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Abstract Very recently, a novel class of parallelizable high-order time discretiza-
tion schemes has been introduced in [Schütz J., Seal D., Zeifang J., Parallel-in-time
high-order multiderivative IMEX solvers, arXiv preprint arXiv:2101.07846.]. In this
current work, we analyze the stability properties of those schemes and introduce a
small but effective modification which only necessitates minor modifications of exist-
ing implementations. It is shown how this modification leads to A(α)-stable schemes
with α being close to 90◦. Numerical examples illustrate an additional favorable in-
fluence of this modification on the accuracy of those schemes.

Keywords Multiderivative Schemes · Stability Analysis · Parallel-in-Time

Mathematics Subject Classification (2000) 65L20 · 65L04

1 Introduction

In this work, we consider algorithms to solve linear and nonlinear large differential
equations of the form

w′(t) = Φ(w), t ∈ (0,Tend) with w(0) = w0. (1.1)
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Such equations are e.g. obtained from the discretization of partial differential equa-
tions (PDEs) and there exist a variety of different approaches to solve this type of
equations, see e.g. [9,10] for an overview. Methods that do not only consider Φ(w)
but also higher temporal derivatives of the solution w, i.e.

.
Φ(w), Φ̈(w), . . . are called

multi-derivative methods, see e.g. the early works [16] and [18]. The multi-derivative
paradigm has been applied to the idea of general linear methods, see [3]. Runge-Kutta
methods, which are a subclass of general linear methods, have also been extended to
deal with multiple derivatives, see the non-exhaustive list [1,8,4,5,11,17,15] and the
references therein. In the following, we consider two-derivative schemes, i.e. both
Φ(w) and additionally

.
Φ(w) := Φ ′(w)Φ(w)

are used in an algorithm. Here, Φ ′(w) refers to the Jacobian of Φ(w) with respect to
w, i.e., Φ ′(w)≡ ∂Φ/∂w.

Recently, a predictor-corrector formulation for an implicit-explicit (IMEX) two-
derivative Runge-Kutta method of fourth order has been introduced in [13]. This for-
mulation avoids the necessity of solving very large implicit systems as it consists of
a sequence of two-derivative Euler solves for the implicit system. The method can be
seen from two perspectives: either as a reformulation of a two-derivative Runge-Kutta
method into a predictor-corrector formulation to enable an efficient implementation,
or as the extension of spectral deferred correction (SDC) methods, see [7,12], to in-
corporate two-derivatives in the quadrature formula. This idea has been transferred
to take even more derivatives into account [6]. Other extensions of this idea include
a combination with higher order accurate quadrature formulas by adding additional
quadrature nodes [14] and the substitution of the predictor with a higher order accu-
rate one [19]. In [14], it has also been shown how pipelining can be introduced to
allow for a parallel-in-time execution.

In this work, we evaluate the stability properties of this class of schemes and
introduce a simple but effective modification of the algorithm, which only necessi-
tates minor adjustments to already existing implementations. Additionally to having
a favorable influence on the accuracy of the scheme, the modification improves the
stability properties significantly.

The paper is organized as follows: In Sec. 2 the predictor-corrector schemes
from [13] and [14] are recalled and cast into a unified formulation. Following, the
stability properties of the schemes are evaluated in Sec. 3 and the results of a stability
optimization are reported in Sec. 3.2. The influence of this optimization on the ac-
curacy of the methods is evaluated in Sec. 4. Finally, a summary and an outlook are
given in Sec. 5.

2 Hermite-Birkhoff Predictor-Corrector scheme

In this section, we briefly recall the serial algorithm from [13] and its low-storage
parallel-in-time modification presented in [14]. We directly introduce a small modifi-
cation which will be used as a tuning parameter to improve the stability in the remain-
der of this paper. Both schemes are cast in a unified formulation and rewritten to make
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them accessible to a stability analysis. We introduce the notation (•) = (S) for the
serial and (•) = (P) for the parallel algorithm. The algorithms describe a predictor-
corrector approach with kmax correction steps to approximate a two-derivative Hermite-
Birkhoff Runge-Kutta method of order q and are therefore labeled as HBPC(q,kmax)
and Parallel-HBPC(q,kmax), respectively.

