Experimental investigation of adsorption materials for the mitigation of civilian radioxenon releases

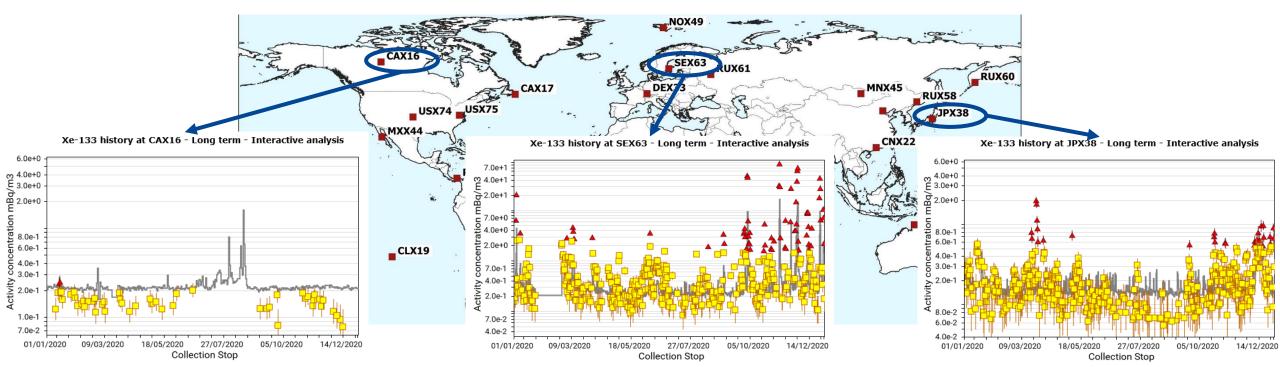
Belgian Nuclear Research Centre

Christophe Gueibe^{1,2}, Jos Rutten¹, Johan Camps¹, Dominique Moyaux³, Wouter Schroeyers² and Sonja Schreurs²

¹ Belgian Nuclear Research Centre (SCK CEN)

² Hasselt University (UHasselt), NuTeC, CMK

³ Institute for RadioElements (IRE)


WOSMIP Remote 2 - 26 May 2021

Content

- Introduction
- Experimental set-up
- Selection of adsorption materials
- Comparison of Xe adsorption capacity
- Applicability of the Ag-ETS-10
- Conclusions

Introduction

- Radioxenon is a key component for the verification of the CTBT
- Detection capability of the IMS noble gas component depends on
 - Number and distribution of stations (31/40)
 - Minimum Detectable Concentration (< 1mBq/m³ for Xe-133)
 - Background level from civilian sources at individual stations

Introduction

- Current Xe adsorption materials used for Xe mitigation
 - "Noble gas" activated carbons
 - Large volumes or chilled, risk of ignition
- Reasonable upper release level of 5 GBq/day proposed by Bowyer et al. 2013
- Reaching 5 GBq/day = huge challenge for existing facilities
- Silver-doped zeolites?
- → How can new Xe adsorption materials support such a reduction ?

Experimental set-up

- Collection of Xe breakthrough curves on adsorption materials in different conditions
 - Xe concentration, gas carrier, moisture content, flow rate, ...

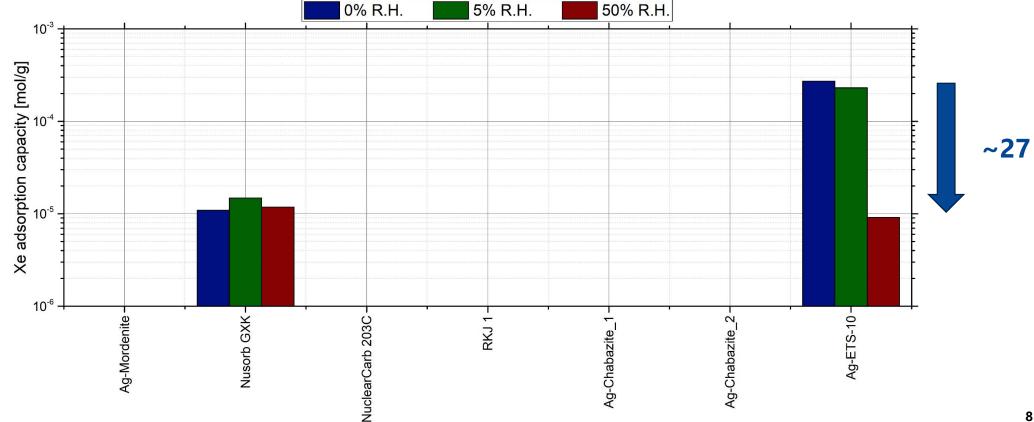

Selection of adsorption materials

 3 typical activated carbon as reference and 4 silver-doped zeolite for comparison

