcare processes, computer simulation – in

particular Discrete-Event Simulation (DES) – is one of the preferred techniques

to analyse these complex processes [29–31]. In a DES model, individual entities

(e.g. patients) move through the process and wait in queues to be served by105

resources (e.g. nurses) [8, 30]. These entities can have attributes that describe

them (e.g. age, patient type, diagnosis, etc.) and can be used to determine

their pathway through the simulation model [30]. Unlike other OR techniques,

such as queueing models or mathematical programming, DES enables measuring

the individual characteristics of entities such as the waiting time or treatment110

outcome. This makes it possible to analyse the process in detail and investigate

the effects of both small and substantial changes applied to the model. For

further reference on the use of simulation in healthcare, the reader is referred

to one of the existing review papers [32–36].

5



2.2. Data-Driven Process Simulation115

In Data-Driven Process Simulation a simulation model is built by exten-

sively using process execution data (i.e. event logs) [9], originating from, e.g.

Health Information Systems (HIS). DDPS is an emerging field in Process Min-

ing, which focuses on the retrieval of process-related insights from event logs

[37]. Originally, PM research mainly focused on discovering the control-flow120

(e.g. patient pathways) from event logs. Over time, more and more algorithms

have been developed to discover other components of simulation models from

event logs as well, such as arrival patterns, queueing disciplines and resource

schedules [8].

Despite the advances in process mining research, combining all these com-125

ponents (semi-)automatically into a single, simulation-ready model is still in its

infancy. A few research efforts have been conducted on the discovery of simula-

tion model components from event logs and combining them manually to derive

a simulation-ready model [38, 39]. Only recently, the discovery and simulation of

such models from event logs were fully automated by Camargo et al. [10] in their130

tool Simod, which was later extended to also take the presence of multitasking

and resource availability into account [11]. While these studies demonstrate the

feasibility of solely using event logs to construct simulation-ready models, many

assumptions are usually made that oversimplify the model or are unrealistic in a

healthcare setting, e.g. no resource constraints [39], or waiting times are explic-135

itly modelled, instead of delays due to resource unavailability [38]. In addition,

these studies assume the presence of clean and high-quality event logs [10, 11];

an assumption that often not holds in process execution data from healthcare

processes [12, 13, 40]. Moreover, healthcare processes are knowledge-intensive

and heavily rely on clinicians’ expertise and experience. This rich knowledge is140

not contained in process execution data [41].

Instead of discovering and simulating models from event logs in a fully au-

tomated way, most research efforts leverage insights obtained from PM tech-

niques and use these to construct simulation models manually. In this man-

ner, control-flow discovery techniques are often applied to derive the patient’s145
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journey through the care facility for specific diseases [42] and use Process Sim-

ulation to analyse and improve the performance of these care processes. For

example, Augusto et al. [43] simulated the impact of different implantable

cardioverter-defibrillator strategies for patients with cardiovascular diseases,

Mans et al. [44] determined the impact of digitising the dental prosthesis process,150

Kovalchuk et al. [45] studied acute coronary syndrome patient flows, Tamburis

and Esposito [46] analysed process execution data of a cataract process, and

Johnson et al. [42] applied PM and simulation to alcohol-related emergency

admissions, giant-cell arteritis, and functional neurological symptoms care.

While the aforementioned works focus on a particular disease, other studies155

analyse entire departments or care facilities to reduce patient waiting time and

Length of Stay (LoS) using PM and simulation. Zhou et al. [47] altered the

number of receptionists, nurses, and doctors to improve the performance of an

outpatient clinic. A similar approach was used in the Emergency Department

by Antunes et al. [26] to reduce patient waiting time by determining the opti-160

mal physician scheduling, and by Abohamad et al. [48] to identify performance

bottlenecks and to explore improvement strategies to reduce LoS.

2.3. Data Quality Issues in Event Logs

As mentioned in the previous section, event logs often contain data quality

issues, especially in a healthcare context [12, 13, 40]. Various taxonomies and165

frameworks have been developed to identify, assess, and handle these issues.

This section highlights some key research efforts on data quality in the Process

Mining field. A more in-depth overview can be found in Martin [13].

A well-known taxonomy of event log quality issues is presented in Bose et al. [49],

where 27 distinct issues are subdivided into four main categories: missing, in-170

correct, imprecise, and irrelevant data. These four main categories can apply to

cases (e.g. missing cases that were not recorded), events (e.g. incorrect events

which did not happen in reality), and attributes (e.g. imprecise timestamps

recorded at a coarse level). A more applied taxonomy is proposed by Suri-

adi et al. [50], in which eleven fine-grained patterns of common data quality175
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issues encountered in event logs are distinguished, e.g. “elusive cases”, which

are events that are not linked to any case; or “distorted labels” which often

indicate a typo.

Within the context of healthcare, Vanbrabant et al. [40] developed a syn-

thesised taxonomy based on both general and healthcare-specific data quality180

issues. In total, fourteen specific event log quality issues are defined. A distinc-

tion was made between missing and non-missing data, where the latter category

is further subdivided in wrong data on the one hand, which have to be corrected

or removed in order to find meaningful insights from the data (e.g. timestamps

violating the logical order of activities or values outside the domain range), and185

“not wrong but not directly usable” data on the other hand, which requires

minor preprocessing (e.g. inconsistent formatting of timestamps or embedded

values which contain aggregated information).

In addition to the taxonomies of various data quality issues encountered

in event logs, several frameworks to assess event log quality have been pro-190

posed as well. A seven-step cyclical conceptual framework is provided by An-

drews et al. [51] to detect quality issues such as coarse granularity (e.g. some

timestamps were recorded at day-level, whereas others at millisecond-level gran-

ularity), null values, and the level of uniqueness of attributes. Kherbouche et al. [52]

implemented an event log quality assessment framework in ProM 1 which con-195

siders complexity (e.g. number of events or average trace length), accuracy

(e.g. rate of erroneous timestamps), consistency (e.g. free of outliers), and

completeness (e.g. no events or attributes are missing). Other frameworks im-

plemented in ProM by Fischer et al. [53] and Dixit et al. [54] focus specifically

on identifying and assessing timestamp-related quality issues. Fox et al. [55]200

provided a framework for assessing Electronic Health Record (EHR) data called

Care Pathway Data Quality Framework (CP-DQF) using a SQL database to

maintain a data quality register. However, the different types of quality issues

have to be manually provided by the analyst beforehand. A similar approach

1https://www.promtools.org/
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using SQL was proposed by Andrews et al. [56], in which five event log im-205

perfection patterns defined by Suriadi et al. [50] are detected. The R-package2

DaQAPO by Martin et al. [57] supports ten imperfection patterns defined by

Suriadi et al. [50] along with additional event log quality tests, such as the de-

tection of batch registrations and mutual dependencies between activities in the

process.210

All aforementioned frameworks – except Dixit et al. [54] – focus on event log

quality assessment. It is up to the analyst to use these insights while cleaning

the data. The tool implemented in ProM by Dixit et al. [54] is also capable

of “repairing” the event log by inserting or removing events to make sure the

ordering of events is correct. Other works also propose data cleaning heuristics,215

typically targeted on a particular event log quality issue. For instance, Bay-

omie et al. [58] developed an approach to handle missing case identifiers, while

Di Francescomarino et al. [59] focused on imputing non-observable activities

in an event log using a control-flow model created by domain experts. Mar-

tin et al. [60] proposed an interactive data cleaning approach with heuristics220

to solve missing timestamps, overlapping timestamps, time ordering violations,

and invalid concurrent use of resources.

