
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Decentral task allocation for industrial AGV-systems with routing constraints

Non Peer-reviewed author version

De Ryck, M.; Pissoort, D.; Holvoet, T. & DEMEESTER, Eric (2022) Decentral task

allocation for industrial AGV-systems with routing constraints. In: JOURNAL OF

MANUFACTURING SYSTEMS, 62 , p. 135 -144.

DOI: 10.1016/j.jmsy.2021.11.012

Handle: http://hdl.handle.net/1942/37268

Decentral Task Allocation for Industrial AGV-Systems with Routing Constraints

M. De Rycka,∗, D. Pissoorta, T. Holvoetb, E. Demeesterc

aFaculty of Engineering Technology, KU Leuven,
Spoorwegstraat 12, 8200 Bruges, Belgium

bFaculty of Engineering Science, KU Leuven,
Celestijnenlaan 200a, 3001 Leuven, Belgium

cFaculty of Engineering Technology, KU Leuven,
Agoralaan B, 3590 Diepenbeek, Belgium

Abstract

Automated Guided Vehicles (AGVs) form a large and important part of the logistics transportation systems in today’s

industry and are widely used. One of the main problems in the control of AGV systems is the routing problem, where all

robots attempt to execute all of their allocated tasks without congestions with other robots. This is a complex problem

and a large variety of solutions exist in literature to this purpose. One possible solution that is not widely investigated

in literature is the possibility of including routing information as a constraint in the task allocation process in order

to obtain a more balanced allocation that could reduce possible congestions. In task allocation literature, costs for a

robot to execute a task are largely estimated without considering possible delays that can occur due to congestions when

moving to a task. In this paper, the observed research gap of including routing constraints in the task allocation problem

is addressed by proposing a decentralized task allocation algorithm based on sequential single-item (SSI) auctions with

the implementation of delegate-MAS (DMAS) as a routing constraint in the bidding process. Our new approach is

benchmarked to an SSI-solver that does not take routing constraints into account.

Keywords: Automated Guided Vehicles, Decentralization, Task Allocation, Routing Constrained

1. Introduction

Automated Guided Vehicles (AGVs) are mobile robots

that perform transportation tasks in all types of applica-

tions: from e-commerce warehouses over material handling

in assembly lines, to pharmacy, and further. AGV systems

are usually controlled in a centralized way where one sin-

gle fleet manager coordinates the whole fleet. However,

our research focuses largely on a decentralized control of

AGV-systems as they can offer some benefits over central-

ized control [1–3]. In decentralized control of a mobile

∗Corresponding author

Email addresses: matthias.deryck@kuleuven.be (M. De

Ryck), davy.pissoort@kuleuven.be (D. Pissoort),

tom.holvoet@kuleuven.be (T. Holvoet),

eric.demeester@kuleuven.be (E. Demeester)

robot fleet, robots use only local information to make de-

cisions and hence, participate in the optimization process.

This decentral decision making does not necessarily mean

that the robot algorithms need to be situated on the sep-

arate hardware devices of the robots, but might as well

be situated in one piece of hardware. When the decentral

decision making algorithms for task allocation are situated

on separate hardware, then this is called distributed task

allocation. But this paper proposes a decentral algorithm.

In [4], we made a review on control algorithms and tech-

niques in AGV systems with a large focus on decentralized

control. More specifically, in our research, we investigate

decentralized task allocation under constraints. In [5], we

targeted the task allocation problem considering resource

Preprint submitted to Journal of Manufacturing Systems November 28, 2021

constraints by introducing an intelligent resource manage-

ment approach [6] that showed good results. This paper

will target the task allocation problem considering routing

constraints in order to account for possible delays when

moving towards a task due to roadblocks or other AGVs

moving. This is done by implementing routing information

in the bidding mechanism of a sequential single-item (SSI)

auction process, making the routing model used in the bid-

ding process more realistic. In general, path costs for exe-

cuting a new task in a task allocation process are usually

computed using, for example, an A*-shortest path plan-

ner that does not consider possible congestions or routing

delays. It is assumed that the robot can execute its task

and that no roadblocks occur or that no road segments

are occupied by other robots. In our approach, routing

information is considered in the bidding process. AGVs

bid on tasks considering the possibility of a detour if some

road segments are blocked dynamically or if they are al-

ready occupied by other robots at the required time slot.

It is assumed that robots can allocate road segments at

particular slots in time to prevent multiple robots of al-

locating one segment at a time. This resource allocation

results in a task allocation approach with a more realistic

model of the AGV routing. For resource allocation and

for obtaining routing information, the delegate-MAS rout-

ing approach [7–9] is used. Fusion of routing in the task

allocation process requires few adaptions to the control ar-

chitecture, facilitating their implementation in industrial

AGV-systems. Beside AGV-systems, this approach could

be of benefit to all systems where a fleet of vehicles needs

to cooperate in order to distribute a set of transportation

tasks among each other in highly dynamic environments,

e.g. parcel delivery, material handling, etc. In any of

these systems, it is of primordial importance to reduce the

possibility of congestions and to be able to estimate task

execution times as accurately as possible. These are two

properties that result from our approach and could there-

fore be of relevance to multiple industrial systems.

The paper is organized as follows: Section 2 covers

the literature on routing. Section 3 covers the proposed

decentral task allocation architecture under routing con-

straints. Section 4 illustrates the proposed approach with

a concrete example. Section 5 validates the proposed ar-

chitecture in simulation and discusses the results. Section

6 draws concluding remarks.