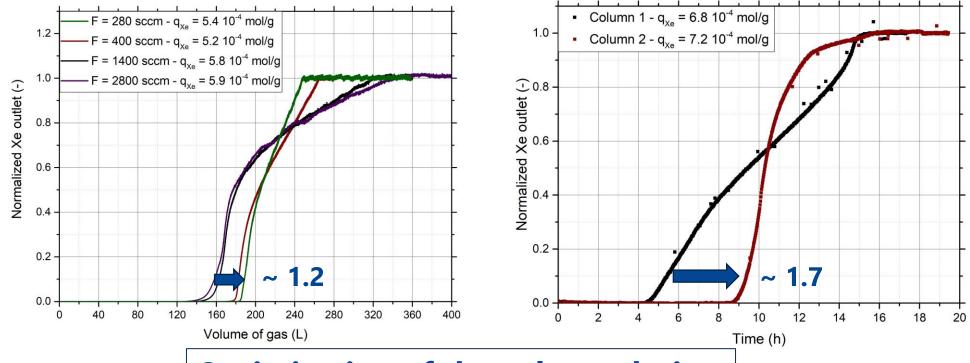
Supplier	Type of material	Material Name	Density (g/cm³)	Ag (% in weight)
Cabot Norit Nederland B.V.	Activated carbon	NORIT RKJ 1	0.52	NA
NUCON International Inc.	Activated carbon	NUSORB GXK	0.50	NA
Chemviron Carbon	Activated carbon	NUCLEARCARB 203C	0.57	NA
Sigma Aldrich Co.	Silver-doped zeolite	Ag-Mordenite	1.07	10-15
Extraordinary Adsorbents	Silver-doped zeolite	Ag-ETS-10	1.07	25-30
Extraordinary Adsorbents	Silver-doped zeolite	Ag-Chabazite_1	0.57	10-15
Extraordinary Adsorbents	Silver-doped zeolite	Ag-Chabazite_2	0.63	25-30

Comparison of Xe adsorption capacity

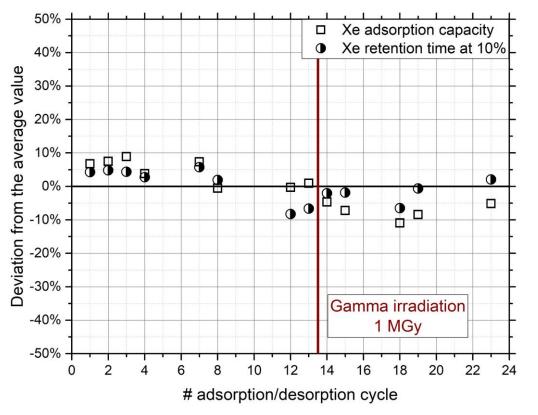
- Xe adsorption capacity in He and N₂ (work in progress)
 - 50, 100, 500 and 1000 ppm Xe @ 1.3 bar, 23°C, 400 sccm, dry



	Carrier gas		
Xe conc. (ppm)	He	N2	
50	83.6	31.5	
100	55.8	26.1	
500	15.7	15.3	
1000	8.8	9.8	


Comparison of Xe adsorption capacity

- Xe adsorption capacity in N_2 with different R.H. levels (work in progress)
 - dry, 5% and 50% @ 1.3 bar, 250 ppm Xe, 23°C, 400 sccm


Applicability of the Ag-ETS-10

- Effect of flow rate and column geometry
 - 280, 400, 1400 and 2800 sccm @ 1.3 bar, 1000 ppm Xe in He, 23°C, dry
 - Column 1 (D = 3 cm L = 3.3 cm) @ 400 sccm
 - Column 2 (D = 2 cm L = 7.6 cm) @ 400 sccm

Applicability of the Ag-ETS-10

- Durability against adsorption/desorption cycles → 23 cycles
 - Adsorption with Xe 1000 ppm in He and desorption under He at ~ 200°C
- Exploration of the durability against gamma irradiation → 1 MGy

No significant degradation observed

For 100 TBq of Xe-133 on 21.6 g of adsorbent → 1 MGy / 3 h !!!

Conclusions

- Ag-ETS-10 has a significantly higher Xe adsorption capacity and retention time than AC at room temperature and for concentrations ≤ 1000 ppm
 - BUT sensitive to moisture!
- Applicability of the Ag-ETS-10
 - Column needs to be designed for the relevant conditions to maximize the retention time
 - No significant degradation after
 - 23 adsorption/desorption cycles
 - 1 MGy gamma absorbed dose