Even though more and more attention is devoted to the assessment and

correction of data quality issues in the field of Process Mining, within the context

of (automated) DDPS model discovery little explicit attention has been paid to225

these issues. Nevertheless, the quality of the input data has a significant impact

on the reliability of the simulation results [40, 61]. Therefore, it is imperative

to deal with these issues appropriately. Some of the discussed papers on DDPS

briefly mention the presence of data quality issues [42, 45, 47] but do not describe

the indispensable role of the domain experts. Only Johnson et al. [42] addresses230

the importance of the “Clinical Review Board” in their method ClearPath. We

differentiate ourselves from the work of Johnson et al. [42] in the structure

of the method. While ClearPath is an extension of the established Process

2https://www.r-project.org/
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Mining project methodology PM2 [62], we base our method on guidelines and

best practices in the Process Simulation literature and describe explicit action235

points to be considered for every step.

3. Real-Life Case Study – Outline

This section outlines a real-life case study using DDPS to support healthcare

management when confronted with CM decisions. In particular, the case study

focuses on CM decisions at the radiology department of a Belgian hospital.240

Firstly, the case study and its context is briefly introduced. Secondly, a

high-level description of the simulation model is provided. Thirdly, the Capac-

ity Management questions are formulated. Fourthly, a thorough description of

the simulation model development is provided, including the data that were

used, the configuration of the simulation model, and assumptions and simpli-245

fications that were made. Fifthly, the verification and validation of the model

are discussed. Finally, the scenarios are formulated based on the CM questions.

3.1. Context

A Belgian hospital is planning the construction of new facilities, which im-

plies the centralisation of care activities to a single health campus. Within250

this context, hospital management is considering merging two of their radiology

facilities into one location. Therefore, the management of the radiology depart-

ment has to decide how many resources they will need in the new facility to

serve all patients in a timely manner. These resources include radiology equip-

ment, waiting room area for ambulatory patients (i.e. the number of seats), and255

receptionists.

Several discussions with the team of domain experts were held throughout

the project, e.g. to specify the process and scope of the analysis, define the

CM questions, discuss data quality issues, validate the simulation model, and

report the results and evidence-based recommendations. This team of experts260

consisted of the head of the radiology department, the chief secretary of the
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medical imaging department, two chief nurses of the radiology department, a

medical imaging engineer, and the care manager laboratory medicine and imag-

ing medicine.

3.2. Model Description265

The simulation model describes a standard medical imaging diagnostics pro-

cess in a radiology department. A simplified process flow is depicted in Figure 1.

A patient has to be registered by the reception upon arrival. For ambulatory

and mobile emergency patients, this is performed by the front office at the

counter, whereas hospitalised, day hospital, and trauma patients are registered270

by the back office. The back office will also assist the front office during busy

periods. Outside the reception opening hours, the registration is performed by a

nurse. Next, ambulatory patients will wait in the designated waiting room until

they are called into the examination room. All other patients either wait in the

emergency department or wait in their room in the ward they are admitted to.275

Some ambulatory patients scheduled for a CT examination are required to drink

contrast fluid and wait one hour before being examined. When the patient is

called into the examination room, one of two nurses will install the patient on

the equipment and checks the patient’s identity, while the other will use this

information to plan and execute the examination. If a patient requires multiple280

examinations, e.g. an X-ray of both knee and ankle, the patient does not have

to leave the examination room, as they are made right after each other. Exam-

inations of other modalities cannot be made in the same room. Therefore, the

patient will have to go to the waiting room of the other examination room so

that the process can be repeated. When no further examinations are required,285

the patient can leave the radiology department and go home or back to the

emergency department or wardroom.

There are four different patient types defined in the model: (i) ambulatory

patients (A), which are outpatients with a scheduled appointment; (ii) hospi-

talised patients (H), which are inpatients; (iii) day hospital patients (D), patients290

with a scheduled appointment, but need to be admitted to the hospital for at
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Figure 1: Simplified process flow of patients at the radiology department.

most one day; and (iv) emergency patients (S) transferred from the Emergency

Department.

The patients can undergo various examination types. In this simulation

study, there are six different modalities: cone beam computed tomography (CBCT),295

computed tomography (CT), mammography (MAMMO), magnetic resonance

imaging (MRI), ultrasound (US), and X-ray. Each examination type requires a

separate examination room, and each examination room contains only one ra-

diology device. The terms examination room, radiology device, and equipment

are used interchangeably in this paper. In addition to the fixed X-ray equip-300

ment, a mobile X-ray device is also used to examine hospitalised and emergency

patients who cannot be transferred to the examination room.

12



3.3. Capacity Management Questions

The radiology department is considering merging two of their existing radi-

ology facilities in the new hospital site. They have formulated three Capacity305

Management questions:

CMQ 1. What is the impact of this centralisation on the utilisation of their

resources, in particular, equipment, waiting area (i.e. the number of seats),

and reception staff? They expect they would need less equipment than currently

available, given the lower utilisation rates of some devices, and they would like310

to know whether this presentiment is correct, as this also has a major impact

on personnel costs.

CMQ 2. To increase patient satisfaction, the radiology management is con-

sidering omitting the requirement for some ambulatory patients to drink con-

trast fluid one hour before having their CT examination. What is the impact315

on throughput time and required waiting area when this policy would be imple-

mented?

CMQ 3. The radiology management is considering implementing an online

registration system, allowing ambulatory patients to skip the reception and go

straight to the waiting area of the examination room at the time of their ap-320

pointment. The radiology department is interested in the effects of this new

registration system on reception staff requirements and the required waiting area.

3.4. Simulation Model Development

The following subsections describe the development of the simulation model.

First, we describe the data provided by the hospital and highlight the issues we325

encountered while working with this data. Next, we discuss some technical

details about the configuration of the simulation model and give an overview of

the assumptions and simplifications we applied to align the model’s complexity

with the desired scope.
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3.4.1. Data330

Two years of process execution data, from March 2017–March 2019, ex-

tracted from the hospital’s Radiology Information System (RIS) was used to

build the simulation model. This dataset contained various key timestamps,

such as time of registration, and start and end time of examination, for each

patient visit. In addition, the patient type and examination type were also335

recorded. Table 1 shows an overview of the attributes stored in the dataset

with their description. Each row in the dataset represents a unique examina-

tion, and multiple rows could be linked to the same patient visit. An additional

validation dataset from March 2019–March 2020 was used to validate the model.

Label Description

Accession number Anonymised identifier for each individual examination

Patient number Anonymised identification number for each patient visit

Entity Radiology facility the patient visited

AHDS Patient type: ambulatory (A), hospitalised (H), day hospi-

tal (D), and emergency (S, for “spoed” in Dutch)

Examination type The performed type (e.g. CT, US, X-ray, etc.)

Examination code Specific code of the examination (e.g. “CTKNIEL”, a CT

examination of the left knee)

Examination room The room in which the examination was performed

Time booking appointment Timestamp when the appointment was booked

Time start appointment Timestamp of the appointment

Time creation request Timestamp when the patient was registered by the reception

Time start examination Timestamp when the patient was called into the examina-

tion room

Time start scan Timestamp when the radiology device was started

Time end scan Timestamp when the radiology device was finished

Time finish examination Timestamp when the nurse finalised the images, including

post-processing

Time creation report Timestamp when the radiologist started working on the re-

port

Time validation report Timestamp when the radiologist finalised and validated the

report

Table 1: Overview of the attributes stored in the dataset with their description.
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Table 2 gives an overview of the number of patient visits and examination340

types contained in the dataset used to build the model. The majority of patients

were ambulatory, and the most commonly made examination was X-ray. A

total of 478,342 examinations were recorded, which indicates that some patients

required multiple examinations. Nevertheless, the majority of patients only

needed a single examination. Other modalities included very infrequently made345

examinations, such as bone mineral content (BMC) and angiography, which

were not of interest in the scope of this simulation study.