2. Literature review

Besides the task scheduling problem in multi-robot

systems, the multi-robot routing problem is a vast

research area that gained much attention in the past

decades. Multi-robot task scheduling deals with allocat-

ing the tasks to robots in the system. We reviewed the

multi-robot task allocation literature in our previous work

[4, 5]. Multi-robot routing, on the other hand, deals with

finding the most optimal path for each robot in the system

in order to execute all assigned tasks resulting from the

task scheduling problem, and this without congestions,

deadlocks, or live-locks. This is a complex problem, espe-

cially when robots are restricted to move on guide-path

networks that can consist of both bi- or unidirectional

paths as these put large restrictions on the geographical

freedom of the robots. Over the years, many solutions

to this problem have been proposed. One approach to

avoid congestions is to engineer the guide-path network

in such a way that congestions are avoided as much as

possible. However, the effort to engineer such networks

is significant and limits the freedom of customers to have

the network layout as they desire for their application.

One effective method to avoid congestions by means

of control algorithms is called zone control [10, 11]. Zone

control divides the total guide-path network in distinct

zones where only a limited number of robots is allowed.

This is highly effective as this decreases the chance of

having a congestion significantly. However, zone control

results in highly sub-optimal behavior as not all robots

2

can have access to the whole facility at the same moment,

which will induce waiting times for entering particular

zones.

In addition to zone control, many routing algorithms

exist in order to provide each robot with optimal paths

while avoiding congestions. In general, these algorithms

can be divided into centralized and decentralized routing

algorithms:

• Centralized routing algorithms [12–14] do the rout-

ing for all robots simultaneously, before execution,

while having global information. For example, they

can provide an optimal solution using a prioritized

routing with A*, where robots are assigned non-

conflicting routes in a consecutive order, depending

on their priority, by planning the routes consider-

ing the already planned routes of higher prioritized

robots. This type of routing is also known as static

routing because it is scheduled before the tasks are

executed. This can ensure congestion-free paths be-

fore runtime, but can easily fail if changes occur dur-

ing execution. In addition, central approaches typi-

cally inherit some other drawbacks, such as increased

computation with increasing number of robots in the

system, and the need for a complete re-planning of

the routing solution when dynamic changes occur,

such as roadblocks, robot fallout’s, etc.

• Decentralized routing algorithms [15–17] attempt to

overcome these limitations. In these methods, robots

plan their routes individually only using local infor-

mation. In this way, rerouting due to roadblocks

can be performed without much computational ef-

fort, resulting in high adaptation to changing envi-

ronments. This is also known as dynamic routing

because the congestion-free solution can be dynam-

ically adjusted during runtime, making the routing

more robust against changing circumstances. In ad-

dition, robustness can be increased because the rout-

ing of robots is not affected by the fallout of other

robots. A disadvantage is that decentralized solu-

tions usually provide sub-optimal solutions because

they use only local information.

A simple way of decentral dynamic routing is rule-

based routing [18] that defines a set of specific movement

rules for robots when they proceed, this to reduce

complexity. In many industrial AGV systems, rule-based

dynamic routing is used to avoid congestions. The

common routing algorithms used in the industry attempt

to plan optimal and congestion-free routes without

considering the availability of the resources they need,

which are the physical roads and intersections of the

guide-path network. When not considering these layout

parts as resources that can be allocated or reserved, an

imported dimension in which can be planned besides the

spatial dimension is skipped, namely time. When nodes

and intersections are modeled as resources that can be

allocated to robots in time, much more complex routing

could be managed. To this end, some routing algorithms

exist that take into account resource allocation [7, 19].

A promising decentral and dynamic routing approach

that uses resource allocation is called delegate-MAS

[7–9]. Delegate-MAS (Delegate Multi-Agent Systems)

makes use of a virtual representation of the environ-

ment in which segments, nodes, and intersections all

maintain a reservation schedule in which robots can

make reservations in time. The dynamic routing process

acts in a belief-desire-intention (BDI) manner in which

each robot independently (i) updates its believes about

the environment in which it looks for a set of possible

routes through the virtual guide path network, (ii) sets

some desires in which it evaluates all routes minimizing

a certain objective, and (iii) effectuates its desire by

reserving the required path segments in time. It does this

by using ant colonization principles (ACO) [20] in which

a set of lightweight ants traverse the virtual guided path

3

network looking for possible routes and virtually execute

each route, poll nodes for their schedule, and calculate the

time a particular route would take. This BDI-process is

repeated frequently to respond to changing circumstances.

When a road gets dynamically blocked, the ants find

alternative routes and update their intention by reserving

the new route.

This delegate-MAS routing principle will be used to

account for routing constraints in our proposed decentral

task allocation approach presented in this paper. Research

on the implementation of temporal and precedence con-

straints in decentral multi-robot task allocation has al-

ready been extensively investigated in the literature [21,

22], but the implementation of routing constraints has not

yet been investigated, to the authors’ knowledge, and is

thus investigated in this paper.

3. Proposed task allocation architecture under

routing constraints

Our proposed decentral task allocation approach uses

an auction-based task allocation process and more specifi-

cally the sequential single-item (SSI) auction process [23].

This SSI-approach is used as this is proven to have the best

trade-off between optimality and computational efficiency

and considers robots as bidders, and tasks as goods [23–

25]. In Section 3.1, the sequential single-item auction pro-

cess and how it is implemented using a linear combination

of two bid principles, MiniSum and MiniMax [26], is elab-

orated. In Section 3.2, our contribution to this approach,

by implementing delegate-MAS as a routing constraint, is

discussed. In Section 3.3, the total auction algorithm with

routing constraints is elaborated.

3.1. Task allocation approach

3.1.1. Setup

A set of tasks T = {t1, t2, . . . , tm} needs to be allo-

cated to a set of robots R = {r1, r2, . . . , rn} that can be

used to execute the tasks. Tasks are defined as locations

that robots need to visit. Robots can have multiple tasks

they are assigned to, represented by a local task list LT i

of robot ri, which is initially empty. Our proposed ar-

chitecture is a decentralized architecture, this means that

most of the knowledge is decentralized. To participate

into the auctions, each robot only needs local information:

its own location, local task list, a graph of the layout,

and information on the newly announced task. The lay-

out on which the robots move consist of depot stations

D = {d1, d2, . . . , dn} at which no tasks can be spawned,

and other stations S = {s1, s2, . . . , sk} at which tasks can

be spawned. The total graph of the layout is presented

as G with vertices or nodes V = D ∪ S, and segments or

edges E, which is a set of edges joining any two vertices

from V .

