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ABSTRACT 4 

Among all crashes involving cyclists, a motorist approaching a cyclist on a shared lane from 5 

behind is particularly dangerous and likely to result in serious injuries and fatalities. Previous 6 

research has highlighted that inadequate lateral distance and high vehicle speed are among the 7 

main contributing factors of crashes involving cars overtaking cyclists.  8 

Since new technology innovations offer the potential to increase safety and mobility, a driving 9 

simulator study was conducted to evaluate the safety effects of an advanced driver-assistance 10 

system (ADAS) for cyclist overtaking. The ADAS was composed by a multimodal human-machine 11 

interface (HMI) using a multistage collision warning system, informing drivers well in advance 12 

about the potential danger so that an imminent cyclist collision can be avoided. Three warning 13 

priority phases were defined: (1) normal, (2) danger, and (3) avoidable accident. Both visual and 14 

acoustic signals were used to warn drivers. A combination of Lateral Clearance (LC) and Time-15 

To-Danger (TTD) parameters was used as ADAS activation criterion. 16 

A general linear model showed a positive effect on the lateral clearance of the following 17 

variables: presence of the ADAS system, familiarity with the system, male gender, driving 18 

experience as car driver, and driving experience as cyclist. A negative effect was associated with 19 

the following variables: cyclist manoeuvring from the edge of the lane to the centre of the lane, 20 
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cyclists riding in parallel, driver’s age, and self-reported aggressive driving. In conclusion, the 21 

drivers’ characteristics affected the LC and the ADAS significantly increased LC, indicating a 22 

positive safety effect on cyclist overtaking by cars. No significant effect on speed during 23 

overtaking was observed between the condition with or without ADAS, although it was observed 24 

that men drove on average faster than women. 25 

Keywords:  cyclist overtaking, ADAS, multilevel warning, lateral clearance, speed. 26 

1 INTRODUCTION 27 

Cycling is a sustainable and affordable transport mode which has major health, environmental, 28 

and economic benefits. In recent years, there has been a growing trend of bicycling in Europe 29 

and the United States (McKenzie, 2014; Pucher and Buehler, 2017), making car-cyclist 30 

interactions an important focus for future traffic-safety improvements (Kovaceva et al., 2018). 31 

In 2016, about 25,600 people were killed in road accidents throughout the Europe, with 2,015 32 

people riding cycles (equal to 8% of the total number of road accident fatalities). In the same 33 

year, the total number of road crashes in the EU countries showed a significant decrease (40%) 34 

from 2007, while the number of crashes involving cyclists is not decreasing (only 24%) at the 35 

same rate (European Commission, 2018).  36 

Studies show that the overall public health benefits of more cycling outweigh negative health 37 

impacts of increased crash risk. Nevertheless, the growing number of cyclists requires new 38 

approaches to traffic management and investment into safe cycling infrastructure to improve 39 

road safety and reduce fatalities and injuries (IRTAD, 2018). 40 

Cyclists are one of the most physically vulnerable road user groups, particularly when they share 41 

the road with motorized vehicular traffic. Their vulnerability as road users stems from their 42 

limited protection in the event of a collision and their low tolerance to the forces associated 43 

with collisions with motor vehicles. During a car accident involving a cycle, kinetic energy is 44 



3 

 

transferred from the vehicle to the “unprotected” cyclist. Part of this energy will be 'absorbed' 45 

by the cyclist’ human body. When the amount of external forces exceeds the physical threshold 46 

tolerated by the human body, severe or fatal injury will occur. Weight (mass) and speed play a 47 

very prominent role in the released energy in the collision. When the collision speed increases, 48 

the amount of energy that is released increases as well. When a car and a bicycle collide, the 49 

difference in mass is huge and the collision energy is mainly absorbed by the lighter vehicle, so 50 

its occupants will have the greatest risk of serious injuries or even fatalities (Broughton, 2005; 51 

SafetyNet, 2007).  52 

Among all types of crashes involving cyclists, a motorist approaching a cycle from behind is 53 

particularly dangerous and much more likely to result in serious injuries and fatalities (Feng et 54 

al., 2018). When cars and cyclists share the same lane, cars typically need to overtake them, 55 

creating dangerous Interactions. These interactions often result in severe injuries or even 56 

fatalities, especially on rural roads, due to the large difference between speeds of the car and 57 

cycle (Farah et al., 2019; Kovaceva et al., 2018; Behnood and Mannering, 2017).  Moreover, an 58 

overtaken cyclist is subject to a lateral force that may lead to her/his wobbling or falling (Llorca 59 

et al., 2014). This force increases with speed of the motor vehicle and decrease with lateral 60 

distance from cycle, but it is estimated to be problematic only at the highest speeds and 61 

proximities (Shackel and Parkin, 2014). 62 

The passing manoeuvre is affected by a range of factors involving the cyclist, road configuration, 63 

traffic, and vehicle (Feng et al, 2018). To minimize risky car-cyclist interactions during overtaking, 64 

motorists try to choose safe and comfortable lateral distance from the cyclist, lateral clearance 65 

(LC). Several studies have highlighted the critical importance of the LC for objective and 66 

subjective safety while passing a cyclist (Rubie et al., 2020). However, although LC is definitely a 67 

key indicator of safety, an overtaking manoeuvre is a long and complex process which is not 68 