Patient type Proportion

Ambulatory (A) 60%

Hospitalised (H) 23%

Emergency (S) 15%

Day hospital (D) 2%

Total 404,750

Examination type Proportion

X-ray 44%

US 18%

MRI 16%

CT 13%

MAMMO 5%

Other 3%

CBCT 0.6%

Total 478,342

Table 2: Proportion of patient and examination types in the dataset.

One of the biggest challenges of this project was dealing with data quality

issues. Because the quality of the input data has a significant impact on the

reliability of the simulation results [40, 61], it is imperative to deal with these350

issues appropriately. The two most prominent data quality issues were: (i)

unavailable timestamps, such as the exact arrival time of the patient or no start

timestamp of certain activities, and (ii) incorrectly stored timestamps, either

caused by the system or “batch registration” by radiology personnel, in which

administrative tasks are postponed and bundled to be dealt with later [40]. The355

first issue was resolved by using a different timestamp as a proxy of the arrival

and asking the domain experts to identify the minimum, maximum, and most

likely time required to complete a particular activity, which served as input

parameters for a triangular distribution.
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The second issue manifested itself mainly by large outliers of some activity360

durations, e.g. the scanning times. Both start and end timestamps were avail-

able in the dataset and recorded when the nurse starts and stops the radiology

device, respectively. An overview of scan duration times per examination type

is given in Table 3. Some scans took precisely zero seconds, while others took

several years, and a few observations were even negative, indicating that the365

end timestamp occurred before the start timestamp. In our previous work [61],

we highlighted the impact of data quality issues, specifically related to these

scanning durations. Completely neglecting these issues, i.e. directly using the

data without any pre-processing or filtering, would result in significantly higher

throughput and waiting times due to congestion [61]. Therefore, it is necessary370

to exclude anomalies from the data. However, it is not trivial to determine

which threshold values should be used to distinguish anomalies without domain

knowledge. Therefore, domain knowledge is indispensable while analysing and

processing data for simulation studies.

Nonetheless, if no domain expertise is available, statistical techniques could375

be applied to detect anomalies, such as the commonly used box plot rule, which

marks any observation smaller than Q1−1.5IQR or larger than Q3+1.5IQR as

an anomaly [63]. However, this technique is not guaranteed to mark anomalies

correctly, as some of these observations might be exceptional, i.e. unlikely, but

not impossible [61]. In this study, we validated the scanning durations with380

the domain experts by verifying the durations for each examination type. For

instance, the domain experts pointed out that scanning durations that took

exactly zero seconds were most likely so-called “one-shot” images, and the du-

ration could be substituted by one minute instead. For each examination type,

the domain experts also determined a maximum duration, e.g. CT examinations385

are unlikely to take longer than twenty minutes.

3.4.2. Configuration

The hospital is opened 24/7, although regular “opening hours” from 8AM–

6PM are used to indicate the time period which is usually the busiest. Hos-
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Examination type Min Max Mean Median SD IQR

CBCT 0.00 32.07 0.06 0.00 1.09 0.00

CT -726.53 30,605 7.02 2.07 201.14 2.22

MAMMO -6.48 40,780 16.41 2.98 531.00 1.35

MRI 0.00 946,449 161.22 11.48 9,680 6.90

US -79.00 116,685 71.36 23.38 636.37 28.48

X-ray -1,031.63 2,109,457 22.69 0.55 5,111 1.20

Table 3: Scanning duration per examination type (in mins).

pitalised and emergency patients can arrive any time of the day. Ambulatory390

patients only arrive from 7AM–10PM during the week and from 7AM–9PM

during weekends. Day hospital patients arrive between 7AM–3PM during the

week only.

The number of patients arriving is different throughout the day, which is

also shown in Figure 2 for ambulatory patients. The morning starts quietly,395

and gradually more and more ambulatory patients arrive throughout the morn-

ing. At noon it gets a little quieter, after which it gets busier again in the course

of the afternoon. Starting from the early evening, the number of patients arriv-

ing gradually decreases until the last ambulatory patients arrive before 11PM.

Therefore, we modelled all patient arrivals as non-stationary Poisson processes400

with varying hourly rates obtained from data. Non-stationary Poisson processes

are used to model many real-world systems, where the arrival rate λ(t) varies

over time t [64].
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Figure 2: Number of ambulatory patients arriving throughout the day.
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Simulation depends on the concept of random numbers for input, e.g., draw-

ing samples from the specified probability distributions to generate patient ar-405

rivals or determining the required scanning durations. This input randomness

induces randomness in the output as well [65]. Consequently, the output mea-

sures of the simulation model might differ each time the same model is simulated.

By extending the simulation run length, the variance in the output measures de-

creases, leading to similar results each time the same model is simulated [64, 65].410

Therefore, one long simulation run of 730 days was used to limit the impact of

randomness.

In addition, common random number (CRN) streams with a fixed seed were

used to mitigate the effects of randomness when comparing different scenar-

ios. CRNs are the most commonly used variance reduction technique (VRT).415

The basic idea is that the same random numbers are used to draw samples

from distributions across scenarios, ensuring that different results cannot be at-

tributed to different random samples, but because of the changes to the process

purposefully introduced by the modeller [64]. The simulation model was build

using Arena 16.10 [66] which has all the required features to create and run420

simulation models.

3.4.3. Assumptions & Simplifications

The following assumptions and simplifications have been drawn up in con-

sultation with the domain experts to simplify the model in correspondence with

the desired scope:425

• Only ambulatory patients wait in the designated waiting area. All other

patient types, i.e. hospitalised, day hospital, and emergency patients,

wait in their wardroom or at the emergency department (which are not

included in the model) and are assumed to be present in the radiology

department whenever they are called into the examination room;430

• Each examination room has a separate waiting area. If, in reality, multi-

ple examination rooms would share a common waiting area, the required
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capacity of the shared waiting area can be derived afterwards from the

separate waiting areas;

• All queues follow the same priority logic in which emergency patients have435

the highest priority, followed by ambulatory, day hospital, and finally,

hospitalised patients. Ongoing examinations are never aborted when a

patient with a higher priority is presented. If a patient requires multiple

examinations of the same type, these examinations are all performed on

the same radiology device right after each other. This flow is not aborted440

in the presence of a high priority patient;

• Any examination type can occur at any time of the day, i.e. no time

blocks are reserved for specific examination types, while the latter is com-

mon practice in a typical radiology department. However, including an

appointment system with reserved time blocks would significantly increase445

the complexity of the model and is, therefore, not implemented;

• Any patient can undergo a maximum of four examinations, as more than

four examinations per patient is highly exceptional, i.e. less than 0.15%

of the recorded patient visits in the dataset required more than four ex-

aminations. These four examinations do not have to be all of the same450

modality;

• The duration of the examination is independent of the patient type, health

condition, radiology device, time of the day, etc.;

• The movement of patients from the reception to the examination rooms

and between examination rooms is not included in the model, as the im-455

pact of these movements on the process flow is deemed minimal;

• Patients arrive alone. This can have an impact on the number of seats used

in the waiting rooms, as patients are often accompanied by their partner,

a parent, or child(ren). However, no information was available on how

frequent patients are accompanied. Moreover, including this would make460
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the model very complex, as not all “visits” would require examinations and

leave when the patient they accompany has undergone all examinations;

• In reality, each examination room has two dressing rooms allowing the

next patient to change while the previous patient is being examined. This

way, no time is lost when the radiology device becomes available again.465

Therefore, dressing rooms and time lost due to (un)dressing are not in-

cluded in the model;

• The back office reception is also responsible for handling incoming calls of

the call centre. However, we did not include the call centre operations in

the model because this would increase the model’s complexity. Instead,470

the utilisation rates of the back office can be used to determine whether

there is enough capacity left for handling incoming calls;

• When an examination room is opened, it is assumed to be staffed by

the required number of nurses. Therefore, nurses are not modelled as

resources. Neither for their duties in the reception;475

• The interpretation of the images by a radiologist does not impact the

utilisation of radiology equipment and is, therefore, not included in the

model.