3.1.2. Auction process

All tasks to execute T are initially unallocated and are

announced all together for auction to all available robots

R by an auctioneer. After receiving the announcement of

a new task Tnew from an auctioneer, all robots compute

the cost for including this task in their local task list as a

bid, following some bidding rule described further. After

bid computation, all robots send their bids to the auction-

eer which then determines the winning task, and winning

robot of that task, following some winner determination

rule described further. The winning robot finally adds the

task to its ordered local task list in an optimal way and

obtains a new local task list LT ′i = LT i
⋂

Tnew. To find

the optimal order of the tasks in LT ′i, a Traveling Sales-

man Problem (TSP) [27] could be solved with any solution

approach. After the allocation of Tnew, the other tasks in

T are sequentially auctioned in the same way until there

are no tasks left in T .

Bidding phase. When a robot receives a task from an auc-

tioneer, it computes a bid b that represents the cost of ex-

ecuting this task. Our approach uses a combination of the

4

MiniSum and the MiniMax bidding rules by calculating

the MiniSum and MiniMax bids, bms and bmm, for each

robot ri ∈ R, and combine them using a linear combina-

tion. The MiniSum bidding rule results in a minimized

total path cost summed over all robots. The MiniMax

bidding rule results in a minimum total time span for exe-

cuting all tasks. Both of them could be beneficial in certain

situations. For this reason, an extra parameter ε ∈ [0, 1]

was proposed that is tune-able by the user or which can

be changed/learned automatically during robot execution.

The total bid that is sent to the auctioneer is a linear com-

bination of both bidding rules:

b = ε · bms + (1− ε) · bmm (1)

When ε is 1, the user is focused on the total path cost and

wants the robots to consume as little energy as possible.

This can be the case when there is a moment of fewer

transports and when the available time can be used to refill

most of the robots and having few robots executing tasks.

When ε is 0, the user is focused on the total execution

time and wants this to be as low as possible. This can be

the case during rush periods when many tasks need to be

executed urgently. When the user wants both objectives

to be minimized equally, ε can be put to 0.5.

• To calculate the MiniSum bid bms, robots need to

estimate the extra cost to insert the new task Tnew

in their local task list LT i. First, they estimate the

total cost c1 for executing their initial task list LT i.

Second, they estimate the total cost c2 for executing

a new local task list LT ′i = LT i
⋂
Tnew where the

optimal order is found via solving a TSP problem.

Finally, they compute the difference of both costs to

obtain the MiniSum bid.

bms = c2 − c1

• To calculate the MiniMax bid bmm, robots only need

to estimate the total cost c2, as in this approach,

robots only bid the total cost of executing the new

task, so no marginal cost is calculated.

bmm = c2

When both bids are calculated, this is combined using Eq.

1 to obtain the final bid that is sent to the auctioneer for

the winner determination phase. For the bid computa-

tion, costs are defined as times in seconds. The cost of

moving from one location to another in the graph is cal-

culated using the distance obtained from the A* shortest

path planning algorithm [28] and the vehicle’s velocity v.

Winner Determination phase. As a winner determination

phase, the simple Lowest Bid (LB) principle [29] is

adopted. The auctioneer receives all bids from the robots

at each task and assigns the task that has the lowest bid

to the robot that computed that bid. This principle is

used because this gives us directly the minimization effect

of our objective. Using this principle in combination with

our bidding rule, we aim at minimizing the total cost of

executing all tasks, as well as the maximum time span in

which all tasks are executed.

3.2. Routing approach

When routing constraints are considered in this auction

process, only minor adaptions need to be made to both the

setup and the auction process of the classical SSI-auction

approach. The routing constraints that will be included

in the bidding process will come from the delegate-MAS

routing approach. Using the implementation of delegate-

MAS as routing constraint in the bidding mechanism, it is

attempted to avoid congestions before they occur by main-

taining a proper load balance in the environment layout

and by reserving time slots at specific layout segments.

3.2.1. Setup

In order to consider routing constraints, robots must

be able to verify that all locations in their local task list

5

LTi can be visited without collisions or deadlocks. To this

purpose, each robot needs access to a virtual representa-

tion of the layout, which is the graph G. To implement

the delegate-MAS routing approach, every node V in the

original graph G must be extended with a software piece

that monitors the node’s state (blocked, crowded, etc.)

and that holds a reservation schedule, which is modeled

as a Simple Temporal Network (STN) [30] where nodes

represent points in time and edges represent time inter-

vals. Such a software piece will be called an environmental

agent. Each robot ri can make reservations in the sched-

ule of each environmental agent to reserve the node for a

specific period of time in the future. Initially, all of the

environmental agents’ schedules are empty.

3.2.2. Auction process

In order to consider routing constraints, this only needs

little adaption to the bid calculation from Section 3.1.2.

This boils down to obtaining a route using the DMAS-

algorithm towards all tasks in the sequence that needs to

be evaluated. Thus for every task, all feasible paths to-

wards the task are evaluated, and for the best path among

them, the total cost including delays is calculated. The to-

tal cost for executing all tasks is further used in the bidding

process. If the robot has a local task list LT ′i including a

new task Tnew, for which it needs to evaluate the cost of

accepting the task, delegate-MAS calculates the total cost

of executing these tasks including extra delays that result

from congestion avoidance. The delegate-MAS process oc-

curs in three phases:

1. Feasibility phase: For scheduling a route over all

tasks in LT ′i , a set of feasibility ants propagates

through the virtual network G looking for a set of

feasible paths that each contain at least all locations

in the local task list LT ′i . The robot retrieves the

feasible paths from the ants and uses them for the

next phase.