4 

 

limited to the phase in which the vehicle moves parallel to the cycle, so the manoeuvre cannot 69 

be fully described by transient lateral clearance alone (Dozza et al., 2016).  70 

To minimize the risk for cyclists from motor vehicles passing too close and to increase cyclist 71 

comfort, minimum passing distance laws (often referred to as ‘one metre rules’) have been 72 

introduced in some European countries, such as Belgium, France, Germany, Portugal and Spain, 73 

in 28 American states and in a number of U.S. cities, and in many other countries (several 74 

provinces of Canada, some states and territories of Australia, etc.) (Dozza et al., 2014; National 75 

Conference of State Legislatures, 2014; Shackel and Parkin, 2014). However, failure to follow 76 

traffic regulation, distracted driving and inability to determine passing distance accurately mine 77 

the effectiveness of this law. So, the being overtaken too close continue to be a major barrier to 78 

getting more people cycling, especially less confident cyclists, women, older people and 79 

children.  80 

New technology innovations and automation in driving tasks offer the potential to increase 81 

safety and mobility (Hagenzieker et al., 2019). Moreover, in-vehicle information systems (IVIS) 82 

and advanced driver assistance systems (ADAS) have been developed with the clear intent to 83 

improve driving behaviour and foster road users’ comfort and safety, anticipating accidents to 84 

avoid them or reduce their severity.  85 

In the context of ADAS systems, the human-machine interface (HMI) serves as a communication 86 

bridge between the vehicle and the driver and its optimal design play a decisive role to ensure 87 

the effectivity and the safety of such systems. The way the information is presented as well as 88 

the right timing are the two crucial factors for the design of a warning systems (Cao et al., 2009). 89 

A promising way to reduce transmission errors and enhance safety seems to be presenting 90 

information to drivers via multiple modalities, e.g. visual, auditory, or haptic warning (Schwarz 91 

and Fastenmeier, 2017).  It can be assumed that different modalities should complement each 92 
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other presenting one message (Cao et al., 2009). After receiving a warning message, drivers need 93 

certain amount of time for reacting and then performing appropriate actions to avoid the crash. 94 

Therefore, the delivery time of warning messages could seriously influence the effectiveness of 95 

the warning system (Yan et al., 2015). A warning presented too early might be interpreted by 96 

drivers as a false alarm and may eventually be ignored, leading to driver distraction or 97 

annoyance (Brown et al., 2001; Winkler et al., 2016). On the contrary, if the system warns drivers 98 

too late, there is not enough time for them to detect the warning, chose an avoidance response 99 

and take action to avoid or mitigate the collision. Compared to a single warning stage of 100 

imminent danger level, a multistage concept extends the warning range to more advanced 101 

cautionary levels of pre-warning or simply informing drivers about a safety–critical situation 102 

ahead. Thereby, a multistage warning can induce different driver reactions depending on the 103 

urgency level and the situation’s intervention need with adapted intrusiveness. The early 104 

warning stages should be less intrusive as they might be triggered more frequently and would 105 

otherwise increase the probability of annoying drivers, whereas later warning stages certainly 106 

need a stronger salience to certainly elicit a driver reaction in an emergency (Winkler et al., 2016; 107 

Winkler et al., 2018). 108 

In this study, as part of the European Horizon 2020 project i-DREAMS (www.idreamsproject.eu), 109 

a new multistage ADAS system supporting drivers as they overtake cyclists was designed to 110 

improve cyclists safety and comfort. The proposed driver aid system is characterized by a 111 

multimodal HMI using a multistage collision warning approach. The warning strategy is based 112 

on a combination of lateral clearance (LC) and time-to-danger (TTD) to guarantee both lateral 113 

and longitudinal control of vehicle during overtaking. Finally, a medium-fidelity driving simulator 114 

experiment was carried out to study the effect of driver’s characteristics on car-to-cyclist 115 

overtaking behaviour and to evaluate the effectiveness and safety benefits of the designed in-116 

vehicle driving assistance system in some potentially critical car-cyclist overtaking scenarios.  117 
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2 EXPERIMENT 118 

The driving simulator experiment was developed as a 2 (ADAS) x 3 (Event) repeated measures 119 

design. The within-subject variables are: ADAS (2 level: without and with cyclist overtaking 120 

assistance system) and Events (three car-cyclist overtaking situations: a cyclist rides close to the 121 

outer edge of roadway, a cyclist swerves left and two cyclists riding side-by-side).  122 

2.1 Car-cyclist overtaking ADAS system 123 

An ADAS system was designed to support drivers keeping a safe and comfortable lateral distance 124 

when overtaking cyclists. The system consists of a multimodal Human-Machine Interface (HMI) 125 

using a multistage collision warning strategy timely making drivers aware of the presence of 126 

cyclists ahead and alerting the driver of the potential danger or an imminent collision when 127 

passing too close to cyclists. With this aim, three warning phases were defined:  128 