3.5. Model Verification & Validation

To enhance the credibility of simulation models, each model should be ver-480

ified to make sure that it contains no errors, and validated to guarantee that

the output corresponds to the reality [64, 67–71]. A combination of statisti-

cal validation and face validation by the domain experts was carried out. For

validation purposes, the operations of the largest facility were modelled as it

constitutes the starting point for the scenario analysis.485

Especially the number of patients arriving, the throughput times, and wait-

ing times were the key statistics to compare. Figure 3 shows a comparison of

weekly patient visits by patient type between historical data from the valida-

tion dataset and the simulation model’s output. Both mean and median weekly
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patient visits are very close to one another, but the historical data has a higher490

variation than the simulation data. Nevertheless, as shown in Table 4, the non-

parametric Wilcoxon-Mann-Whitney (WMW) test could not detect statistically

significant differences between the means at a 95% significance level. Unlike

the t-test, which assumes that normality is satisfied, the WMW -test does not

assume any underlying distribution [72]. A similar assessment of the correspon-495

dence between historical data and the simulation model’s output for throughput

times and waiting times resulted in similar findings.
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Figure 3: Comparison of weekly patient visits by patient type between historical and simula-

tion model. The diamond represents the average weekly patient visits.

Patient type Historical mean Simulation mean p-value Significance

A 1,184.8 1,215.0 0.702 ns

H 666.0 666.2 0.128 ns

D 45.1 42.8 0.129 ns

S 562.0 557.0 0.806 ns

Table 4: Mean weekly patient visits per patient type of the historical data versus the simulation

model (ns = not significant at 95% significance level)

.

In addition to the statistical validation, we also presented and discussed the

results of the validation model with the team of domain experts. During the

validation, the domain experts identified some issues with the opening hours of500

the examination rooms. These were extracted from the process execution data

of the RIS. However, due to data quality issues, these were modelled too broad.
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They also pointed out that the receptionist staff work with alternating roles in

the front office, back office, and call centre. As this way of working was highly

appreciated by the reception staff, they wanted to preserve this practice. After505

two iterations of validating and adjusting the model, the domain experts were

convinced that the model accurately reflected reality.

3.6. Scenario Analysis

Consistent with the Capacity Management questions formulated in Sec-

tion 3.3 we defined the following scenarios in consultation with the domain510

experts:

S 1. “Facility Merger”: What is the required capacity for radiology devices,

waiting area (i.e. the number of seats), and reception staff when merging the

two largest radiology facilities to one location to accommodate all patients in a

timely manner?515

S 2. “Contrast Fluid”: Some ambulatory patients requiring a CT examination

need to drink contrast fluid one hour before they can be examined. What is the

impact on throughput time and required waiting area if this policy is nullified?

S 3. “Online Registration”: The hospital is considering letting (a proportion

of) the ambulatory patients register themselves online before they visit the hos-520

pital. This allows them to go straight to the waiting area of the examination

room instead of having to pass by the reception. What will be the impact on

waiting time, waiting area dimensions, and reception staff requirements if this

new registration system were to be adopted? We will evaluate the impact when

30% of ambulatory patients would register online upfront.525

4. Real-Life Case Study – Results & Recommendations

In this section, we describe the approach, present the numerical results,

and provide our recommendations towards the radiology management for each

scenario of the real-life case study.
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4.1. Scenario 1 – Facility Merger530

Scenario 1 starts with the same number of examination rooms as the val-

idated model. However, the patient visits of the second facility are added as

this resembles the future situation at the new facilities. The number of weekly

patient visits is increased by 71%, 30%, 117% for ambulatory, hospitalised, and

day hospital patients, respectively. There is no increase in weekly emergency535

patient visits, as the second facility does not have an Emergency Department.

Because the available capacity of the reception is already almost fully utilised in

the validated model – which was also confirmed by the domain experts – we de-

cided to add the receptionists of the second facility from the start, so no severe

delays due to congestion at the reception would propagate to the examination540

rooms.

To investigate the first scenario, three alternatives are considered besides the

Base configuration. The number of resources – i.e. reception and examination

rooms – with their opening hours for each alternative are shown in Table 5. The

Base configuration corresponds with the validated model of the largest facility545

and serves as a baseline for comparison. Note that CBCT examinations are only

performed in the second facility, so this modality is not included in the Base

configuration. Each alternative configuration has the same resources as the

previous configuration and some additional resources. In configuration S1a, the

patients of the second facility are added, the reception is expanded, and a CBCT550

radiology device is included. Next, in configuration S1b, an additional US, MRI,

and X-ray device are added, which is repeated once more in configuration S1c.

4.1.1. Numerical Results

Examination Rooms. The results clearly show that the available examination

rooms are insufficient to accommodate all patients on time for examination types555

US, MRI, and X-ray (albeit less problematic for X-ray). This manifests itself

on the one hand by the very high utilisation rates of these examination rooms

and on high waiting times on the other hand.

Figure 4 shows the hourly utilisation rates for each examination room for
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Configuration Resources

Base

Reception FO: 1 Mon–Fri (7AM–5PM); BO: 3 Mon–Fri (8AM–

6PM), 1 Mon–Fri (6PM–10PM), 1 Sat–Sun (7AM–4PM)

CBCT -

CT CT1: Mon–Fri (8AM–6PM); CT2: 24/7

MAMMO MAMMO1: Mon–Fri (8AM–6PM)

MRI MRI1,2: Mon–Fri (7AM–10PM), Sat–Sun (7AM–9PM)

US US1: 24/7; US2,3: Mon–Fri (8AM–5PM)

X-ray X-ray1,3: 24/7; X-ray2: 24/5; MX-ray1: 24/7

S1a

Base +

Reception FO: 1 Mon–Fri (7AM–5PM); BO: 2 Mon–Fri (8AM–

5PM), 1 Mon–Fri (5PM–8PM), 1 Sat–Sun (7AM–1PM)

CBCT CBCT1: Mon–Fri (10AM–10PM), Sat–Sun (8AM–

11AM & 1PM–5PM)

S1b

S1a +

MRI MRI3: Mon–Fri (7AM–10PM), Sat–Sun (7AM–9PM)

US US4: 24/7

X-ray X-ray4: Mon–Fri (8AM–6PM)

S1c

S1b +

MRI MRI4: Mon–Fri (7AM–10PM), Sat–Sun (7AM–9PM)

US US5: Mon–Fri (8AM–6PM)

X-ray X-ray5: Mon–Fri (8AM–6PM)

Table 5: Overview of the evaluated alternatives. Each alternative configuration has the same

resources as the previous configuration with some additional resources (FO = front office;

BO = back office, including call centre; MX-ray = mobile X-ray device).

each configuration. A utilisation rate of 1 (or 100%) means that the device was560

used non-stop for the entire hour, whereas a utilisation rate of 0 means that the

device was idle for the entire hour.