2. Exploration phase: A set of exploration ants

propagates through the virtual network G following

each of the feasible paths obtained from the feasi-

bility phase in order to estimate the total execution

time of each of the paths including possible delays

caused by (temporarily) blocked nodes. Starting

from the next node the robot will visit, and at the

time the robot starts at this node, the ants virtually

execute the route by visiting all nodes in sequence

while polling each node’s environmental agent to

see if the node is free at the time the ants arrive,

considering the traveled time already executed. If

the node is free at the time slot the ant needs to

traverse the node, no extra delay is included in the

total travel time. If the node is not free on the

other hand, the environmental agent reports the

shortest delay the ant needs to wait before the node

is free. The ant considers this extra delay in its

total travel time. When the ant reaches the end of

the path, it knows how long this path would take

for the robot to traverse including the delays caused

by already reserved nodes of other robots. The ant

keeps the list of time slots that it can get for each

node in its route. The robot retrieves all total travel

times and slots for all feasible paths from the ants

and selects the best path following some objective,

which is the shortest traveling time including delays

in our approach. The cost for executing this route,

including the new task Tnew, can be used in the

bidding process.

3. Intention phase: If the task is assigned to the

robot by the auctioneer, the obtained path needs

to be fixed in the environment. A set of intention

ants propagates through the virtual network G fol-

lowing the chosen best path from the exploration

phase. Starting from the next node the robot will

visit, and at the time the robot starts at this node,

the ants visit all nodes in the path in sequence and

6

make reservations at each node for the required time

slot calculated in the exploration phase. A node is al-

ways reserved for a time slot (t1, t2) with t1 the time

of moving towards the node (thus leaving the previ-

ous node), and t2 the time of arriving at the node.

The ants make reservations at all nodes for the cal-

culated time slots. This results in a fully reserved

path in time, which can be used as a constraint in

the route planning of other robots as only one robot

can occupy a node at the same time.

Algorithm 1 shows the pseudo-code of the delegate-

MAS process. The algorithm takes the starting point p,

the set of locations to visit LT , and the graph of the layout

G as an input.

Algorithm 1 DMAS-algorithm

1: procedure DMAS(p, LT , G)
2: feasible paths← feasibility phase(p, LT,G)
3: path, slots← exploration phase(feasible paths,G)
4: return path, slots

The implementation of the routing constraints come

into play at the calculation of the bidding costs c1 and c2.

For c1, the robot looks at its current locations it needs to

visit and uses the DMAS-algorithm to obtain an optimal

route (using LTi), and receiving the total time cost for ex-

ecuting this route considering possible delays. For c2, the

robot considers the new task in its local task list and also

uses the DMAS-algorithm to obtain the new route (using

LT ′i). The total bid is again computed using Eq. 1. When

the bidding process is finished and a robot is assigned the

task, this robot performs an intention phase in which it re-

serves its new route into the environment. When including

these extra routing constraints in the bidding process, de-

lays get minimized as a robot may loose a task to another

robot if it needs to take a detour when accepting the new

task due to possible congestions or roadblocks.

3.3. Task-agent architecture

If the standard SSI-algorithm described in Section 3.1

is combined with the routing extension described in Sec-

tion 3.2, the total auction algorithm with routing con-

straints at the AGV side (bidding side) is obtained. The

AGV uses only local information to compute a bid: own

location p, local task list LT , information on the newly an-

nounced task Tnew, and the objective parameter ε. Only

the graph G of the layout including all reservations could

be seen as a global piece of information although each

robot only accesses the part it needs in order to partic-

ipate. Algorithm 2 shows the pseudo-code of our SSI-

approach under routing constraints. The task-agent at

AGV side outputs a decision, which is the total bid b

it sends to the auctioneer. The ’DMAS()’ function im-

plements the delegate-MAS behavior as stated in Section

3.2.2.

The task-agent architecture at auctioneer side imple-

ments the winner determination algorithm defined in Sec-

tion 3.1.2. Algorithm 3 shows the pseudo-code of this pro-

cedure.

7

Algorithm 2 AGV algorithm

1: procedure BidCalculation(p, LT , Tnew, G, ε)
2: c1 ← DMAS(p, LT,G)
3: LT ′ ← LT

⋂
Tnew

4: c2 ← DMAS(p, LT ′, G)
5: bms ← c2 − c1
6: bmm ← c2
7: b← ε ∗ bms + (1− ε) ∗ bmm

8: return b

Algorithm 3 Auctioneer algorithm

1: procedure Auction(Tnew, R)
2: announce(Tnew, R)
3: bids← receiveBids()
4: bi ← min(bids)
5: assign(Tnew, ri)

4. Illustrative example problem

Our proposed approach will be illustrated with a sim-

ple example. Assume a layout as shown in Fig. 1 is

available. Costs (in seconds) are calculated as follows:

cost12 = d12/v, with v = 1 m/s.

Fig. 1: Layout

Let us say there are two (n = 2) robots with initial

locations for robots 1 and 2 respectively: pR1 = pos1,

pR2 = pos3, and local task lists: LTR1 = [pos4] and

LTR2 = [pos13]. Both robots calculated following paths

(yellow dots for robot 1 and green squares for robot 2)

with the tasks to execute marked in bold:

pathR1 = [pos5,pos4]

pathR2 = [pos7, pos8,pos13]

Both robots reserved following time slots in the environ-

ment for each of the nodes on their paths:

slotsR1 = [(0, 20), (20, 40)]

slotsR2 = [(0, 20), (20, 40), (40, 70)]

Both robots computed following costs for executing these

paths:

costR1 = 20s + 20s = 40s

costR2 = 20s + 20s + 30s = 70s

Thus for example, robot 1 reserved node pos5 for the

time slot between 0 and 20 seconds after the robot starts

executing the route. The costs are the costs of the current

route they need to follow with the tasks they are already

assigned to.

