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Abstract: Horizontal curves of rural highways are prone to a considerably high number of fatalities
because an erroneous perception can lead to unsafe driving. This generally occurs when a driver
fails to notice the highway geometry or changes in the driving environment, particularly curved
segments. This study aimed to understand the geometric characteristics of curved segments, such
as radius and approach tangents, on the driving performance towards minimizing vehicle crashes.
Speed profiles and lateral position, the most common indicators of successful negotiation in curves,
and eye movements were recorded during an experiment conducted in a fixed-base driving simulator
equipped with an eye-tracking system with a road infrastructure (a three-lane highway) and its
surroundings. A driving simulator can faithfully reproduce any situation and enable sustainable
research because it is a high-tech and cost-effective tool allowing repeatability in a laboratory. The
experiment was conducted with 28 drivers who covered approximately 500 test kilometers with
90 horizontal curves comprising nine different combinations of radii and approach tangent lengths.
The drivers’ behavior on each curve was classified as ideal, normal, intermediate, cutting, or correcting
according to their trajectories and speed changes for analyses of the performance parameters and
their correlation conducted by factorial ANOVA and Pearson chi-square tests. The cross-tabulation
results indicated that the safest behavior significantly increased when the curve radius increased, and
the performance measures of curve radii were greatly affected. However, the driving behavior was
not affected by the approach tangent length. The results revealed segments of the road that require
a driver’s closer attention for essential vehicle control, critical information, and vehicle control in
different parts of the task.

Keywords: driving simulator; speed; curve negotiation; trajectory classification; eye movements

1. Introduction

Curves are the geometric elements of the road alignment characterized by the highest
exposure of drivers to the risk of a crash. Drivers intend to operate vehicles at a safe speed
based on the roadway’s geometric features. These features are characterized by gradient,
horizontal curvature, curve length, tangent sections, and superelevation [1]

Vehicle crashes in horizontal curves are a severe safety concern because their occur-
rence rate is higher than those in tangent sections of a roadway. Additionally, vehicle
crashes on horizontal curves require greater effort to understand driver behavior [2–10].
The probability of road crashes on horizontal curves is high due to the increase in the strain
of both driver and vehicle, which leads to an erroneous judgment of speed and trajectory.
Consequently, road infrastructure and its interaction with human factors is an essential field
of study that has been widely researched to ensure geometric design consistency [11,12].
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Previous studies in the driving simulator field have identified several factors asso-
ciated with driver performance and road safety, e.g., roadway design, road markings,
environmental conditions, driver characteristics, and vehicle attributes [13,14]. The lit-
erature review identified various studies that have evaluated the effect of different road
markings placed before and along the curves on driver behavior [15,16]. Babić et al. [17]
presented a systematic review of the most significant academic activities regarding the
influence of longitudinal and transverse road markings and road markings for hazard
location (curves, intersections, and rural-urban transitions) on driver behavior and over-
all road safety. Charlton et al. [18] developed two types of experimental road markings
(i.e., an “Attentional” set designed to provide visually distinct cues to indicate speed lim-
its of 60, 80, and 100 km/h, and a “Perceptual” set also intended to affect the drivers’
perception of speed). They then compared them to a standard undifferentiated set of
markings. The findings indicated that both road markings improved driver compliance
with speed limits compared to the control group. One of the recent studies considered
horizontal curves, especially those of radii less than 200 m, and showed an increased road
accident risk was mainly due to inappropriate speed and failure to maintain proper lateral
position [19].

Studies on the association between road design and human factors use performance
parameters to measure success in curve negotiation, including speed [5,9,20–22], lateral
position [11,20,23], lateral acceleration, and driver eye movement [9,24]. Additionally,
research on the relationship among those parameters, mainly speed and lateral position in
horizontal curves, has been developed [6,25]. Charly and Mathew [4] demonstrated that
driving performance measures, such as speed and mean lateral acceleration with geometric
parameters, result in reliable estimations of crashes. Barendswaard et al. [2] reported a
directly proportional relationship of the maximum prepositioning and swing left behavior
of drivers while approaching righthand curves with speed, but inversely proportional to
curves radii. However, the relationship between behavioral parameters and the effect of
curve geometry on them remains exploitable. In contrast, road strategies and guidelines
can significantly enhance driving behavior and its interaction with the highway [26].

Driving simulators provide researchers with a fully controlled environment and the
possibility of monitoring various parameters in road safety and sustainable studies with no
physical risk associated with driving on real roads. Moreover, they are efficient tools for
the inclusion of human factors. They are particularly relevant and promising for research
on traffic as they enable studies of driving behavior in different situations (e.g., analysis
of driving responses to signalization [27,28], climatic adversities [29,30], visibility [31,32],
distraction [33,34], and fatigue [35–37]. Using driving simulators to analyze accident
aspects in developing countries is a sustainable achievement as naturalistic studies are not
always conducted due to their high costs [38].