From Figure 4, it follows that the CBCT device has plenty of spare capacity

for accommodating additional patients, which is confirmed by the low average

utilisation rates shown in Table 6 of 9% during the regular “opening hours”565

(8AM–6PM) on weekdays and 7% outside these opening hours and during the

weekends. For CT and MAMMO, the radiology devices are more frequently

used, but the utilisation rates remain acceptable to also serve the patients from
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the second facility, with still some room for unplanned emergency examinations.

The situation is slightly different for X-ray. Especially during the opening hours,570

the utilisation rates are fairly high, and the available devices can barely keep

up with the flow of patients. Lastly, for the US and MRI devices, the results

clearly show that these devices are overburdened during the opening hours, with

average utilisation rates approximating 100% and overdue examinations must

be made up during the evening and night.575

Configuration
Week Weekend

8AM–6PM <> 8AM–6PM <>

Reception (Front Office)

Base 0.82 0.70 - -

S1a 0.84 0.69 - -

Reception (Back Office)

Base 0.73 0.67 0.74 0.66

S1a 0.70 0.69 0.60 0.61

Reception (Back Office – Call Centre)

Base 0.32 - - -

S1a 0.25 - - -

CBCT

Base - - - -

S1a 0.09 0.07 0.07 0.07

CT

Base 0.32 0.23 0.23 0.16

S1a 0.45 0.29 0.25 0.18

Configuration
Week Weekend

8AM–6PM <> 8AM–6PM <>

MAMMO

Base 0.23 0.16 - -

S1a 0.33 0.20 - -

MRI

Base 0.81 0.40 0.75 0.42

S1a 0.98 0.76 0.97 0.76

S1b 0.83 0.41 0.73 0.53

S1c 0.66 0.35 0.60 0.44

US

Base 0.75 0.75 0.50 0.43

S1a 0.94 0.95 0.78 0.81

S1b 0.85 0.69 0.36 0.32

S1c 0.74 0.57 0.36 0.32

X-ray

Base 0.55 0.29 0.40 0.25

S1a 0.79 0.34 0.43 0.26

S1b 0.64 0.33 0.43 0.26

S1c 0.54 0.33 0.43 0.26

Table 6: Average hourly utilisation rates of examination rooms per configuration. Regular

opening hours are from 8AM–6PM, outside opening hours is denoted by “<>”.

The average waiting times, shown in Table 7, confirm this shortage of X-

ray, US, and MRI devices. In configuration S1a, ambulatory patients have

to wait on average four times longer for US examinations than in the Base
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Figure 4: Hourly utilisation rates of examination rooms in configuration S1a.
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configuration. For hospitalised patients, the situation is even worse because

they have the lowest priority. This results in an average waiting time of over580

30 hours, which is more than 26 times longer than in the Base configuration.

The same observation can be made for MRI and X-ray, albeit to a less extreme

degree.

By adding an additional radiology device for US, MRI, and X-ray in config-

uration S1b, the utilisation rates, and the waiting times in particular, decrease585

significantly to approximately the same levels as the Base configuration, except

for X-ray during opening hours in the week. Moreover, for US and MRI de-

vices, the Base configuration already showed relatively high utilisation rates.

Therefore, we evaluated the effect of an additional US, MRI, and X-ray device

in configuration S1c. This results in a further reduction of utilisation rates and590

waiting times to accommodate all patients in a timely manner, and creates more

room for unplanned emergency examinations.

Reception. In configuration S1a we added the receptionists who are currently

already scheduled in the second facility. As shown in Table 6, the average utilisa-

tion rates of the front office remain at the same levels as the Base configuration595

when the patients from the second facility are added. However, the back office

has a slightly lower workload on average, especially during the weekends and

for the receptionists handling the call centre. The reduced utilisation rates also

result in lower waiting times for registration, as shown in Table 7. Another

analysis regarding the reception is conducted in Scenario 3 and described in600

Section 4.3.

Waiting Area. The radiology management also wants to know how many seats

are required for each waiting area for the examination rooms. For the sake of

brevity, we only show the results for MRI examination rooms. The results for

the other modalities are analogous. Table 8 shows an overview of the number605

of seats taken by ambulatory patients waiting for an MRI examination. Due

to the high waiting times in configuration S1a, the required number of seats is

significantly larger than in the Base configuration. An additional MRI device in
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Configuration
A H D S

Mean ± Mean ± Mean ± Mean ±

Reception

Base 7.46 0.06 1.99 0.03 0.49 0.04 1.27 0.02

S1a 6.08 0.06 1.21 0.03 0.09 0.01 0.94 0.01

CBCT

Base - - - - - - - -

S1a 11.43 0.55 - - - - - -

CT

Base 16.79 0.30 0.91 0.06 0.52 0.09 0.70 0.04

S1a 19.85 0.25 2.21 0.10 1.92 0.17 0.96 0.04

MAMMO

Base 9.63 0.22 - - 4.04 1.80 - -

S1a 11.24 0.19 - - 5.13 1.89 - -

MRI

Base 24.31 0.20 50.94 2.37 47.87 7.48 7.26 2.13

S1a 81.79 0.51 356.7 7.32 429.71 17.64 7.52 1.55

S1b 21.81 0.17 45.23 2.07 53.26 5.10 5.87 2.05

S1c 13.82 0.11 7.27 0.52 8.30 1.18 4.76 2.08

US

Base 25.59 0.51 76.81 2.47 16.97 2.24 8.15 0.23

S1a 110.70 1.30 2,025.18 21.65 525.18 27.86 10.84 0.23

S1b 23.19 0.22 83.34 2.16 43.41 3.53 3.15 0.09

S1c 13.41 0.13 17.65 0.72 9.39 0.94 1.91 0.07

X-ray

Base 9.13 0.09 3.64 0.08 1.80 0.25 0.84 0.02

S1a 12.96 0.08 24.29 0.33 14.96 0.79 1.32 0.03

S1b 10.00 0.07 8.21 0.14 2.70 0.19 0.92 0.02

S1c 9.18 0.07 6.59 0.13 0.69 0.07 0.77 0.02

Table 7: Mean waiting times in minutes per configuration with 95% confidence intervals.
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configuration S1b reduces the number of waiting ambulatory patients to around

the same level as the Base configuration. Adding yet another MRI device further610

decreases the required number of seats in configuration S1c to two seats to

ensure that all patients can wait seated in 95% of the cases.

Configuration Exam. room Mean Median Q25 Q75 Q90 Q95

Base
MRI1 1.34 1 0 2 3 4

MRI2 1.45 1 1 2 3 4

S1a
MRI1 4.99 4 2 7 11 13

MRI2 4.51 4 2 7 9 11

S1b

MRI1 1.23 1 0 2 3 3

MRI2 1.27 1 0 2 3 4

MRI3 1.34 1 0 2 3 4

S1c

MRI1 0.77 1 0 1 2 2

MRI2 0.78 1 0 1 2 2

MRI3 0.80 1 0 1 2 2

MRI4 0.85 1 0 1 2 2

Table 8: Number of seats taken by ambulatory patients waiting for MRI examination rooms

per configuration.

4.1.2. Recommendations

The results indicate that the CT and MAMMO equipment of the first fa-

cility have sufficient spare capacity to accommodate the increased patient vol-615

umes, and some margin remains for additional patients. Therefore, the CT and

MAMMO equipment of the second facility become redundant after the merge.