In the following, it will be demonstrated how our ap-

proach acts when a new task arrives at position pos10 (de-

picted with a red star in Fig. 1). It is also assumed that

node pos9 is blocked in a time slot (40, 55) due to a road-

block or due to another AGV passing that node in that

particular time slot. After receiving the announced task

from the auctioneer, both robots compute their bid for ex-

ecuting the new task on top of the tasks they are already

assigned to. They do this considering routing constraints

coming from a DMAS-algorithm. In this example, the to-

tal path cost is minimized by setting the tuning parameter

in the objective function to one, ε = 1.

Robot 1: A DMAS-algorithm finds and evaluates the

feasible routes for visiting both pos4 and pos10. A bid is

calculated using this information.

• Feasibility phase, feasible paths:

pathR1,1 = [pos5;pos4; pos9; pos10]

pathR1,2 = [pos5;pos4; pos5; pos6; pos10]

• Exploration phase, slots:

slotsR1,1 = [(0, 20), (20, 40), (55, 85), (85, 105)]

8

slotsR1,2 = [(0, 20), (20, 40), (40, 60), (60, 80), (80, 116)]

• Exploration phase, total path cost:

costR1,1 = 20s + 20s + 15s + 30s + 20s = 105s

costR1,2 = 20s + 20s + 20s + 20s + 36s = 116s

⇒ best path = pathR1,1

• Bid calculation:

MiniSum bid: bms = c2 − c1 = 105s− 40s = 65s

MiniMax bid: bmm = c2 = 105s

Total Bid: bR1 = 1 · 65s + (1− 1) · 105s = 65s

The slots that robot 1 would like to reserve, as well as the

already reserved slots of robot 2 and the blockage at pos9

are depicted in Fig. 2, which shows the environmental

agent schedules for each node in the graph. Note that

robot 1 cannot immediately access node pos9 at time

t = 40s. It needs to wait up to t = 55s after which node

pos9 is unblocked (blockage is denoted by ’X’). The robot

therefore reserves a slot (55, 85) instead of (40, 60) with a

delay of 15s.

Robot 2: A DMAS-algorithm finds and evaluates the

feasible routes for visiting both pos13 and pos10. A bid is

calculated using this information.

• Feasibility phase, feasible paths:

pathR2,1 = [pos7; pos8;pos13; pos12; pos11; pos10]

pathR2,2 = [pos7; pos8;pos13; pos16; pos15; pos11; pos10]

• Exploration phase, slots:

slotsR2,1 = [(0, 20), (20, 40), (40, 70), (70, 90), (90, 110),

(110, 130)]

slotsR2,2 = [(0, 20), (20, 40), (40, 70), (70, 100), (100, 140),

(140, 170), (170, 190)]

• Exploration phase, total path cost:

costR2,1 = 20s+ 20s+ 30s+ 20s+ 20s+ 20s = 130s

costR2,2 = 20s+ 20s+ 30s+ 30s+ 40s+ 30s+ 20s =

190s

⇒ best path = pathR2,1

• Bid calculation:

MiniSum bid: bms = c2 − c1 = 130s− 70s = 60s

MiniMax bid: bmm = c2 = 130s

Total Bid: bR2 = 1 · 60s + (1− 1) · 130s = 60s

The slots that robot 2 would like to reserve, as well as the

already reserved slots of robot 1 and the blockage at pos9

are depicted in Fig. 3, which shows the environmental

agent schedules for each node in the graph.

Fig. 2: Environmental agent schedules when robot 1 accepts the new
task

Fig. 3: Environmental agent schedules when robot 2 accepts the new
task

It can be noticed that although robot 1 is closest to

the new task, robot 2 can offer a lower bid and gets as-

9

signed the task because of the temporal blockage at node

pos9. When this assignment takes place, the total path

cost (edge cost and delays) for both robots becomes (40s+

130s) = 170s and the total execution time for execut-

ing all tasks (largest path cost of both robots) becomes

max(40s, 130s) = 130s. The overall objective of this solu-

tion is:

obj = ε ∗ 170s + (1− ε) ∗ 130s

And with our objective parameter ε = 1:

obj = 1 ∗ 170s + (1− 1) ∗ 130s = 170s

This shows that considering routing constraints in the bid-

ding process, in addition to preventing congestions, can

reduce the task allocation objective, which is in this ex-

ample the total path cost for all robots combined. In short,

introducing routing constraints in the auction process of-

fers a more realistic way of allocation considering dynamic

changes in the environment that can cause delays in the

routing when a new task would be accepted.

5. Validation and benchmarking

In this section, our approach is validated and bench-

marked against an SSI-approach that does not use rout-

ing constraints in its bidding process. For validation, two

stages are defined. First, the actual allocation of a random

set of tasks is performed using the SSI-auction with (for

our approach) and without (for the benchmark approach)

including routing constraints. Second, the allocation re-

sult is evaluated by calculating the cost for all robots fully

executing their allocated task sequence. This cost is cal-

culated by computing routes for all robots through their

assigned task sequences individually, either by using A-

star or DMAS as a routing approach. In this evaluation,

the number of congestions, the total delay, the total edge

cost (in seconds), and the total path cost (edge cost plus

delay), are calculated for all robots together. Three vali-

dation setups are defined:

• The first setup (SSI with simple bid and A-star rout-

ing), hereafter called setup 1, uses the classical se-

quential single-item auction process where bids are

calculated as in Section 3.1.2 without considering

routing constraints. The allocation is evaluated us-

ing the simple A-star algorithm for routing. This

setup is meant to analyze the behavior of a robot

that makes decisions based on a naive model of the

world, both for task scheduling and routing. In other

words, the robots do not consider possible collisions

or route delays in the allocation process nor in the

routing process. So when this plan of routes for each

robot would be executed, collisions could occur. This

is thus actually not a valid solution as robots do not

consider other robots on the route, and could thus

collide with each other when executing their tasks.