Curve negotiation requires drivers to anticipate a curve and react to it by adjusting their
speed and lane position to accommodate its severity and to apply more attentional resources
than driving on a straight section of a road. It can be grouped into four distinct areas,
namely, (1) approach, in which drivers locate a curve and make initial speed adjustments,
(2) discovery, in which drivers determine the curvature, make additional speed adjustments,
and adjust the path for curve entry, (3) entry and negotiation, in which they adjust speed
based on curvature and lateral acceleration and maintain proper trajectory and safe lane
position, and (4) exit, in which they accelerate towards an appropriate speed and adjust
lane position to properly follow their path on the straight segment [39].

The database presented in this research was generated in a controlled experiment
performed in a driving simulator equipped with an eye-tracking system that enables the
analysis of driver behavior under different geometric conditions of the road. Following the
assumption that behavioral parameters are significantly distinct in different road stretches,
the main objective of the research was to investigate driver performance and the effects of
geometric characteristics of horizontal curves (i.e., radii and approach tangents) on their
behavior. This was done by evaluating speed profiles, lateral position, and eye movements.
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2. Materials and Methods

This section describes the methodology applied, the sample characteristics, the driving
simulator used, the simulation scenario and its development, and the primary data frame
used for the analysis.

2.1. Participants

Data were extracted from files of the simulation of Vires Virtual Test Drive® [40] and
Smart-Eye Recorder® [41] devices, conducted with 28 volunteers of 26.61 years average
age (SD = 4.07 years) ranging from 20 to 38 years. The average driving experience was
7.52 years (SD = 3.97 years).

2.2. Apparatus

An instrumented driving simulator equipped with an eye-movement tracking system
(Pro 5.10® Smart Eye) was used in the experiment (Figure 1). It comprised three front cam-
eras that performed the eye-tracking of the driver and an additional rear camera recording
the scenes that the drivers see. The eye-tracking was done by recording eye movements
and capturing the direction of the gaze, head position, eyelid opening, blinks, attachment
points, pupil size, and other monitoring and measurement. Data on the eye movements
of 23 subjects were recorded during the experiment. The simulated environment was
projected on a 1.40 × 0.80 m flat panel of 1080 p resolution and 60 Hz projection rate, which
also projects rear and lateral mirrors and the speedometer. Speakers reproduce sounds
similar to vehicle engines and traffic environments to enhance participant immersion with
visual and auditory stimuli.
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Figure 1. The driving simulator used in the experiments.

2.3. Experimental Road

The scenario was based on a Brazilian highway covering 10 km with 20 horizontal
curves. Transition curves were designed to create a smooth change between tangents and
circular curves. The road had three lanes with a total separation of flows and an 80 km/h
speed limit. The lower and upper extreme values of the actual curve radius and approach
tangent lengths and their average were taken from the 20 curves in an existing stretch,
leading to three different levels for each factor and nine conditions or treatments, as shown
in Table 1. The abbreviations for the treatments, provided in the first column of the table,
refer to combinations of radius (R) and tangent (T) lengths at different levels, namely
small (s), medium (m), and large (l) [42].
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Table 1. Geometric data of the curves.

Treatments Length (m) Deflection Angle
(Degrees) Radius (m) Approach

Tangent (m)
Number of

Observations

Rs-Ts 182.17 56 125 50 56
Rs-Tm 421.63 56 125 310 56
Rs-Tl 661.09 56 125 570 56

Rm-Ts 182.17 56 370 50 56
Rm-Tm 421.63 56 370 310 56
Rm-Tl 661.09 56 370 570 56
Rl-Ts 182.17 56 615 50 56

Rl-Tm 421.63 56 615 310 56
Rl-Tl 661.09 56 615 570 56
Total 504

The experiment considered free-flow conditions, and the direction of the curves, which
was randomized, was assumed not to influence driver behavior as there was no opposite
flow. A 56◦ deflection angle (i.e., an intermediate value of the actual stretch), a flat grade,
three lanes of 3.6 m width each, and a 1.0 m shoulder on both sides were adopted.

The treatments were randomly ordered until there was no overlap in creating the sce-
nario, which contained different sequences of curves (i.e., sequences of the nine treatments
described in Table 1). Each volunteer drove through two of the nine possible sequences,
covering 18 km and encountering 18 curves. The sequences were carefully randomized to
avoid driver familiarity with the scenario and simulation experience, which might influence
their performance.

2.4. Database

Driving simulator data were collected from each driver at a 60 Hz sampling frequency
and treated with Python 3.0 programming language. The initial treatment consisted in
reading each driver’s file and identifying variables of interest, i.e., those helpful for the
study (e.g., simulation time, inertial vehicle coordinates on the track, instant vehicle speed,
among others), out of 70 possible ones.

The identification of treatments was necessary for the database lines. Therefore, a
separate database contained coordinates related to the beginning and the end of each curve
and tangent of the complete scenario, divided into the tangent, entry, and exit spirals and
circular sector and their classifications (small, medium, or large). Furthermore, a code
identified the treatment and its classification for all lines by crossing and comparing the
coordinates of both databases.

