Investigation of Xe adsorbents in conditions relevant for IMS noble gas systems

sck cen

Belgian Nuclear Research Centre

Christophe Gueibe^{1,2}, Jos Rutten¹, Johan Camps¹, Wouter Schroeyers², Nikolaus Hermanspahn³, Dominique Moyaux⁴ and Sonja Schreurs²

¹ Belgian Nuclear Research Centre (SCK CEN)

² Hasselt University (UHasselt), NuTeC, CMK

³ Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

³ Institute for RadioElements (IRE)

INGE 2021 - 22 November 2021

Content

- Introduction
- Selected adsorbents
- Xe collection
- Xe separation
- Durability

\bigcirc Other gaseous components in air

• Conclusions & perspectives

Introduction

New class of adsorbents

- Metal-Organic Frameworks
 - Promising adsorbents for various separation processes

2000 -

Counts

Metal-Organic Framework, Web of Science

scl: cen | Wei, Z. New Design and Synthetic Strategies of Metal-Organic Frameworks. Ph.D. Thesis, Texas A&M University, 2014.

Introduction

 Could these MOFs have potential to enhance Xe collection and purification in IMS NG systems ?

- More specifically
 - Efficient Xe collection from air (adsorption) ?
 - Efficient separation of Xe from other gaseous components (desorption) ?
 - Durability against adsorption/desorption cycles ?

Selected adsorbents

- Reference adsorbents
 - Activated carbon: Nusorb GXK
 - Silver-exchanged zeolites: Ag-ETS-10 & Ag-ZSM-5
- MOFs Selection criteria (end 2018)
 - Only commercially available MOFs
 - > 10 g

sck cen

- Hydrothermal stability
- Xe adsorption properties (from Xe/Kr separation literature)

HKUST-1, **Ni-DOBDC**, UiO-66 and ZIF-8

Metal-Organic Framework (MOF)

Xe collection

- Literature
 - Known pure Xe adsorption capacity for $P_{xe} > 1000$ Pa

Xe concentration in air = 87 ppb 8.7 mPa for air at 1 bar

- EU JA VII project
 - Xe adsorption capacity in N₂
 - 0.01 Pa to 1000 Pa
 - Much higher for AgZ at low P_{Xe}

Xe collection

- Xe adsorption in air
 - >100 times higher for AgZ than MOFs
- Effect of moisture on Xe adsorption capacity
 - Significant decrease on AgZ

New measurements ongoing (time resolution, selectivities)

Xe separation

- Xe separation from O₂, Ar and CO₂
 - Desorption with varying T and F
 - Best results obtained on AgZs

Material	Xe (%)	O ₂ (%)	Ar (%)	CO ₂ (%)
Ag-ETS-10	91%	< 1%	< 1%	1%
Ag-ZSM-5	87%	< 1%	< 1%	6%
NUSORB	91%	2%	< 1%	27%
Ni-DOBDC	89%	21%	12%	2%
HKUST-1	90%	2%	1%	86%

- Xe

80

HKUST-1

Ag-ETS-10

1.2 -1.0 -Relative outlet [-] 0.2 -0.0 20 0

F 1200

- 1000

800

- 600

- 400

- 200

Lo

275

- 250

- 225

- 200 (C) - 175 - 150 - 125 - 125 - 100 - 100 - 75

- 75

- 50

25

0

90

Xe separation

- Xe separation from Rn
 - Excellent separation on all adsorbents except Ni-DOBDC and Nusorb GXK

Durability adsorption/desorption cycles

- Followed-up through
 - 250 ppm Xe in air adsorption capacity

Material	# cycles	Max. T (°C)	Decrease in Xe adsorption ?
Ag-ETS-10	18	262	Х
Ag-ZSM-5	13	254	Х
Nusorb GXK	15	217	Х
HKUST-1	12	154	Х
Ni-DOBDC	24	191	V

Conclusions & perspectives

- The two AgZs are outperforming the two MOFs
 - BUT sensitive to moisture !
- First time that MOFs were investigated in these conditions
- Further research on the 5 adsorbents
 - Xe selectivity on N₂, O₂, Ar, CO₂ and Kr in air (ongoing)
 - Other characterizations ongoing (e.g. surface area, electron microscopy, ...)
- Many other MOFs at laboratory scale
 - Should be monitored for their application in IMS NG systems