This setup only has as a purpose to show that colli-

sions will occur on the route, and will in comparison

with setup 2, show that these collisions will be trans-

lated into delays by the DMAS-algorithm. Other

static path planning methods than A-star, that do

not consider possible delays on the route, could be

used. However, they would show the same results,

being that the congestions they cause due to no road

segment allocations, will be translated into delays by

the DMAS-routing approach.

• The second setup (SSI with simple bid and DMAS-

routing), hereafter called setup 2, also uses the classi-

cal sequential single-item auction process where bids

are calculated as in Section 3.1.2 without considering

routing constraints. But here, the allocation is evalu-

ated using the delegate-MAS algorithm for routing.

This setup is meant to analyze the behavior of a

robot that makes decisions based on a naive model

of the world for task scheduling but not for routing.

In other words, the robots do not consider possible

collisions or route delays in the allocation process

but do so in the routing process.

10

• The third setup (SSI with DMAS-bid and DMAS-

routing), hereafter called setup 3, implements our

approach and uses the sequential single-item auc-

tion process where bids are calculated as in Section

3.2 considering routing constraints. The allocation

is evaluated using the delegate-MAS algorithm for

routing. This setup is meant to analyze the behav-

ior of a robot that makes decisions based on a more

realistic model of the world for task scheduling as

well as for routing. In other words, the robots do

consider possible collisions and route delays both in

the allocation process and in the routing process.

For all setups, the same layout as in Fig. 1 is used.

All tasks are spawned at a random location and a task al-

location is performed for each setup considering all tasks

together without any time dependencies. The robots al-

ways start at their depot station. In all experiments and in

all setups, the optimization objective is the minimization

of the linear combination of the total travel cost and the

total execution time.

In the simulations, the tune-able objective parameter ε

is set to zero, thus minimizing the total execution time of

executing all tasks. Simulated are done for one up to six

robots and this for one up to ten tasks. Ten simulations

are performed for each combination to analyze eventual

stochastic variations. Fig. 4 shows some example assign-

ment of all three setups (setup 1 and 2 always output the

same task allocation solution as both bidding rules are the

same). It can be seen that our approach maintains a bet-

ter routing balance and attempts to avoid congestions by

reducing the number of used robots and avoiding dense

nodes that are already occupied. This all effectuates from

within the bidding procedure. In the following, the results

for our simulations are shown. Remark that only figures

for three up to six robots are provided as possible conges-

tions, and thus the effect of our approach, are low when

only few robots move on the layout. Also remark that only

figures for five up to ten tasks are provided for the same

(a) Assignment of setup without DMAS in the bid procedure.

(b) Assignment of setup with DMAS in the bid procedure.

Fig. 4: Assignment example for a task allocation process of all setups.

reason.

Fig. 5: Number of congestions in function of the number of tasks for
three up to six robots

Fig. 5 shows the number of congestions that occurred

when performing a task allocation and routing for each

of the three setups and this for five up to ten tasks, and

11

three up to six robots. Remark that the curve of setup

two coincides with that of setup three as both consider

possible delays when routing and thus avoid congestions.

From Fig. 5, it can be noticed that for situations with

three up to six robots, congestions occur, increasing with

the number of robots and number of tasks. However, this

occurs only for setup 1 as this setup does not consider the

possibility of collisions. For the other two setups, it can

be seen that in the same situations, all congestions have

been prevented thanks to applying the delegate-MAS as a

routing approach after task scheduling. In order to avoid

these congestions, those two setups took into account some

delays in their routes in order to wait for an occupied road

segment before it becomes free.

Fig. 6: Total delay in function of the number of tasks for three up
to six robots

From Fig. 6 it is visible that setup two, which does

not include routing constraints into its bidding process,

clearly adds more delays into the routes than our approach,

which does include routing constraints in its bidding pro-

cess. This is because our approach already takes routing

constraints into account when considering to accept a new

task. Also remark the same trends of the congestions in

Fig. 5 and the delays in Fig. 6. This similarity is obvious

as only delays are needed if otherwise a congestion could

occur. The delay graph of setup two literally follows the

congestion trend of setup one as both output exactly the

same task allocation result, resulting in the same routes

for all robots. The only difference is that setup two adds

delays to these routes where setup one came into collision.

Fig. 7 shows that the setup that implements our ap-

proach always outputs a lower total edge cost than the

other two setups that both output the same edge cost as

they have the same task allocation result and thus the

same routes. This results from the routing balancing ef-

fect of our approach that reduces the number of robots

used. The total effect of reducing delays and reducing the

edge cost is visible in Fig. 8 where both effects add up.

It can be seen that our approach always outputs a lower

total path cost summed over all robots. This effect is also

remarkable with other values for the objective parameter.

Fig. 7: Total edge cost in function of the number of tasks for three
up to six robots

6. Conclusions

In this paper, a decentral task allocation architecture

for a fleet of mobile robots is presented based on the se-

quential single-item auction principle considering routing

constraints. As a routing strategy, a resource allocation

approach based on ant colony optimization processes

called delegate-MAS is used. It can be concluded that our

approach is capable of eliminating congestions due to the

allocation of resources in the virtual guide path network,

12

Fig. 8: Total path cost in function of the number of tasks for three
up to six robots

and results in a more realistic routing model that is used

in the task allocation process. The implementation of

routing information in the task allocation process can

easily be done by just adding the extra routing cost in

the bidding procedure of the auction process.

Our approach causes robots to consider the possibility

of being delayed when accepting a new task due to road-

blocks or occupied nodes, and could thus be less suitable

for executing the new task. This causes that possible rout-

ing delays get minimized and that the network load gets

more balanced. As a result, the possibility of congestion

or deadlock occurrence could be reduced. However, our

approach will not always guarantee a fully deadlock-free

system, but deadlock prevention and deadlock resolution

algorithms could be added to our proposed algorithm in

future work.