(1) Normal driving: the driver is informed of the presence of a cyclist ahead at a safe lateral 129 

distance; no action is required by the driver;  130 

(2) Danger phase: the driver is warned to an emerging risk situation which requires 131 

immediate attention and may require a corrective action;  132 

(3) Avoidable accident phase: the driver is alerted to a critical situation which requires 133 

his/her immediate action or decision to avoid a potential crash. 134 

The system alerts drivers using a combination of both visual and acoustic signals (Figure 1) 135 

positioned in a Head-up Display (HUD) projected on the vehicle’s windshield. The visual 136 

information consists of a pictogram displaying front view symbols of a car and a cyclist separated 137 

by a double arrow which changes colour in each of the three warning phases and nudges the 138 

driver toward a corrective action. The normal driving condition is signaled only by a pictogram 139 

with green double arrow. The danger phase is introduced by an orange double arrow along with 140 
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a beep sound to warn inattentive drivers. A red double arrow coupled with a high pitched 141 

double-beep sound is used to alert drivers in the avoidable accident phase. 142 

               Phase 
Signal Normal driving Danger phase Avoidable accident phase 

Visual 

   
Audio No acoustic signal Single Beep Double high-pitched beep 

Figure 1. ADAS warning phases 143 

An overtaking maneuver is a long and complex process which is not limited to the phase in which 144 

the vehicle moves parallel to the bicycle. Hence, the manoeuver cannot be fully described by 145 

transient lateral clearance alone but both lateral and longitudinal control of vehicle have to be 146 

taken into account (Dozza et al., 2016). For these reasons, a combination of lateral clearance 147 

(LC) and Time-to-Danger (TTD) was chosen to define the three phases of the warning strategy. 148 

The LC is used to monitor the lateral control of the vehicle and the minimum lateral distance 149 

between the cyclist and the vehicle while passing (Dozza et al., 2016). The longitudinal control 150 

of the motor vehicle is monitored using TTD, an extension of the Time-To-Collision (TTC) 151 

measure that does not require the road users to be on collision course. In fact, TTC is an effective 152 

measure to discriminate critical from normal behaviour and it is the time left to collision 153 

between two vehicles if they continue at their present speed and on the same path (Hegeman 154 

et al., 2009; Johnsson et al., 2018). Instead, the proposed measure TTD, is defined, in case of 155 

cyclist overtaking by car, as the time required for the vehicle to laterally align its front bumper 156 

with the rear wheel of the bike if they continue at their present speed: 157 

TTD = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣ℎ−𝑐𝑐
Speedvh−Speed𝑐𝑐

                            (1) 158 
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where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣ℎ−𝑐𝑐  is the distance (m) between the front bumper of the vehicle and the rear wheel 159 

of the cyclist, Speedvh is the longitudinal velocity (m/s) of the vehicle, and Speedc is the 160 

longitudinal speed (m/s) of the cyclist. 161 

The optimal timing and distance to activate the three warning phases was designed after a 162 

comprehensive review of the literature and a pilot study. Considering that, in most European 163 

countries, the motorists are obliged by law to pass cyclists no closer than 1.5 metres in rural area 164 

(or on a road with a speed limit of 50 km/h or higher), and 1.0 m in urban areas (or on a road 165 

with a speed limit under 50 km/h) (Dozza et al., 2014; National Conference of State Legislatures, 166 

Tarko, 2018), the following LC threshold values have been adopted on rural roads: (1) LC ≥1.5 167 

m; (2) LC ≥ 1.0 m and LC < 1.5 m; and (3) LC < 1.0 m. 168 

According to literature, a TTC threshold value of 4.0 s – 4.5 s can be considered an ideal trade-169 

off in the context of a collision warning (Aksan et al., 2016; Li et al., 2014; Zheng et al., 2020; Yan 170 

et al., 2015). Moreover, TTC values greater than 4.0 or 5.0 s resulted in too many false alarms, 171 

while a TTC value of 3.0 s produced the least number of false alarms although in some cases 172 

critical situations were observed (Bella and Russo, 2011; Minderhoud et al., 2001). A TTC value 173 

of 2.0 s – 2.5 s should be considered as the absolute minimum to provide enough response time 174 

for the driver (Yan et al., 2015). Finally, TTC value of 1.0 s was assumed to be a useful measure 175 

of serious conflicts, in which the collision can hardly be avoided (Naujoks et al., 2016; 176 

Reinmueller and Steinhauser, 2019). Based on the previous considerations, the following TTD 177 

threshold values have been chosen: (1) 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ ≥ 3.0 s and 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ < 4.5 s; (2) 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ ≥ 2.0 s and 178 

𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ < 3.0 s; and (3) 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ < 2.0 s. 179 

Finally, the activation criterion of the three warning phases during cyclists overtaking maneuver 180 

results as a combination of the following lateral clearance (LC) and time-to-danger (TTD) 181 

threshold values (Table 1). 182 
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Table 1. Warning criterion as combination of LC and TTD 183 

 
Time to Danger 

4.5 s > 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ ≥ 3 s 3s > 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ ≥ 2 sec 𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣ℎ < 2 s 

La
te

ra
l C

le
ar

an
ce

 LC ≥ 1.5 m Normal diving Normal diving Normal diving 

1.5m > LC ≥ 1.0 m Normal diving Danger phase Danger phase 

LC < 1.0 m Normal diving Danger phase 
Avoidable Accident 

phase 

 184 

2.2 Apparatus 185 

The study was conducted on a fixed-base, medium-fidelity driving simulator (STISIM Drive v3 ; 186 