As there are no CBCT examinations performed in the first facility, the utilisa-

tion of the CBCT device of the second facility remains the same after the merge

with a large residual capacity.620

In contrast, the US, MRI and X-ray equipment cannot keep up with the

higher flow of patients. Moreover, the addition of the equipment of the second

facility is insufficient to increase the available examination time for US and

MRI examinations, especially during the week. Therefore, the simulation results

indicate the need for an extra US device to be used during opening hours in625
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the week, and an MRI device with the same opening schedule as the others,

in addition to the equipment the hospital currently owns. The effects of the

instalment of a fifth X-ray device, on the other hand, are relatively insignificant,

as the utilisation rates and waiting times are acceptable with the four already

available X-ray devices.630

Regarding the reception, it was clear that the staff schedule of the first facility

would be insufficient to serve all patients after the merge, as the utilisation rates

were already relatively high. With the addition of the receptionists already

scheduled in the second facility, the reception is capable of serving all patients

in a timely manner. In fact, the utilisation rates indicate a reduced workload635

during the weekends and for the call centre. However, the difference in utilisation

rates is considered too low to reduce the schedule with one receptionist.

Finally, we analysed the required number of seats in the waiting areas for

each examination room. For all rooms, two or three seats are sufficient to allow

all waiting ambulatory patients to take a seat in 95% of the cases. Only in640

exceptional cases, this number of seats would be insufficient, but even then,

patients only have to stand for a few minutes at most. However, we should note

that in the simulation model, we assumed that patients arrive alone (cf. supra

Section 3.4.3). As patients are often accompanied by their partner, a parent, or

child(ren), the number of occupied seats would be higher in reality. Therefore,645

the number of required seats needs to be multiplied by the number of people

usually accompanying a patient.

4.2. Scenario 2 – Contrast Fluid

For Scenario 2 we continue with configuration S1c of Scenario 1 and evaluate

the effect of omitting the requirement for some ambulatory patients to drink650

contrast fluid one hour before they can have their CT examination.

4.2.1. Numerical Results

The average throughput times of ambulatory patients requiring at least one

CT examination are shown in Table 9. In configuration S2, none of the am-
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bulatory patients has to wait one hour before their CT examinations(s) can be655

performed, which results in an average reduction of 9.08 minutes, or −22%, in

throughput time for all ambulatory patients requiring at least one CT exami-

nation.

Configuration
CF No CF All CT

Mean ± Mean ± Mean ±

S1c 76.77 0.24 32.93 0.24 41.91 0.28

S2 - - 32.85 0.21 32.85 0.21

Table 9: Average throughput times (in mins) with 95% confidence intervals of ambulatory

patients requiring at least one CT examination (CF = required to drink contrast fluid and

wait one hour before being examined).

Patients who currently need to drink contrast fluid have to wait this hour in

the waiting area of the examination room where they will undergo their exam-660

ination(s). Therefore, changing this policy also impacts the required capacity

of the waiting areas, i.e. seats. However, as Table 10 shows, the impact is

relatively limited in absolute terms, typically requiring one seat less.

Configuration Exam. room Mean Median Q25 Q75 Q90 Q95

S1c CT1 1.39 1 1 2 3 3

S1c CT2 1.15 1 0 2 2 3

S2 CT1 0.94 1 0 1 2 2

S2 CT2 0.85 1 0 1 2 2

Table 10: Number of seats taken by ambulatory patients waiting for CT examination rooms

per configuration.

4.2.2. Recommendations

Even though some of the ambulatory patients had to wait a full hour less,665

the average reduction in the throughput time for all ambulatory patients is only

9.08 minutes – or 22% – for all ambulatory patients requiring at least one CT

examination. Two elements that contribute to this explanation are: (i) only

21% of all ambulatory patients requiring a CT examination have to drink the
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contrast fluid, and (ii) when these patients need multiple examinations, the670

other examinations are made first such that the patient loses less time due to

waiting. Therefore, the required number of seats in the CT waiting areas is

only marginally impacted by this change as well, typically requiring one seat

less. From the previous, it follows that the decision regarding the contrast fluid

policy has a fairly limited impact on the CM decisions that need to be made.675

Hence, this impact can be disregarded when developing the plans for the new

facility.

4.3. Scenario 3 – Online Registration

Scenario 3 evaluates the impact of allowing 30% of the ambulatory patients

to register themselves online before they visit the hospital. This allows them to680

skip the reception and go straight to the waiting area of the examination room

for their appointment. We compare this to configuration S1c of Scenario 1.

First, we maintained the staffing schedule of the reception from configura-

tion S1c and evaluated the impact on utilisation rates of the reduced number

of ambulatory patients that were served by the reception in configuration S3a.685

Next, we slightly adjusted the number of scheduled receptionists in configura-

tion S3b to anticipate the reduced workload.

4.3.1. Numerical Results

As expected, the utilisation rates of both the front and back office, as well as

the waiting time before registration, decreased in configuration S3a. Table 11690

provides an overview of the average hourly utilisation rates per reception. In

configuration S1c, the utilisation rate of the front office during opening hours

was relatively high at 84% on average, which indicates little margin for an in-

creased workload. When 30% of the ambulatory patients would register them-

selves online in configuration S3a, the average utilisation rate of the front office695

drops to 70%.

As the back office helps the front office during busy periods, a sufficiently

large workload reduction for the front office will also result in a reduction of
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workload for the back office, as shown in Table 11. Consequently, the average

waiting time before registration decreases for all patient types, albeit most sig-700

nificantly for ambulatory patients, as shown in Table 12. The latter have to wait

on average less than a third of the time they used to wait in configuration S1c.

Configuration
Week Weekend

8AM–6PM <> 8AM–6PM <>

Reception (Front Office)

S1c 0.84 0.69 - -

S3a 0.70 0.51 - -

S3b 0.82 0.80 - -

Reception (Back Office)

S1c 0.70 0.69 0.60 0.61

S3a 0.46 0.58 0.53 0.47

S3b 0.68 0.58 0.69 0.47

Reception (Back Office – Call Centre)

S1c 0.25 - - -

S3a 0.24 - - -

S3b 0.25 - - -

Table 11: Average hourly utilisation rates of the reception per configuration. Regular opening

hours are from 8AM–6PM, outside opening hours is denoted by “<>”.

Configuration
A H D S

Mean ± Mean ± Mean ± Mean ±

Reception

S1a 6.08 0.06 1.21 0.03 0.09 0.01 0.94 0.01

S3a 1.85 0.03 0.85 0.02 0.05 0.02 0.66 0.01

S3b 5.27 0.04 0.88 0.02 0.08 0.01 0.86 0.01

Table 12: Mean waiting times before registration (in mins) per configuration with 95% confi-

dence intervals.

The reduced utilisation rates of configuration S3a allow adjusting the num-

ber of scheduled receptionists slightly. The front office only registers ambulatory

and mobile emergency patients, while the back office can register any patient705
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type. Therefore, it is most apparent to reduce the number of front office recep-

tionists first. Configuration S3b evaluates the impact of scheduling one instead

of two front office receptionists. The utilisation rates and waiting times increase

again to more or less the same levels as configuration S1c.

Finally, the required waiting area for the reception has to be sufficiently710

large to accommodate the waiting ambulatory patients. This is summarised in

Table 13, e.g., in configuration S3b, wherein one receptionist is scheduled less,

nine seats are required to make sure that in 90% of the cases everyone can take

a seat, which is slightly less than the ten seats needed in configuration S1c.

Configuration Mean Median Q25 Q75 Q90 Q95

S1c 4.15 3 1 6 10 13

S3a 1.77 1 1 2 4 5

S3b 3.55 2 1 5 9 11

Table 13: Number of seats taken by ambulatory patients while waiting in the reception.

4.3.2. Recommendations715

The reduction in workload is sufficient to schedule one front office reception-

ist instead of two. Even though the average waiting times are slightly lower

with the new registration system, the utilisation rates do not allow a further

reduction of receptionists while maintaining an acceptable service level. Con-

cerning the waiting area for the reception, the required seats are comparable720

to the configuration where none of the ambulatory patients registers online. A

median of two seats is required, and nine seats would suffice to allow everyone

to take a seat in 90% of the cases. However, as mentioned earlier, this does not

take into account persons accompanying the patient.