2.1 The HBPC(q,kmax) Procedure

Algorithm 1 ((Parallel-)HBPC(q,kmax) [13,14]) First, the initial conditions are filled
with w−1,[k],s :=w0. To advance the solution to Eq. (1.1) from time level tn to time level
tn+1, fill the values wn,[0],l using a second-order implicit Taylor method:

1. Predict. Solve the following expression for wn,[0],l and 1≤ l ≤ s:

wn,[0],l := wn−1,[k∗],s + cl∆ tΦn,[0],l− (cl∆ t)2

2

.
Φ

n,[0],l
, (2.1)

where k∗ = kmax for the serial and k∗ = 1 for the parallel-in-time algorithm. Sub-
sequently:

2. Correct. Solve the following for wn,[k+1],l , for each 2 ≤ l ≤ s and each 0 ≤ k <
kmax:

wn,[k+1],1 := wn−1,[k∗∗],s,

wn,[k+1],l := wn−1,[k∗∗],s +∆ tθ1

(
Φn,[k+1],l−Φn,[k],l

)
− ∆ t2

2
θ2

(
.

Φ
n,[k+1],l−

.
Φ

n,[k],l
)
+I

(•)
l ,

(2.2)

where k∗∗ = kmax and k∗∗ = min(k+ 2,kmax) for the serial and parallel-in-time
algorithm, respectively.

3. Update. Set wn+1 := wn,[kmax],s.

The quadrature formulas I
(•)

l for every stage 1≤ l ≤ s are defined by

I
(S)

l :=∆ t
s

∑
j=1

B(1)
l j Φn,[k], j +∆ t2

s

∑
j=1

B(2)
l j

.
Φ

n,[k], j
,

I
(P)

l :=∆ t

(
l−1

∑
j=1

B(1)
l j Φn,[k+1], j +

s

∑
j=l

B(1)
l j Φn,[k], j

)

+∆ t2

(
l−1

∑
j=1

B(2)
l j

.
Φ

n,[k+1], j
+

s

∑
j=l

B(2)
l j

.
Φ

n,[k], j
)
,

for the serial and the parallel algorithm, respectively. B(1), B(2) and c are the Butcher
tableaux that define the limiting Hermite-Birkhoff Runge-Kutta scheme. In this work,
we use the same quadrature rules as used in [14, Eqs. (2)-(4)]. The difference between
the serial and the parallel-in-time low-storage method lies in the modified start value
of the iterations to allow for pipelining and the modification of the quadrature rule to
use already known values to reduce the memory footprint.
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Remark 2.1 Note that we have directly made a modification of the original methods
by adding the parameters θ1 and θ2, which equal one in the original algorithm. These
variables will serve as tuning parameters to improve the stability properties of the
algorithm in the remainder of this paper.

2.2 One Step Equivalent of HBPC(q,kmax)

To facilitate the stability analysis, we rewrite Alg. 1 in a one step fashion. Although
one would not pursue this implementation in a practical application, this allows us to
study the stability properties of the schemes in a straight forward manner. Following
the ideas outlined in [14], we define the solution vector Y n+1 as

Y n+1 :=
(
wn,[0],1, · · · ,wn,[0],s,wn,[1],1, · · · ,wn,[1],s, · · · ,wn,[kmax],s

)T ∈ Rs·(kmax+1),

with Y 0 := (w0, · · · ,w0)
T ∈ Rs·(kmax+1) .

Definition 2.1 For the serial and the parallel algorithm, matrices A(•), C(•)
1 , C(•)

2 and
D in Rs(kmax+1)×s(kmax+1) can be found such that

D ·Y n+1 = A(•) ·Y n +∆ tC(•)
1 ·Φ

(
Y n+1)+ ∆ t2

2
C(•)

2 ·
.