Systems Technology Incorporated) at the Transportation Research Institute (IMOB) of Hasselt 187 

University in Belgium. It consists of a real vehicle cabin (Ford Mondeo) with a force-feedback 188 

steering wheel, brake and accelerator pedals, and automatic transmission. The visual scene was 189 

projected to a three-channel 180 degrees forward field of view seamless half-cylindrical screen, 190 

with on-screen projected rear- and side-mirrors. A spatial sound system renders the own 191 

vehicle’s engine, the noise from tires and from surrounding traffic. The simulation included 192 

vehicle dynamics, visual, acoustic and tactile feedback and a performance measurement system.  193 

2.3 Virtual road design 194 

In the experiment, a two-lane rural highway with lane width of 3.00 m and no shoulders was 195 

simulated, according to the Belgian Road Design Standard (Departement Mobiliteit en Openbare 196 

Werken, 2017).  197 

The experimental route consisted of 10 successive tangents with length equal to 1,000 m and 9 198 

circular curves with 400 m radius and 35° deflection angle. The tangent-to-curve transition is 199 

carried out by spiral curves with a length equal to 55 m, which corresponds to 2.0 s at 100 km/h. 200 

The edge lines are continuous for the whole experimental road while the centre line is 201 
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continuous from 150 m prior to 150m after each curve and dashed elsewhere. Speed limit signs 202 

of 70 km/h are posted at the start and repeated regularly along the experimental road. No 203 

separated/dedicated cycle lane was designed. Hence, motor vehicles had to share lanes with 204 

cyclists, interacting with each other. No symbols, signs or markings were installed on the road 205 

surface to advice the presence of cyclists on the road. The surroundings were modelled to mimic 206 

a real rural environment.  207 

With the aim to study the effectiveness of the proposed in-vehicle warning system, the following 208 

three cyclist passing situations (Figure 2) were tested: Event 1 (E1): overtaking a cyclist where 209 

the cyclist keeps a constant lateral position (close to the road edge line); Event 2 (E2): overtaking 210 

a cyclist that manoeuvres from the outer edge of the lane to the centre of the lane; and Event 3 211 

(E3): overtaking two cyclists riding side by side (one close to the edge line and the other one on 212 

the center of the lane). The overtaken cyclists keep a constant speed of 18 km/h during all the 213 

events. 214 

   

Event 1 Event 2 Event 3 

Figure 2. Tested overtaking events during the experiment 215 

2.4 Experimental procedure 216 

The best-case scenario in terms of visibility, road and weather conditions was simulated, such 217 

as dry pavement conditions and a good state of maintenance, high visibility, sun light, etc. 218 

Occasional traffic going in the opposite direction was simulated to improve the scenario realism. 219 
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The protocol was approved by the Social and Societal Ethics Committee of Hasselt University 220 

(approval number: REC/SMEC/JA/189-132). Upon their arrival in the laboratory, each participant 221 

was briefed on the requirements of the experiment and an informed consent was obtained 222 

before conducting a pre-driving questionnaire (biographical and driving style information and 223 

knowledge/use of ADAS systems). Before the actual simulator experiment, participants were 224 

instructed to familiarize with the driving simulator system.  225 

After a short break, each participant drove twice the same experimental route, first without and 226 

then with the ADAS cyclist overtaking system. During each drive, each participant was engaged 227 

in nine car-cycle overtaking events resulting from the three-time repetition of each basic event 228 

(E1, E2 and E3). To prevent confounding factors and to avoid any systematic order effects, the 229 

order of application of the 3 events to the experimental units (participants) was determined 230 

randomly. The sequence in which participants encountered each event through the 231 

experimental route was counterbalanced to minimize the presentation order effect. Also, it is 232 

guaranteed that, when all drivers had completed the experiment, each event was encountered 233 

the same number of times (3) in each driving order. Random extraction was performed through 234 

R-cran, designing a different scenario for each driver.  235 

At the end of the two driving sessions, each participant filled a post-driving questionnaire on the 236 

personal assessment of the tested ADAS system (including items of effectiveness, reliability, 237 

utility, ease-to-use and willingness-to-buy). Simulator sickness questionnaires (Kennedy et al., 238 

1993) were also filled by each participant before the simulator familiarisation session and after 239 

the driving sessions to screen potential simulator discomfort. 240 

2.5 Participants 241 

Fifty participants took part in the study voluntarily, without any financial compensation. Two 242 

participants have been excluded from all further analysis (one due to an error in data logging, 243 
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the other one because it was detected to be an outlier through the Grubbs test) leading to a 244 

sample size of 48 participants. No simulator sickness was observed. Moreover, the sample is 245 

composed of 21 women and 27 men, ranging in age from 19 to 66 years (mean = 32.44, standard 246 

deviation = 9.33). All the participants had a valid driving licence and at least 1 year of driving 247 

experience (mean = 11.94, standard deviation = 9.23). More than 60% of participants drive at 248 

least once a week, while about 30% occasionally drive . Participants rated their driving style on 249 

a scale of 1 (very defensive) to 5 (very offensive) (mean = 3.04, standard deviation = 0.90). More 250 

than 90% of the sample was aware of driver warning/assistance systems and about 40% had 251 

experienced at least once a driving aid system but, finally, only 25% use them frequently in their 252 

everyday driving.  253 

Table 2. Driver characteristics: numerical variable 254 

Numerical Variable Mean St. dev Min Max 

Age 32.44 9.43 19.00 66.00 

Years of driver license 11.83 9.42 1.00 47.00 
Number of serious crashes, as a driver, in the past 3 
years 0.02 0.14 0.00 1.00 