5. Towards a Method for Data-Driven Process Simulation for Capac-725

ity Management in Healthcare

As demonstrated in our real-life case study, a DDPS analysis generates valu-

able insights for healthcare managers to support decision-making in an evidence-
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based way. This provides them with a solid objective foundation to better

understand the operational effects when intervening in the process, instead of730

relying mainly on intuition and experience. Even though several research ef-

forts that harness the power of Process Mining and Process Simulation exist in

literature [26, 42–48], the methodologies used to conduct the studies are rather

ad-hoc defined according to the problem at hand. Only Johnson et al. [42] and

Kovalchuk et al. [45] provide an impetus to a generalised conceptual framework.735

In an effort to pave the way for conducting DDPS studies to support hospital

management with evidence-based CM recommendations, the remainder of this

section introduces an initial conceptualisation of such a method, based on our

experienced challenges during the case study and considerations from simula-

tion literature. This framework differentiates itself from existing works such as740

Johnson et al. [42] and Kovalchuk et al. [45] on three essential points. Firstly,

our method gives explicit consideration to data quality assessment, as well as

the interaction between the use of process execution data and domain expertise.

These additional perspectives – which are often overlooked in literature – are

indispensable when using DDPS in a real-life healthcare context, where the as-745

sumption of having clean and high-quality event logs is unlikely to hold [13, 40].

Secondly, whereas ClearPath by Johnson et al. [42] is an extension of the es-

tablished Process Mining project methodology PM2 [62], we base our method

on guidelines and best practices in the Process Simulation literature, describe

explicit action points to be considered for every step, and provide references750

to relevant literature. Finally, we extend existing work by identifying specific

challenges with respect to the operationalisation of DDPS, providing valuable

directions for future research.

Sections 5.1–5.3 discuss the proposed method visualised in Figure 5. Sub-

sequently, in Section 5.4, we provide some general reflections to move research755

on DDPS within a healthcare context forward. Although this paper focuses on

CM problems, we believe that this framework can also be valuable for other

problems in the healthcare domain due to its generic character. DDPS analysis

can provide a valuable tool to evaluate policy alternatives before implementing

35



them in practice whenever a healthcare organisation has policy questions that760

would impact an operational process.

Capacity
Management

Questions

Evidence-Based
Capacity

Management
Recommen-

dations

Data-Driven Process Simulation Analysis

Domain
Expertise

Process
Execution Data

Data Quality
Assessment

Model
Development

Model
Verification &

Validation

Scenario
Analysis

Figure 5: Data-Driven Process Simulation (DDPS) Analysis for evidence-based Capacity Man-

agement (CM) recommendations.

5.1. Defining the Capacity Management Questions

Before starting the analysis, the problem at hand should be thoroughly for-

mulated, involving the specification of the process under consideration and the

policy questions at hand [67, 68, 73–75]. Accurately defining and fully under-765

standing the prevailing CM questions of the healthcare organisation requires

close consultation between the team responsible for conducting the analysis and

the domain experts within the hospital [75, 76]. A healthcare organisation can

be confronted with a wide variety of questions: “What would be the operational

impact of investing in an additional medical device? What is the effect on wait-770

ing times when the number of patients with a particular profile would increase?

What is the required adjustment in staffing when a change in a clinical pathway

is implemented? . . . ” Such CM questions constitute the starting point of the

DDPS analysis, and define its goals [68, 69]. Several meetings with the domain

experts of the healthcare organisation might be required to formulate the CM775

questions [77]. In addition, the boundaries of the modelled process need to be

set [65, 67, 69, 73, 78], e.g. by discussing which activities are important for
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the analysis and which are out of scope given the defined CM questions. These

questions also guide decisions regarding the required level of detail of the simu-

lation model [64, 65, 67, 79]. The formulated CM questions might be strategical,780

tactical, operations, or a combination of these decision levels (cf. Section 2.1).

Typically, strategical decisions can be modelled on a higher level of abstraction,

whereas operational decisions require a high level of detail. Finally, the project

planning can be made by estimating the required time to perform the DDPS

analysis [65, 74, 75]. This also entails setting project milestones [65].785

5.2. Data-Driven Process Simulation Analysis

The Data-Driven Process Simulation analysis consists of four key stages: (i)

data quality assessment, (ii) model development, (iii) model validation, and (iv)

scenario analysis.

5.2.1. Data Quality Assessment790

In the data quality assessment stage, the process execution data is explored

and inspected for data quality issues. Because the quality of the input data has a

profound impact on the reliability of the output results [40, 61], the data quality

has to be assessed at the earliest possible stage. While some issues can be easily

detected, e.g. negative activity durations or missing data, other problems are795

much harder to find without specific domain knowledge, e.g. the range within

an activity duration is feasible. As the quality of the input data is typically

assessed in function of the intended use, a close relationship exists between data

quality assessment and the development of the model, i.e. the next stage. As

the development of the model progresses, the suitability of the available process800

execution data for the modelling task at hand (e.g. activity durations, resource

availabilities, or the arrival rate of new cases) will need to be (re-)assessed. The

various tools and frameworks on data quality assessment (cf. Section 2.3) can

support this stage in order to detect a variety of data quality issues which are

relevant for the construction of the simulation model.805

Besides detecting data quality issues, decisions need to be made on how
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to handle them appropriately. This requires domain knowledge as well, which

highlights, once again, the indispensable character of involving domain experts

during this stage. Before reaching an acceptable quality level, several iterations

of data quality assessments and corrections might be required. In addition, these810

newly uncovered insights from the data might trigger additional policy questions

or, due to the severity of data quality issues, some policy questions might need

to be reformulated. Moreover, as the development of the simulation model

progresses, new issues might come to light. Therefore, several of these iterations

of data quality assessment and data cleaning might be required throughout the815

DDPS analysis. Consequently, this stage, in which the process execution data

is collected, analysed, and prepared, typically requires a significant amount of

time [68, 69].

While literature on the emerging branch of DDPS in Process Mining often

refers to the fully automated discovery of simulation models from event logs820

[10, 11, 38], the data quality issues of hospital process execution data impede

this fully automated derivation, as many important details are not recorded

(e.g. the exact arrival time of patients or when a particular activity started)

or are inaccurately recorded (e.g. inverted timestamps, system errors, or batch

registration). Notwithstanding the increasing research attention devoted to the825

development of taxonomies and frameworks to identify, assess, and handle data

quality issues (cf. Section 2.3), there are still substantial improvements to be

made to the field of DDPS by extending and integrating data quality assessment

and correction algorithms into techniques and tools.

5.2.2. Model Development830

In the model development stage, the simulation model – which represents

the operational behaviour of the real-life process in a computer model – is de-

veloped [7, 64, 73, 74]. To this end, a wide variety of modelling tasks needs

to be conducted, such as the specification of the control-flow (i.e. the order

of activities), the arrival rate of new cases, activity durations, and resource835

availabilities [8]. Ideally, these model components should be modelled based on
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insights from process execution data as much as possible as this data reflects the

real-life execution of the process. However, as this might not always be possible

due to, e.g. data quality issues, the input of domain experts is likely to be re-

quired alongside the data for some modelling tasks [75]. A structured overview840

of these modelling tasks and how PM can be used to support simulation model

construction is provided by Martin et al. [8].