Φ
(
Y n+1) . (2.3)

Note that this formulation is a direct extension of the original general linear method
formulation from [2] to two derivatives. The only difference between the matrices
used in Eq. (2.3) and the ones used in [14] lies in the coefficients θ , which have to be
taken into account in C(•)

1 and C(•)
2 . Let us first define the matrices E, I ∈ Rs×s with

E :=


0 0 · · · 0 1
0 0 · · · 0 1
...

...
...

...
0 0 · · · 0 1

 , and I :=


0 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...
0 0 0 · · · 1

 .

Then, the matrices A(•) ∈ Rs·(kmax+1)×s·(kmax+1) are given by

A(S) =



0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E


, and A(P) =



0 E 0 0 · · · 0 0
0 0 E 0 · · · 0 0
0 0 0 E · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · E 0
0 0 0 0 · · · 0 E
0 0 0 0 · · · 0 E


. (2.4)
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For both, the serial and parallel scheme, D corresponds to the s(kmax +1)× s(kmax +

1) unity matrix. The matrices C(S)
1 ,C(S)

2 ∈ Rs·(kmax+1)×s·(kmax+1) are given by

C(S)
1 =


diag(c) 0 0 · · · · · · 0

B(1)−θ1I θ1I 0 · · · · · · 0
0 B(1)−θ1I θ1I · · · · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · B(1)−θ1I θ1I

 ,

C(S)
2 =


−diag(c2) 0 0 · · · · · · 0
2B(2)+θ2I −θ2I 0 · · · · · · 0

0 2B(2)+θ2I −θ2I · · · · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · 2B(2)+θ2I −θ2I

 .

(2.5)

To ensure the low-storage property of the parallel-in-time variant we have to decom-
pose the B(1) and the B(2) matrix into the lower and upper triangular matrices B(·)

L and
B(·)

U of the Runge-Kutta tables with (·) = (1),(2), respectively. I.e.

B(·)
L =


0 · · · · · · 0

B(·)
21 0 · · · 0
...

. . . . . .
...

B(·)
s1 B(·)

s2 · · · 0

 , B(·)
U =


B(·)

11 B(·)
12 · · · B(·)

1s

0 B(·)
22 · · · B(·)

2s
...

. . . . . .
...

0 · · · 0 B(·)
ss

 .

With this, C(P)
1 and C(P)

2 ∈ Rs·(kmax+1)×s·(kmax+1) can be written as

C(P)
1 =



diag(c) 0 0 · · · · · · 0
B(1)

U −θ1I B(1)
L +θ1I 0 · · · · · · 0

0 B(1)
U −θ1I B(1)

L +θ1I · · · · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · B(1)
U −θ1I B(1)

L +θ1I

 ,

C(P)
2 =



−diag(c2) 0 0 · · · · · · 0
2B(2)

U +θ2I 2B(2)
L −θ2I 0 · · · · · · 0

0 2B(2)
U +θ2I 2B(2)

L −θ2I · · · · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · · · · 2B(2)
U +θ2I 2B(2)

L −θ2I

 .

(2.6)

Remark 2.2 In [19], the second order Taylor predictor has been substituted with a
successive application of a 4th order two-derivative method. This means that the pre-
dictor in Alg. 1 (see Eq. (2.1)) is substituted by



6 J. Zeifang, J. Schütz and D.C. Seal

1. Predict. Solve the following expression for wn,[0],l and 2≤ l ≤ s :

wn,[0],1 := wn−1,[k∗],s

wn,[0],l := wn,[0],l−1 +
∆cl∆ t

2

(
Φn,[0],l−1 +Φn,[0],l

)
+

(∆cl∆ t)2

12

(
.

Φ
n,[0],l−1−

.
Φ

n,[0],l
)
,

with ∆cl := cl− cl−1.

As the modifications to Alg. 1 and the matrices in Eq. (2.3) (i.e., A, C(•)
1 , C(•)

2 and D)
are straightforward, we also analyze the stability properties of those schemes. They
will be denoted with (Parallel-)HBPC(q,kmax, p4).