Number of slight crashes, as driver, in the past 3 years 0.25 0.44 0.00 1.00 

Defensive driving (subjective assessment of driving style) 3.04 0.90 1.00 5.00 

 255 

Table 3. Driver characteristics 256 

Categorical variable Categories # % 

Gender 
Female 27 56.25% 

Male 21 43.75% 

Weekly driving frequency 

Everyday  16 33.33 

2-4 times a week 13 27.08 

Every weekday 6 12.50 

Once a week 7 14.58 

Weekend only 3 6.25 

Occasionally’ 3 6.25 
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Average annual kilometers travelled by car 

0 3 6.25 

1 - 5000 17 35.42 

10001-20000 14 29.17 

5001-10000 9 18.75 

>30000 5 10.42 

Weekly cycling frequency 

Everyday 3 6.25 

2-4 times a week 15 31.25 

Every weekday 2 4.17 

Once a week 10 20.83 

Weekend only 3 6.25 

Never 15 31.25 

Average annual kilometers travelled by bicycle  

0 15 31.25 

1 - 50 19 39.58 

51-100 5 10.42 

101-175 5 10.42 

176-300 4 8.33 

Knowledge about driver warning/assistance 
systems 

Yes 45 93.75 

No 3 6.25 

Frequent use of driver warning/assistance 
systems 

Yes 12 25.00 

No 36 75.00 

Used at least once a driver warning/assistance 
system 

Yes 19 39.58 

No 29 60.42 

 257 

3 ANALYSIS METHODS 258 

Lateral clearance and speed were used both as measure of driving behaviour during passing and 259 

as measure of effectiveness of ADAS system. The hypothesis of the study was that the presence 260 

of both cyclist and the ADAS system influences the risk perception, so that drivers react to such 261 

stimuli changing their driving style in the different overtaking events. Statistical tests and 262 
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regression models with a random parameter were used to study the driver behaviour during 263 

car-bicycle overtaking and to evaluate the statistical significance of the experimental results. 264 

3.1 Statistical test 265 

Statistical inference tests were carried out to study of the effectiveness of the ADAS system, 266 

evaluating statistically significant differences in speed and lateral clearance. Speed and LC data 267 

were pre-processed testing the normality and homoscedasticity assumptions. Since different 268 

tests of normality often produce different results, we verified the normality assumption using 269 

the tests Anderson–Darling, Jarque–Bera, Kolmogorov–Smirnov, Lilliefors, and Shapiro–Wilk. 270 

Given the normality and homoscedasticity of the LC and speed data, ANOVA and t-student tests 271 

were used. The ANOVA showed a statistically significant overall effect. The t-tests showed 272 

significant differences among the events and an effect of the ADAS (Montella et al., 2015). 273 

3.2 Regression models with random effect 274 

The regression models with random effect were performed to analyse the relationship between 275 

the speed and lateral clearance with variables related at the presence of ADAS system, the type 276 

of event, and the driver characteristics. The data considered involved measurements over time 277 

for the same drivers and included time invariant variables, such as driver characteristic (i.e. 278 

gender, age, etc.). Regression models with random effects were developed to account for 279 

within-group dependence, using xtreg command of STATA software with the maximum-280 

likelihood random-effects estimator (Robson and Pevalin, 2015): 281 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖𝑖𝑖 + ⋯+  𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣𝑖𝑖𝑖𝑖 (2)  

𝑦𝑦𝑖𝑖𝑖𝑖  denotes the value of the dependent variable Y for individual 𝑖𝑖 (𝑖𝑖 = 1, . . ,𝑁𝑁) at time point 𝑡𝑡  282 

(𝑡𝑡 = 1, … ,𝑇𝑇),  𝛽𝛽0 is the intercept, the 𝛽𝛽𝑝𝑝 , 𝑖𝑖 =  0, 1, . . . ,𝑝𝑝, are the regression coefficients, 𝑣𝑣𝑖𝑖𝑖𝑖 is 283 

the error term which consists of two components (𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖), 𝑢𝑢𝑖𝑖 “unobserved 284 
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heterogeneity” component (individual specific but does not vary over time), and an 𝑒𝑒𝑖𝑖𝑖𝑖 285 

idiosyncratic component (varies across both individuals and time). 286 

These models were developed by stepwise approach, beginning with no explanatory variables 287 

in the model and sequentially adds one variable. At each stage it selects the term giving the 288 

greatest improvement in fit. A point of diminishing returns occurs in adding explanatory 289 

variables when new ones added are themselves so well predicted by ones already used that they 290 

do not provide a substantive improvement in the likelihood ratio (LR). The used criterion for the 291 

addition of variables is based on the partial 𝐺𝐺2-statistic, given by:  292 

𝐿𝐿𝐿𝐿 = 𝐺𝐺2 = −2𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐿𝐿𝐿𝐿𝑘𝑘
𝐿𝐿𝐿𝐿𝑘𝑘−1