In our approach, we used the delegate-MAS algorithm

for dynamic multi-robot routing. However, there are sev-

eral other routing algorithms that could be used as a rout-

ing strategy of which the estimated delays are used in the

task allocation process. For future work, it could be inter-

esting to investigate the possibility of Machine Learning

methods in order to solve the routing problem. In future

research, also uncertainty in the bidding process could be

introduced. In this paper, it is assumed that path costs

are deterministic. However, in reality, path costs can be

uncertain due to crowdedness on the paths or due to ob-

stacles on the path. The cost to traverse a certain path

could be modeled by using an imprecise uncertainty model

[31, 32] that considers the known uncertainty on path cost

in function of another factor like daytime (morning, rush

period, evening).

Acknowledgments

This work is supported by the M-group, part of the KU

Leuven Campus in Bruges.

References

[1] I. Draganjac, D. Miklic, Z. Kovacic, G. Vasiljevic, S. Bogdan,

Decentralized Control of Multi-AGV Systems in Autonomous

Warehousing Applications, IEEE Transactions on Automation

Science and Engineering 13 (4) (2016) 1433–1447. doi:10.1109/

TASE.2016.2603781.

[2] M. P. Fanti, A. M. Mangini, G. Pedroncelli, W. Ukovich, A

decentralized control strategy for the coordination of AGV sys-

tems, Journal of Control Engineering Practice 70 (2018) 86–97.

doi:10.1109/CoDIT.2016.7593609.

[3] I. Baffo, G. Confessore, G. Stecca, A decentralized model for

flow shop production with flexible transportation system, Jour-

nal of Manufacturing Systems 32 (1) (2013) 68. doi:10.1016/

j.jmsy.2012.10.002.

[4] M. De Ryck, M. Versteyhe, F. Debrouwere, Automated guided

vehicle systems, state-of-the-art control algorithms and tech-

niques, Journal of Manufacturing Systems 54 (2020) 152–173.

doi:10.1016/j.jmsy.2019.12.002.

[5] M. De Ryck, D. Pissoort, T. Holvoet, E. Demeester, Decentral

task allocation for industrial AGV-systems with resource con-

straints, Journal of Manufacturing Systems 59 (2021) 310–319.

doi:10.1016/j.jmsy.2021.03.008.

[6] M. De Ryck, M. Versteyhe, K. Shariatmadar, Resource man-

agement in decentralized industrial Automated Guided Vehicle

systems, Journal of Manufacturing Systems 54 (2020) 204–214.

doi:10.1016/j.jmsy.2019.11.003.

[7] H. T. Dinh, R. R. S. V. Lon, T. Holvoet, Multi-Agent Route

Planning Using Delegate MAS, in: ICAPS Proceedings of

13

https://doi.org/10.1109/TASE.2016.2603781
https://doi.org/10.1109/TASE.2016.2603781
https://doi.org/10.1109/CoDIT.2016.7593609
https://doi.org/10.1016/j.jmsy.2012.10.002
https://doi.org/10.1016/j.jmsy.2012.10.002
https://doi.org/10.1016/j.jmsy.2019.12.002
https://doi.org/10.1016/j.jmsy.2021.03.008
https://doi.org/10.1016/j.jmsy.2019.11.003

the 4th Workshop on Distributed and Multi-Agent Planning

(DMAP-2016), 2016, pp. 24–32.

[8] S. Hanif, R. R. Van Lon, N. Gui, T. Holvoet, Delegate MAS

for large scale and dynamic PDP: A case study, Studies in

Computational Intelligence 382 (2011) 23–33. doi:10.1007/

978-3-642-24013-3_4.

[9] B. Micieta, M. Edl, M. Krajcovic, L. Dulina, P. Bubenik,

L. Durica, V. Binasova, Delegate MASs for coordination and

control of one-directional AGV systems: a proof-of-concept,

International Journal of Advanced Manufacturing Technology

94 (1-4) (2018) 415–431. doi:10.1007/s00170-017-0915-8.

[10] Q. Li, J. T. Udding, A. Pogromsky, Zone-control-based traffic

control of automated guided vehicles, Lecture Notes in Con-

trol and Information Sciences 456 (2015) 53–60. doi:10.1007/

978-3-319-10407-2_7.

[11] J. Zaja̧c, W. Ma lopolski, Structural on-line control policy for

collision and deadlock resolution in multi-AGV systems, Journal

of Manufacturing Systems 60 (December 2020) (2021) 80–92.

doi:10.1016/j.jmsy.2021.05.002.

[12] M. P. Fanti, A deadlock avoidance strategy for AGV systems

modelled by coloured Petri nets, Proceedings - 6th International

Workshop on Discrete Event Systems, WODES 2002 (2002) 61–

66doi:10.1109/WODES.2002.1167670.

[13] R. Lochana Moorthy, W. Hock-Guan, N. Wing-Cheong,

T. Chung-Piaw, Cyclic deadlock prediction and avoidance for

zone-controlled AGV system, International Journal of Pro-

duction Economics 83 (3) (2003) 309–324. doi:10.1016/

S0925-5273(02)00370-5.

[14] E. Roszkowska, S. A. Reveliotis, On the liveness of guidepath-

based, zone-controlled dynamically routed, closed traffic sys-

tems, IEEE Transactions on Automatic Control 53 (7) (2008)

1689–1695. doi:10.1109/TAC.2008.929375.

[15] A. Krnjak, I. Draganjac, S. Bogdan, T. Petrovic, D. Miklic,

Z. Kovacic, Decentralized control of free ranging AGVs in ware-

house environments, Proceedings - IEEE International Con-

ference on Robotics and Automation 2015-June (June) (2015)

2034–2041. doi:10.1109/ICRA.2015.7139465.

[16] M. Jäger, B. Nebel, Decentralized collision avoidance, deadlock

detection, and deadlock resolution for multiple mobile robots,

IEEE International Conference on Intelligent Robots and Sys-

tems 3 (2001) 1213–1219. doi:10.1109/IROS.2001.977148.