3 Stability of Hermite-Birkhoff Predictor-Corrector Scheme

In this section, we analyze the linear stability properties of the HBPC(q,kmax) scheme
with the modification proposed in the previous section. We perform a linear stability
analysis using Dahlquist’s equation w′(t) = λw(t), with λ ∈C. For this equation, one
obtains for the ODE (1.1)

Φ(w) = λw,
.

Φ(w) = Φ ′(w)Φ(w) = λ 2w.

Definition 3.1 With the abbreviation z := λ∆ t, the stability function of a one-step
method that can be cast into the form given in Def. 2.1 reads

R(z) :=
(

D− zC(•)
1 −

z2

2
C(•)

2

)−1

A(•). (3.1)

To ensure stability, lim
n→∞

(R(z))n = 0 must hold. Hence, the method is A(α)-stable iff

for the spectral radius ρ (R(z)), there holds

ρ (R(z))< 1 ∀z ∈ Sα := {z ∈ C; |arg(−z)|< α, z 6= 0}.

The argument-function has been normalized such that −180◦ ≤ arg(z) ≤ 180◦. A
method is called A-stable if it is A(α = 90◦)-stable.

To numerically determine the stability angle of a HBPC(q,kmax) method with a spe-
cific parameter pair θ , we define a bisection procedure.

Algorithm 2 (Bisection to determine stability angle α) First, initialize the upper
and lower angles αmax

0 = 90◦ and αmin
0 = 0◦. Then, repeat for j = 1, · · · ,J, with

J = 20:

1. Calculate stability angle angle via α j =
1
2

(
αmax

j−1−αmin
j−1

)
.

2. Define {zL ∈C :−25<Re(zL)< 0, Im(zL)= |Re(zL)| tan(α j)} and select equidis-
tant points zl from this set, 1≤ l ≤ 105.
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3. Evaluate ρ(R(zl)) for all zl and set

αmax
j =

{
αmax

j−1 if ρ(R(zl))< 1 ∀zl ,

α j else,
, αmin

j =

{
α j if ρ(R(zl))< 1 ∀zl ,

αmin
j−1 else.

Finally, set α = 1
2

(
αmax

J −αmin
J
)

and check that there holds lim
z→−∞

ρ(R(z))≤ 1.

3.1 Stability of the Original Schemes: θ1 = θ2 = 1

Theorem 3.1 Alg. 1 with θ1 = θ2 = 1 and the quadrature formulas given in [14,
Eqs. (2)-(4)] are A(α)-stable with α < 90◦ if kmax > 0. This also holds for the
HBPC(q,kmax, p4) schemes, except for the Parallel-HBPC(8,kmax, p4) method, which
has an enclosed stability region.

The stability function given in Eq. (3.1) is numerically analyzed in terms of the max-
imum opening angle α of the stability region for

– three different HBPC(q,kmax) methods (4th, 6th and 8th order),
– three different Parallel-HBPC(q,kmax) methods (4th, 6th and 8th order),
– two different HBPC(q,kmax, p4) schemes (6th and 8th order), and
– the Parallel-HBPC(6,kmax, p4) scheme,

for an increasing number of correction steps up to kmax = 50. We select θ = (1,1) as
it has been done in the original publications. The results of this analysis are shown
in Fig. 3.1. One can see that the stability angle α heavily depends on the number
of correction steps and can be in the order of α ≈ 70◦ in some cases. Such a stabil-
ity behavior is e.g. known in the spectral deferred correction (SDC) community [7],
where the schemes also have a predictor-corrector flavor. As an illustrative example,
a visualization of the stability region of the Parallel-HBPC(8,1) scheme is provided
in Fig. 3.2 (left). One can see that there are two pikes in the left complex half plane
which cause a stability angle α < 90◦. As the stability angle often is not even close
to α = 90◦, a modification of the schemes is desirable to improve the stability prop-
erties.

Remark 3.1 Note that the Parallel-HBPC(8,kmax, p4) scheme is not A(α)-stable for
kmax > 0. This can directly be seen in Fig. 3.2 (right), where the boundary of the
stability region is visualized in the left complex half plane for kmax = 1. One can see
that the stability region is an enclosed area in the left complex half plane.