� = 2(𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝑘𝑘 − 𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝑘𝑘−1) (3)  

where LLk is the likelihood of the model at k step and LLk−1 is the likelihood of the model at k-293 

1 step. Variables were entered as long as the 𝐺𝐺2-statistic p-value remains below 0.05. The 294 

procedure terminates when the addition of any of the remaining variables would yield a 𝐺𝐺2-295 

statistic p-value > 0.05, or when all variables have been entered. Later in the process, variables 296 

which were become non-significant after other variables have been added were excluded. The 297 

significance for the individual regression coefficient 𝛽𝛽𝑝𝑝 was evaluted using the Wald statistic 298 

with a significance level of 0.10. However, to obtain a good and parsimonious model, Akaike 299 

information criterion (AIC) and Bayesian information criterion (BIC) were used. 300 

Since the observations are not independent of each other, residuals are not independent and, 301 

therefore, common likelihood-based methods and other measures of model fit from ordinary 302 

linear regression need to be adjusted (Pagliara and Mauriello, 2017). To get around this problem, 303 

a number of statisticians have developed so-called ‘Pseudo R2 ’ measures that aim to mimic 304 

R2 for logistic regression models. The most prominent one is McFadden’s Pseudo R2 is given by 305 

(Jobson, 2012): 306 
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McFadden−  𝑅𝑅2 = 1 −  
𝐿𝐿𝐿𝐿𝑘𝑘
𝐿𝐿𝐿𝐿0

 
(4)  

The McFadden− 𝑅𝑅2 values are usually much smaller than 𝑅𝑅2 values in linear regression. 307 

McFadden− 𝑅𝑅2 <0.05 indicates low fit, McFadden − 𝑅𝑅2 > 0.20 indicates a very good fit, and 308 

McFadden− 𝑅𝑅2 > 0.40 is hardly observed (Andreß et al., 2013). 309 

4 RESULTS AND DISCUSSION 310 

Speed and LC were analysed to study the driver behaviour during cyclist overtaking. Given the 311 

normality and homoscedasticity of the speed and LC data, statistical tests and regression models 312 

with random effects carried out to evaluate the influence of the ADAS system, the position of 313 

the cyclists through the three events and the characteristics of the drivers reported in Tables 2 314 

and 3. 315 

4.1 LC data 316 

The ADAS system produced a significant increase of the average total LC equal to 0.30 m (Table 317 

4), and the ANOVA test showed a statistically significant overall effect (p-value<0.001, Table 5). 318 

During baseline driving, LC (1.15 m) was smaller in event 2 (cyclist moving from the edge to the 319 

centre of the lane) and larger (1.76 m) in event 1 (cyclist riding close to the edge). The t-tests 320 

showed significant differences among the events and an effect of the ADAS. The ADAS 321 

significantly increased LC in all events: from 1.76 to 2.19 m in event 1 (25%, p<0.001), 1.15 to 322 

1.49 m in event 2 (29%, p<0.001), and 1.46 to 1.60 m in event 3 (10%, p=0.096). 323 

Table 4. Mean and standard deviation of LC 324 
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Event 
A0 A1 (𝑳𝑳𝑳𝑳𝑨𝑨𝑨𝑨 − 𝑳𝑳𝑳𝑳𝑨𝑨𝑨𝑨)

𝑳𝑳𝑳𝑳𝑨𝑨𝑨𝑨
 

Mean LC [m] St. Dev. [m] Mean LC [m] St. Dev. [m] 
E1 1.76 0.65 2.19 0.55 24.58% 
E2 1.15 0.48 1.49 0.46 29.24% 
E3 1.46 0.41 1.60 0.37 9.87% 

Total 1.46 0.58 1.76 0.56 20.90% 

 325 

Table 5. LC: t and ANOVA tests 326 

  A0 A1 
  E1 E2 E3 E1 E2 E3 

A0 
E1 1 <0.001 <0.001 <0.001 <0.001 0.014 
E2  1 <0.001 <0.001 <0.001 <0.001 
E3   1 <0.001 0.499 0.002 

A1 
E1    1 <0.001 <0.001 
E2     1 0.028 
E3      1 

ANOVA F statistic = 69.907, df1 = 5, df2 = 858, p-value = < 0.0001 
Note: In boldface statistically significant values were reported with 5% level of significance and in underline statistically 
significant values were reported with 10 % level of significance 