During the development of a simulation model, abstractions of reality will

need to be made [64, 68, 74, 79]. In this respect, it is essential that all as-

sumptions and simplifications that were made are thoroughly formulated and845

documented [64, 65, 67, 69, 74, 79].

While state-of-the-art DDPS model discovery [10] demonstrates the feasibil-

ity of using process execution data to construct simulation-ready models, many

assumptions are still made, entailing the risk of generating oversimplified mod-

els and unrealistic behaviour in a healthcare setting. Especially the resource850

perspective, such as resource requirements, roles, and schedules, are indispens-

able when making accurate CM decisions. Current state-of-the-art DDPS model

discovery offers limited support for the resource perspective [80].

5.2.3. Model Verification & Validation

The model verification and validation stage involves assessing whether the855

simulation model operates as intended and contains no errors (i.e. verification),

and whether the model’s behaviour and output represent the real-life process in

a sufficiently accurate way (i.e. validation) [64, 67–71].

In this stage, a combination of statistical and domain expert verification

and validation can be used [76]. Some output measures, such as throughput or860

waiting times, can typically be statistically validated using a validation dataset

that has not been used during the model development phase. Other aspects of

the model, especially the parts that extensively required the input of domain

experts, cannot be statistically validated as limited or no data was available and

have to be validated by the domain experts. This validation by domain experts865

can, for instance, be operationalised by means of a structured walk-through, in
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which the correctness of the model is inspected by discussing it with domain

experts [64, 75]. In addition, the assumptions and simplifications that were

applied during model development should be discussed with and understood by

the domain experts to determine whether these abstractions were valid to be870

made [67, 71].

If the simulation model is not reaching the desired accuracy level, either sta-

tistically or deemed by the domain experts, the modeller needs to return to the

model development stage to improve the simulation model [64, 71, 76]. Several

iterations of verification and validation, and simulation model corrections might875

be required to attain the desired accuracy level.

When modelling complex operational systems, such as healthcare processes,

domain expertise is indispensable to give meaning to patterns arising from the

data and provide additional information regarding the process. Simultaneously,

specific expertise is required when conducting DDPS [64, 74], which is not880

widespread in many hospitals. Hence, domain experts need to rely on simu-

lation modellers to build the simulation model and conduct the analysis. While

this third party has the required competencies to conduct the DDPS, they typi-

cally do not have the same expertise about the process under study. This creates

an interdependency between the simulation modellers and the domain experts.885

Considering that the interaction between the simulation modellers and domain

experts tends to occur asynchronously, the project duration is often significantly

extended, particularly when several iterations are needed, e.g. to handle data

quality issues or validate the model.

5.2.4. Scenario Analysis890

Fourthly and finally, once a validated model is obtained, various scenarios

are defined in an effort to answer the CM questions under investigation. Each

scenario describes a potential future situation that will be simulated under a

specific set of conditions [64, 67, 69, 75], e.g. the addition of a new medical

device, an increase of the number of patients with a particular profile, or an895

adjustment in scheduled staff. The scenarios should also be explained to and
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discussed with the domain experts to determine whether these scenarios are

suitable for determining answers to the CM questions [67].

In addition to the scenarios, the run parameters of the model need to be

specified. These include the length of each simulation run, in terms of time900

units in the simulation model [64, 65, 67, 68, 74, 78, 79], the warm-up period

needed to attain a stable state in the model [64, 65, 67, 74, 79], and the number

of replications needed to reduce the variability of the outputs [64, 65, 67, 74].

Each scenario is then simulated, which generates output. Typically, a sta-

tistical output analysis is performed to analyse the performance metrics of each905

scenario [64, 65, 68, 69, 73, 74, 78].

5.3. Evidence-Based Capacity Management Recommendations

The results from the scenario analysis are used to formulate CM recommen-

dations as decision-support information for the hospital management [75]. As

shown in Figure 5, these recommendations can spawn additional CM questions,910

which could instigate another iteration through the DDPS method.

The scenario analysis results should be presented to the domain experts,

along with evidence-based recommendations and suggestions for improvement

regarding the defined CM questions [64, 67, 73, 75, 77, 79]. The actual decision-

making and implementation of the evidence-based CM recommendations is the915

competence of the domain experts and, therefore, outside the scope of the pro-

posed method [75].

5.4. Reflections on Data-Driven Process Simulation Analysis

DDPS analysis is a promising way to support healthcare managers in their

CM decisions. Nevertheless, the aforementioned challenges – (i) data quality920

issues, (ii) limited support for the resource perspective, and (iii) asynchronous

interaction – highlight the need for further research to develop tools enabling

healthcare managers to reap the benefits of DDPS analysis fully. An inter-

esting perspective to explore in future work is interactive Data-Driven Pro-

cess Simulation [61]. This implies that the modelling, validation, and analysis925
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in DDPS is conducted synchronously as the domain expert directly interacts

with a simulation tool, guiding the expert during the data-driven development

and validation of a simulation model. Only limited research has been devoted

to interactively involving domain experts in developing data-driven simulation

models. Martin et al. [60] proposed, at a conceptual level, an interactive data930

cleaning approach to identify and correct data quality issues in event logs.

Similarly, Benevento et al. [81] proposed an Interactive Process Discovery

technique in which the modeller has complete control over discovering a process

model from an event log. However, the resulting process models are Petri Nets,

which are typically rather difficult to understand for domain experts without935

prior knowledge about this modelling technique [82, 83]. Even though algo-

rithms exist to convert Petri Nets to more comprehensible notations, such as

Business Process Model and Notation (BPMN) [84, 85], these algorithms often

create large and complex models [84, 85].

The interactive involvement of domain experts during DDPS analyses will940

require the development of new tools which operationalise an interactive ap-

proach throughout the various stages of a simulation study. In the first stage,

tools could be developed that support enhanced interaction between modeller

and domain expert, e.g., facilitating joint data quality assessment and data

cleaning. This also requires additional research on interactively involving do-945

main experts at a conceptual level [86], i.e. best practices when visualising

statistics for validation to domain experts and eliciting input to build, correct,

and enhance data-driven simulation models. In parallel, data quality can be

improved by facilitating accurate data registration using intuitive and straight-

forward information system interfaces or by using technologies that support data950

capturing, such as Real-Time Location Systems (RTLS), which can enrich and

validate event logs [48, 87–89]. In a second stage, such tools could be refined

and combined into an integrated simulation environment that allows domain

experts to conduct DDPS analyses independently.
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6. Conclusion955

Data-Driven Process Simulation focuses on developing simulation models by

extensively using process execution data – i.e. event logs – originating from, e.g.

Health Information Systems. This paper outlined a DDPS analysis to support

Capacity Management decisions using an extensive real-life case study at the

radiology department of a Belgian hospital. In this case study, we provided960

recommendations regarding the required number of radiology devices, waiting

area size, and reception staffing.

Based on our experienced challenges during the case study, and guidelines

and best practices from simulation literature, we provide an effort to pave

the way for conducting DDPS studies to support hospital management with965

evidence-based CM recommendations. This method attributes explicit consid-

eration to data quality assessment, as well as the interaction between the use

of process execution data and domain expertise, two elements that are often

overlooked in literature.

As highlighted in the discussion, future research could focus on the inter-970

active involvement of domain experts during the different steps of a DDPS

analysis, the assessment and correction of data quality issues encountered in

healthcare process execution data, and extending the support for the resource

perspective in DDPS model discovery. In addition, the applicability of the in-

troduced method for other CM decisions and other types of policy questions in975

healthcare processes can be assessed.
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[14] N. Martin, B. Benôıt, A. Caris, Event Log Knowledge as a Complementary

Simulation Model Construction Input, in: M. S. Obaidat, J. Kacprzyk,
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