3.2 Stability Optimization of the HBPC(q,kmax) Schemes

3.2.1 Stability of HBPC(4,kmax)

Theorem 3.2 The serial HBPC(4,kmax) scheme is A-stable if θ =
( 1

2 ,
1
6

)
is chosen.

For those parameters, the HBPC(4,kmax > 0) scheme reduces to the limiting HBRK4
method.
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Fig. 3.1 Maximum opening angle α of stability region in left complex half plane for HBPC(4,kmax),
HBPC(6,kmax) and HBPC(8,kmax) for an increasing number of correction steps. Results of serial al-
gorithm (top left) and parallel-in-time algorithm (top right), both with 2nd order Taylor predictor. α
for schemes with 4th order HBRK4 predictor are visualized on the bottom left. Note that there is no
HBPC(4,kmax, p4) algorithm as the HBRK4 predictor directly gives the limiting scheme.

Proof Considering the last stage of the corrector step (Eq. (2.2)) of the serial algo-
rithm with the fourth order quadrature rule and θ =

( 1
2 ,

1
6

)
one obtains

wn,[k+1],2 := wn +
∆ t
2

(
Φn,[k+1],2−Φn,[k],2

)
− ∆ t2

12

(
.

Φ
n,[k+1],2−

.
Φ

n,[k],2
)

+∆ t
(

1
2

Φn,[k],1 +
1
2

Φn,[k],2
)
+∆ t2

(
1

12

.
Φ

n,[k],1− 1
12

.
Φ

n,[k],2
)
.

For the first stage it holds wn,[k],1 = wn and hence this reduces to

wn,[k+1],2 = wn +
∆ t
2

(
Φn +Φn,[k+1],2

)
+

∆ t2

12

(
.

Φ
n−

.
Φ

n,[k+1],2
)
,

which directly gives the A-stable limiting method. ut
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Fig. 3.2 Stability region (blue) for Parallel-HBPC(8,1) schemes with 2nd order Taylor predictor (left)
and 4th order HBRK4 predictor (right); please note the different scales of the axes. An illustration of the
stability angle α is provided on the left.

Proposition 3.1 For the same reasoning as for the serial algorithm, an A-stable
scheme is obtained for the fourth order Parallel-HBPC(4,kmax > 0) method if θ =( 1

2 ,
1
6

)
is chosen.

Proposition 3.2 For the same reasoning as for the HBPC(4,kmax) scheme, coef-
ficients for the p-derivative 2pth-order schemes presented in [6] can be found to
achieve A-stability. Using the coefficients of the p-derivative 2pth-order quadrature
formula defines the p coefficients θ1, . . . ,θp.

Remark 3.2 If one uses the fully implicit serial method there is no advantage in
preferring the predictor-corrector approach over the limiting method. Nevertheless,
if one pursues a mixed implicit-explicit approach as it is done in [14] and [6], the
HBPC(4,kmax) scheme with θ =

( 1
2 ,

1
6

)
and its higher order p-derivative extensions

with optimized θ can be beneficial.

3.2.2 Stability of HBPC(6,kmax) and HBPC(8,kmax)

For the HBPC(6,kmax) and the HBPC(8,kmax) method it is not possible to find θ
such that they reduce to their limiting schemes. To obtain the optimized coefficients
for the different schemes, we rely on an iterative procedure based on the bisection de-
scribed in Alg. 2. We sample the parameter space θ ∈Ω and determine the minimum
stability angle on the sampling points for kmax = 0, . . . ,50. We manually refine the
sampling interval to determine the optimum parameters. Note that we have restricted
the parameter space to Ω = [0,1]× [0,1] as we have observed that using larger values
for θ has an unfavorable influence on the solution quality due to an increased stiff-
ness. Caused by the very steep gradients of the stability angle in the parameter space
and the presence of several local maxima, automated refinement strategies did not
succeed. We can therefore only state that the obtained values are close to the global
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maximum. Note that for the Parallel-HBPC(8,kmax, p4) scheme no parameter pair θ
has been found to achieve A(α)-stability.