 327 

The model showed (Table 6) that, the use of the ADAS system has a positive effect on LC with 328 

an increase of 0.30 m (p-value <0.001). Events E2 and E3 have a lower LC than event E1, 329 

respectively of 0.65 m (p-value <0.001) and 0.44 (p-value <0.001). The results of this model 330 

confirmed the ANOVA and t-Test. The driver characteristics (gender, age, weekly driving 331 

frequency and weekly cycling frequency) influenced the LC. LC was increased of 0.11 m (p-332 

value=0.003) if the driver was a male and decreased of 0.012 m per year with age (p-333 

value=0.037).  Differences in overtaking behaviours, related to gender and age, were also found 334 

by Farah et al. (2011) where male and younger drivers had significantly higher desired driving 335 

speeds, and Llorca et al. (2017) found that higher speeds required larger LCs, although in our 336 

study a significant influence of car speed on LC was not found, in line with Dozza et al. (2015) 337 

and Mehta et al. (2015). Moreover, females perceived a greater risk for a head-on collision with 338 

the oncoming vehicle than a rear end or side -swipe collision with the cyclist (Rasch et al., 2020). 339 
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A positive effect on the LC was given by the weekly frequency of driving or cycling. Compared to 340 

drivers who never drive during the week, the LC increased by 0.55 m (p-value = 0.004) for those 341 

who drive every day, 0.72 m (p-value = 0.001) in the case of driving every weekday, 0.55 m (p-342 

value = 0.025) for drivers who use the car only on weekend, and 0.34 m (p-value = 0.0690) for 343 

those who drive 2 to 4 times a week.  344 

Compared to drivers who never use a bicycle in a week, the LC increased by 0.30 m (p-value 345 

<0.001) for drivers cycling every day, and 0.20 m (p-value =0.099) for those who ride 2 to 4 times 346 

a week.  Those results are in line with the study of Fruhen & Flin (2015), in which it has been 347 

shown that negative attitudes towards cyclists were more pronounced in non-cyclist motorists 348 

than cyclist ones. 349 

Table 6. LC: random effects model 350 

Variables Coef. Std. Err. z P>|z| 
ADAS      

A1       0.304          0.025       12.090  <0.001 *** 
A0      

Event      
E2 -0.650 0.031 -21.060  <0.001 *** 
E3 -0.444 0.031 -14.390  <0.001 *** 
E1      

Gender      
Male 0.111 0.037 2.98 0.003 ** 
Female      

Age -0.012 0.0058 -2.09 0.037 ** 
Weekly driving frequency      

Everyday 0.546 0.191 2.860 0.004 ** 
Every weekday 0.720 0.220 3.270 0.001 ** 
Weekend only 0.545 0.243 2.240 0.025 ** 
2 or 4 Times a week 0.339 0.187 1.820 0.069 * 
Once a week 0.215 0.200 1.080 0.282  
Never      

Weekly cycling frequency      
Everyday 0.303 0.077 3.950 <0.001 *** 
Every weekday -0.282 0.248 -1.130 0.256  
Weekend only -0.009 0.186 -0.050 0.962  
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2 or 4 Times a week 0.204 0.124 1.650 0.099 * 
Once a week 0.071 0.129 0.550 0.582  
Never      

_cons 1.833 0.271 6.750 <0.001 *** 

𝜎𝜎𝑢𝑢 0.256 0.029    
𝜎𝜎𝑒𝑒 0.370 0.009    
𝜌𝜌0 0.323 0.051    
Note: *** indicates statistically significant values with p-value<0.01, ** indicates statistically significant with p-value < 0.05 
level of significance and * with p-value< 0.1 

 351 

The McFadden− 𝑅𝑅2 was equal to 0.36 (Table 7), and as reported by Anderson et al. (2013), this 352 

value indicated a very good of fit. This result was also confirmed by LR test performed comparing 353 

the fit at convergence model to the fit at constant model. LR test statistic likelihood ratio test 354 

between full and constant models (𝐿𝐿𝐿𝐿  full model
 constant model

= 479.14 with p-value <0.001) showed that 355 

the full random model fitted significantly better than the model with only constant. The value 356 

of the intra class correlation, 𝜌𝜌0, evidenced that 32.3% of the variance was due to differences 357 

within drivers. The likelihood ratio test of 𝜎𝜎𝑢𝑢= 0 was testing the null hypothesis that the standard 358 

deviation of the random intercept was equal to zero. The value of the likelihood ratio test of 359 

homoscedasticity (𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜎𝜎𝑢𝑢= 0) was equal to 229.05 (p-value<0.001), highlighting the 360 

necessity to use random model. 361 

Table 7. LC: Model statistics 362 

Parameter Value 
Obs 864 
Log-likelihood at constant - random model -661.090 
Log-likelihood at convergence – random model -421.519 
LR1 - random model at convergence vs. random model at constant 479.14 
Prob(LR1, df=15) <0.001 
McFadden− 𝑅𝑅2 0.362 
𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝜎𝜎𝑢𝑢 = 0  229.05   
Prob(𝐿𝐿𝐿𝐿2, df=1) <0.001 
AIC 879.037   
BIC 964.746 

 363 
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4.2 Speed data 364 

The ADAS system produced a decrease of the average total speed equal to 0.4 km/h (Table 8), 365 

and the ANOVA test showed a not statistically significant overall effect (p-value= 0.15, Table 9)). 366 

The ANOVA result was confirmed by the student’s t-tests. The p-value of the paired t-test, for 367 

all 3 events (A0 vs A1), was higher than 0.10, having to accept the hypothesis that there was no 368 

statistically significant difference between the two conditions. However, the paired t-test 369 

showed that both in the baseline condition (A0) and with the use of the ADAS system (A1), there 370 

was a significant difference between E1 and E2 with lower speed in E2 event. In the baseline 371 

condition (A0), the mean speed difference between the two overtaking events was of 3.74 km / 372 

h (p-value = 0.067), while, if the ADAS system is active (A1), the average speed of E2 was 4.00 373 

km / h lower than E1 ( p-value = 0.03). 374 

Table 8. Mean and standard deviation of Speed 375 

 A0 A1 
(𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨 − 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨)