[17] V. Digani, L. Sabattini, C. Secchi, C. Fantuzzi, Towards decen-

tralized coordination of multi robot systems in industrial envi-

ronments: A hierarchical traffic control strategy, in: Proceed-

ings - 2013 IEEE 9th International Conference on Intelligent

Computer Communication and Processing, ICCP 2013, IEEE,

2013, pp. 209–215. doi:10.1109/ICCP.2013.6646110.

[18] L. Pallottino, V. G. Scordio, A. Bicchi, E. Frazzoli, Decentral-

ized cooperative policy for conflict resolution in multivehicle

systems, IEEE Transactions on Robotics 23 (6) (2007) 1170–

1183. doi:10.1109/TRO.2007.909810.

[19] S. A. Reveliotis, E. Roszkowska, Conflict resolution in free-

ranging multivehicle systems: A resource allocation paradigm,

IEEE Transactions on Robotics 27 (2) (2011) 283–296. doi:

10.1109/TRO.2010.2098270.

[20] E. Steegmans, T. Holvoet, N. Janssens, S. Michiels, E. Berbers,

P. Verbaeten, P. Valckenaers, H. Van Brussel, Ant Algorithms

in a Graph Environment: a Meta-scheme for Coordination

and Control, Artificial Intelligence and Applications (January)

(2002) 435–440.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.70.9357

[21] E. Nunes, M. Gini, Multi-robot auctions for allocation of tasks

with temporal constraints, Proceedings of the National Confer-

ence on Artificial Intelligence 3 (2015) 2110–2116.

[22] E. Nunes, M. McIntire, M. Gini, Decentralized multi-robot al-

location of tasks with temporal and precedence constraints,

Advanced Robotics 31 (22) (2017) 1193–1207. doi:10.1080/

01691864.2017.1396922.

[23] A. Schoenig, M. Pagnucco, Evaluating sequential single-item

auctions for dynamic task allocation, Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 6464 LNAI

(2010) 506–515.

[24] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe,

P. Keskinocak, A. Kleywegt, A. Meyerson, S. Jain, The power

of sequential single-item auctions for agent coordination, Pro-

ceedings of the National Conference on Artificial Intelligence 2

(2006) 1625–1629.

[25] A. Farinelli, N. Boscolo, E. Zanotto, E. Pagello, Advanced

approaches for multi-robot coordination in logistic scenarios,

Robotics and Autonomous Systems 90 (2017) 34–44. doi:

10.1016/j.robot.2016.08.010.

[26] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak,

A. Kleywegt, S. Koenig, C. Tovey, A. Meyerson, S. Jain,

Auction-based multi-robot routing, Robotics: Science and Sys-

tems 1 (June) (2005) 343–350.

[27] R. Matai, S. Singh, M. Lal, Traveling Salesman Problem:

an Overview of Applications, Formulations, and Solution Ap-

proaches, in: Traveling Salesman Problem, Theory and Appli-

cations, no. January 2014, 2010. doi:10.5772/12909.

[28] C. Liu, A. Kroll, A centralized multi-robot task allocation for

industrial plant inspection by using A* and genetic algorithms

(2012). doi:10.1007/978-3-642-29350-4_56.

[29] N. Sullivan, S. Grainger, B. Cazzolato, Sequential single-item

auction improvements for heterogeneous multi-robot routing,

14

https://doi.org/10.1007/978-3-642-24013-3_4
https://doi.org/10.1007/978-3-642-24013-3_4
https://doi.org/10.1007/s00170-017-0915-8
https://doi.org/10.1007/978-3-319-10407-2_7
https://doi.org/10.1007/978-3-319-10407-2_7
https://doi.org/10.1016/j.jmsy.2021.05.002
https://doi.org/10.1109/WODES.2002.1167670
https://doi.org/10.1016/S0925-5273(02)00370-5
https://doi.org/10.1016/S0925-5273(02)00370-5
https://doi.org/10.1109/TAC.2008.929375
https://doi.org/10.1109/ICRA.2015.7139465
https://doi.org/10.1109/IROS.2001.977148
https://doi.org/10.1109/ICCP.2013.6646110
https://doi.org/10.1109/TRO.2007.909810
https://doi.org/10.1109/TRO.2010.2098270
https://doi.org/10.1109/TRO.2010.2098270
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.9357
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.9357
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.9357
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.9357
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.9357
https://doi.org/10.1080/01691864.2017.1396922
https://doi.org/10.1080/01691864.2017.1396922
https://doi.org/10.1016/j.robot.2016.08.010
https://doi.org/10.1016/j.robot.2016.08.010
https://doi.org/10.5772/12909
https://doi.org/10.1007/978-3-642-29350-4_56
https://doi.org/10.1016/j.robot.2019.02.016
https://doi.org/10.1016/j.robot.2019.02.016

Robotics and Autonomous Systems 115 (2019) 130–142. doi:

10.1016/j.robot.2019.02.016.

URL https://doi.org/10.1016/j.robot.2019.02.016

[30] T. Vidal, J. Bidot, Dynamic sequencing of tasks in simple tem-

poral networks with uncertainty, CP 2001 Workshop in Con-

straints and Uncertainty (2001) 1–10.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.130.313&rep=rep1&type=pdf

[31] K. Shariatmadar, M. D. Ryck, F. Debrouwere, M. Versteyhe,

CMMSE-Decentralised Automated Guided Vehicle Systems un-

der uncertainty, Cmmse (September) (2019).

[32] K. Shariatmadar, M. Versteyhe, Linear programming under p-

box uncertainty model, 2019 IEEE 7th International Conference

on Control, Mechatronics and Automation, ICCMA 2019 (2019)

84–89doi:10.1109/ICCMA46720.2019.8988632.

15

https://doi.org/10.1016/j.robot.2019.02.016
https://doi.org/10.1016/j.robot.2019.02.016
https://doi.org/10.1016/j.robot.2019.02.016
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.313&rep=rep1&type=pdf
https://doi.org/10.1109/ICCMA46720.2019.8988632