The results of the optimization for the remaining schemes are summarized in
Tbl. 3.1, which provides an overview on the optimal parameters and the resulting
minimum stability angles. For reference, the minimum stability angles for the non-
optimized case θ = (1,1) are also given in Tbl. 3.1. The corresponding visualization
of the stability angle for a varying number of correction steps is shown in Fig. 3.3.
The stability angles of the original schemes are visualized in the previous section,
see Fig. 3.1. The results illustrate that the stability properties of the schemes can be
improved significantly by optimizing the parameters θ1 and θ2. Except for the serial
HBPC(8,kmax, p4) scheme, the obtained stability angles are very close to 90◦.

θ1 θ2
optimized minimum

stability angle α
minimum stability

angle α with θ = (1,1)
HBPC(4,kmax) 1/2 1/6 90◦ 85.00◦

HBPC(6,kmax) 0.283 0.0528 89.72◦ 75.43◦

HBPC(8,kmax) 0.395 0.0375 88.75◦ 71.95◦

Parallel-HBPC(4,kmax) 1/2 1/6 90◦ 68.73◦

Parallel-HBPC(6,kmax) 0.296 0.0527 89.56◦ 70.68◦

Parallel-HBPC(8,kmax) 0.239 0.0246 89.20◦ 70.80◦

HBPC(6,kmax, p4) 1.0 0.496 88.58◦ 84.30◦

HBPC(8,kmax, p4) 1.0 0.689 84.63◦ 83.25◦

Parallel-HBPC(6,kmax, p4) 0.266 0.0590 89.90◦ 70.65◦

Table 3.1 Optimized parameters for correction step and resulting minimum stability angle for serial
HBPC(q,kmax) and low-storage Parallel-HBPC(q,kmax) schemes with 2nd order Taylor predictor (top) and
4th order HBRK4 predictor (bottom). For reference, the minimum stability angles of the original schemes
are displayed on the right.

Remark 3.3 Note that for the serial HBPC(8,kmax, p4) method (see Fig. 3.3 (right,
onset)), one can see that if one would choose kmax > 50 for the optimization, one
would probably obtain other coefficients θ as the stability angle decreases for kmax >
50 for the chosen θ . However, we have chosen those values as one typically would
not choose kmax > 50 in a practical application.

4 Validation

After having shown the improved stability properties of the schemes, this section
gives numerical evidence that the introduced modification θ 6= 1 does

– not deteriorate the observed order of convergence, and
– generally improves the accuracy of the schemes.

We start by analyzing the order of convergence in Sec. 4.1 and continue with numer-
ical results to illustrate the influence on the accuracy for stiff and non-stiff problems
in Sec. 4.2.
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Fig. 3.3 Maximum opening angle α of stability region in left complex half plane with optimized pa-
rameters θ from Tbl. 3.1 for an increasing number of correction steps kmax = 0, . . . ,50. Results of serial
algorithm (top left) and parallel-in-time algorithm (top right), both with 2nd order Taylor predictor. α for
schemes with 4th order HBRK4 predictor are visualized on the bottom left. Note that due to the relatively
low stability angle of the HBPC(6,kmax, p4) method, an additional total view is provided as an onset figure
on the bottom left.

4.1 Order of Convergence

We start by investigating the experimental order of convergence of the scalar model
problem

w′(t) =−w
5
2 , w0 = 1,

which has also been considered in [14]. We evaluate the error at Tend = 0.25 and
compare the schemes with θ = (1,1) and with the optimized parameter sets obtained
in Sec. 3.2. Performing a set of calculations with different step sizes allows us to
validate the order of convergence, see Fig. 4.1 and Fig. 4.2 for the schemes using the
2nd order Taylor predictor and the 4th order HBRK4 predictor, respectively. As it is
to be expected (see [13,14,19]), the obtained order of accuracy of the algorithms is
min(kmax + p,q), where q denotes the order of the quadrature rule and p the order
of the predictor. We start by considering the HBPC(q,kmax) schemes, see Fig. 4.1.
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Fig. 4.1 Errors of ODE w′ =−w−
5
3 at Tend = 0.25 for 6th order (top) and 8th order HBPC(q,kmax) scheme

(bottom). Left column shows results of serial methods with θ = 1, middle column shows results for serial
algorithms with optimized θ and right column shows results of parallel-in-time algorithms with optimized
θ . Note that for kmax = 0 all schemes are identical and reduce to the implicit second order Taylor method.