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨
 Event Mean Speed 

[hm/h] 
St. Dev. 
[hm/h] 

Mean Speed 
[hm/h] 

St. Dev. 
[hm/h] 

E1 78.52 17.35 77.98 16.82 -0.68 % 
E2 74.78 17.20 73.98 17.16 -1.06 % 
E3 76.13 15.39 76.29 15.46 0.20 % 

Total 76.48 16.70 76.08 16.54 -0.51 % 

Table 9. Speed: t and ANOVA tests 376 

  A0 A1 
   E1 E2 E3 E1 E2 E3 
A0 E1 1 0.067 0.219 0.791 0.026 0.250 

E2  1 0.480 0.111 0.695 0.434 
E3   1 0.332 0.263 0.933 

A1 E1    1 0.047 0.374 
E2       1 0.232 
E3           1 

ANOVA F statistic = 1.621, df1 = 5, df2 = 858, p-value = 0.152 
Note: In boldface statistically significant values were reported with 5% level of significance and in underline statistically significant 
values were reported with 10 % level of significance 
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The model statistics and estimated parameters for regression model with random effects are 377 

reported in Table 10 & 11.  Non-significant parameters were not included in the model and were 378 

not reported.  The results of this model confirmed the ANOVA and t-Test, no dependence was 379 

found with the use of ADAS, while for E2 there was a speed reduction of 3.87 km / h (p-value 380 

<0.001). In addition, the dependence of speed with gender was identified, men drove 5.21 km / 381 

h (p-value <0.001) faster than women. The McFadden− 𝑅𝑅2  was equal to 0.003,  although this 382 

value indicated a low fit, likelihood ratio test between full and constant models (𝐿𝐿𝐿𝐿  full model
 constant model

= 383 

22.54 with p-value <0.001) showed that the full random model fitted significantly better than 384 

the model with only constant. The value of the intra class correlation, 𝜌𝜌0 = 𝜎𝜎𝑢𝑢2

𝜎𝜎𝑢𝑢2+𝜎𝜎𝑒𝑒2
, evidenced 385 

that 61.3% of the variance was due to differences within drivers. The value of the likelihood ratio 386 

test of homoscedasticity (𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜎𝜎𝑢𝑢= 0) was equal to 657.97 (p-value<0.001), highlighting the 387 

necessity to use random model.  388 

Table 10. Speed: Random effects model 389 

Variables Coef. Std. Err. z P>|z| 
Event      

E2 -3.87204 0.846273 -4.58 <0.001 *** 
E3 -2.03919 1.363712 -1.5 0.135  
E1      

Gender      
Male 5.205 1.122 4.64 <0.001 *** 
Female      

_cons 70.118 6.223 11.27 <0.001 *** 
𝜎𝜎𝑢𝑢 12.784 1.351    
𝜎𝜎𝑒𝑒 10.155 0.251    
𝜌𝜌0 0.613 0.052    
Note: *** indicates statistically significant values with p-value<0.01, ** indicates statistically significant with p-value < 
0.05 level of significance and * with p-value< 0.1 

Table 11. Speed: Model statistics 390 

Parameter Value 
Obs 864 
Log-likelihood full model -3321.2271 
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Log-likelihood constant model -3309.9547 
𝐿𝐿𝐿𝐿  full model

 constant model
 22.54 

Prob(LR1, df=3) <0.001 
McFadden− 𝑅𝑅2 0.003 
𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝜎𝜎𝑢𝑢 = 0  657.97 
Prob(𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝜎𝜎𝑢𝑢, df=1) <0.001 
AIC 7285.879 
BIC 7304.925 

 391 

5 CONCLUSION 392 

The study showed that the ADAS system tested in the driving simulator experiment had 393 

significant effects on driver behaviour during a cyclist overtaking manoeuvre. The lateral 394 

clearance was affected significantly by the presence of the ADAS system with an increase of 0.30 395 

m equal to 20.90%. The ADAS system helped drivers to keep on average a lateral clearance 396 

greater for all three events. It is noteworthy that the ADAS was effective to help drivers to keep 397 

on average a lateral clearance greater than or equal to 1.5 m, that represents the minimum 398 

distance law when passing cyclists on rural area introduced in most European country (Dozza et 399 

al., 2014; Shackel and Parkin, 2014). Speed reduction between baseline conditions and with the 400 

ADAS was 0.40 km/h, however, this reduction was not statistically significant. The model 401 

estimation results revealed that the lateral clearance was influenced as well as the presence of 402 

the ADAS system, the various events, also the characteristics of the drivers such as: gender, the 403 

age, weekly driving frequency, and weekly cycling frequency. 404 

The model estimation results revealed that accounting for possible heterogeneity in means and 405 

variances of the random parameters improves overall model fit and allows important new 406 

insights. What is likely happening is that the additional flexibility provided by mean/variance 407 

approach allows a more general structure for capturing unobserved heterogeneity relative to 408 

the standard approach (Behnood and Mannering, 2017). 409 
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