Concerning the accuracy, one can observe that the modification of θ leads to smaller
errors until machine accuracy is reached for both, the serial and parallel-in-time meth-
ods as they show very similar results. For the HBPC(q,kmax, p4) schemes there are
only slight differences between the original and the optimized serial algorithms. This
is most probably due to θ being rather close to θ = (1,1) for the optimized scheme.
For the sixth order parallel-in-time method, one can observe slightly clearer accuracy
improvements by choosing the optimized θ .

Summing up, those calculations show that the modification of θ to optimize the
stability with the parameters given in Tbl. 3.1 does not deteriorate the order of con-
vergence and, at the same time, has a favorable influence on the accuracy.

4.2 Influence of the Corrector Modification on the Accuracy

Next, we evaluate the influence of the proposed modifications on the accuracy for
stiff problems. For that purpose, we consider the van-der-Pol equation(

w′1(t)
w′2(t)

)
=

(
w2

(1−w2
1)w2−w1

ε

)
, w0 =

(
2

− 2
3 +

10
81 ε

)
,

with Tend = 0.5. We use different ε to evaluate the influence of the stiffness of
the problem on the accuracy of the schemes. We do not report the results of the
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Fig. 4.2 Errors of ODE w′ = −w−
5
3 at Tend = 0.25 for 6th order (top) and 8th order HBPC(q,kmax, p4)

scheme (bottom) using the 4th order predictor. Left column shows results of serial methods with θ = 1,
middle column shows results for serial algorithms with optimized θ and right column shows results of
parallel-in-time algorithm with optimized θ . Note that no results for the Parallel-HBPC(8,kmax, p4) are
shown as the method is not A(α)-stable.

parallel-in-time algorithm as we have observed similar errors for the serial and par-
allel method. The results shown in Fig. 4.3 illustrate the favorable influence of the
optimized θ on the accuracy also for stiff problems. Especially for moderately stiff
problems the improvements are quite large. One can see that the results obtained with
the optimized θ are much closer to the solution obtained with the limiting method.
Additionally, one can see that preferring the 4th order HBRK4 predictor over the 2nd

order Taylor predictor has a favorable influence on the accuracy for stiff and non-stiff
problems.

5 Conclusion and Outlook

In this work, we have introduced a small modification to the novel class of two-
derivative predictor corrector schemes from [13] and [14] which has a large influence
on the stability and accuracy. A stability analysis for the original algorithms revealed
that the algorithms are A(α)-stable with the stability angle being only α ≈ 70◦ for
some cases. It has been shown that the introduced modification

– allows to improve the stability angle up to almost 90◦ for the serial and parallel-
in-time algorithm.
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– does not deteriorate the order of convergence and, in general, has a favorable
influence on the accuracy.

Numerical experiments with stiff and non-stiff nonlinear ODEs illustrate this obser-
vation. As the modification requires only minor rework of already existing implemen-
tations, the authors highly recommend to use the proposed modification in a practical
application.

Future work will be twofold: On the one hand, other quadrature rules can be
used to design different methods offering e.g. L-stability and potentially taking higher
derivatives into account. One can e.g. consider Gauß-Turan-type Runge-Kutta schemes
for an odd number of derivatives. On the other hand, further studies of the algorithm’s
performance with different PDE discretizations will be done, also with a special focus
on the parallel-in-time capabilities of the algorithm.
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Fig. 4.3 Errors for van der Pol problem at Tend = 0.5 for original method with Taylor predictor, opti-
mized HBPC(q,kmax) method with Taylor predictor, optimized HBPC(q,kmax, p4) method with HBRK4
predictor with coefficients from Tbl. 3.1 and the limiting HBRK methods (from left to right).