The main database file, extracted from the simulator experiments, contains 504 lines
resulting from the 28 participants driving through the nine combined treatments twice.
Besides the characteristics of both drivers and treatments, each line included speed and
lateral placement data, such as mean value, standard deviation, maximum and minimum
values, and maximum difference, among others. The statistical analyses presented in what
follows were performed by IBM SPSS 24.0® software [43].

2.5. Data Analysis

An analysis of variance (ANOVA) with repeated measures investigated the effects
of the geometric characteristics of curves, radii, and approach tangents on the driving
speed profiles, trajectories, and eye movements. Because the correct application of ANOVA
tests required verification of a few assumptions (e.g., normal distribution of responses,
homogeneity of variances between groups, and independence of observations), the data
were previously subjected to a Kolmogorov–Smirnov test, which checked if they were
normally distributed. They were also subjected to the Levene’s test, which verified the
homogeneity of variance. As the experiment adopted repeated measures, the hypothesis of
independence between the responses under different conditions would be violated. An
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additional sphericity assumption was necessary to circumvent this failure, and the Mauchly
test evaluated it [44].

• Description of variables:

# Dependent variables: driving speed, lateral placement, and eye movement
information, such as the number of fixations, fixation duration, pupil diameter,
and gaze direction.

# Independent variables: approach tangent lengths and curve radii.

• Factorial ANOVA is an analysis of variance involving two or more independent
variables, which is the case of this experiment, as shown in the descriptions of
variables above.

• ANOVA with repeated measures consists of an analysis of variance conducted in
any design. The independent (predictor) variables were measured using the same
subjects under all conditions, which is the case of our experiment. The F-statistic from
a repeated measures ANOVA is reported as F (df, dferror) = F-value, p = p-value. The
first degree of freedom (df) was calculated as the number of conditions less one, and
the second was the product of the first with the number of subjects less one. The
following formula explains the F-ratio:

F =
explained variance

unexplained variance
=

MSconditions
MSerror

(1)

where MS is the mean squared error or the mean variability in the data.

• The following tests were performed to check if the assumptions to proceed with the
ANOVA with repeated measures were not violated:

# The Kolmogorov–Smirnov test evaluates if the distribution of scores is signifi-
cantly different from a normal distribution. A significant p-value indicates a
deviation from normality.

# The Friedman’s ANOVA is a non-parametric test, also known as the non-
parametric version of the one-way repeated measures ANOVA. It compares
multiple conditions when the same subjects participate in each condition. The
resulting data are not normally distributed.

# The Levene’s test checks if there is any significant difference between the vari-
ances of a group and, thus, a non-significant result indicates that the hypothesis
was satisfied.

# The Mauchly test assesses the hypothesis that the variances of differences
between conditions are equal. A significant Mauchly’s statistical test (i.e., when
it has a probability value less than 0.05), it is conclusive that there are significant
differences between the variances of the differences; therefore, the sphericity
condition was violated.

� The Greenhouse–Geisser correction estimates the distance from spheric-
ity. It was used to correct the degrees of freedom associated with the
corresponding F ratio when the Mauchly test causes the sphericity
condition to be violated.

3. Results and Discussion
3.1. Driving Speed

Table 2 summarizes the driving speeds in terms of average values and standard
deviations for the combination of approach tangent lengths and curve radii, and the
significance values of the Kolmogorov–Smirnov (K–S) normality test, after the removal
of visible outliers. Such removal was justified by the rigorous analysis of the recording
footage of the experiment, which revealed the values of the average speed of the outliers
did not match the real ones reached by the drivers and were considered data recording
errors. All curve configurations showed significant results for normal distribution, except
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the smaller radius with a large approach tangent curve. Figure 2 displays the treatment
boxplots also after removing outliers. It can be assumed that the average speed increases
with the increase in the curve radii. The variation in the length of the tangents exerted no
apparent effect on the average speed between groups. Furthermore, it was observed that,
as expected, the driving speed developed by volunteers was close to the design equilibrium
speed of the curves because driving below or above the equilibrium speed would impact
the safety performance of the curve negotiation.

Table 2. Driving speed descriptive statistics and normality test for each treatment.

Curve
Configuration

Radius (m) Approach
Tangent (m)

Speed (km/h) K–S

Average SD p-Value

1 Rs-Ts 125 50 77.10 1.38 0.20
2 Rs-Tm 125 310 80.79 1.34 0.20
3 Rs-Tl 125 570 82.93 1.31 0.03 *
4 Rm-Ts 370 50 96.05 1.61 0.20
5 Rm-Tm 370 310 96.06 1.79 0.20
6 Rm-Tl 370 570 94.00 1.83 0.20
7 Rl-Ts 615 50 101.03 1.41 0.20
8 Rl-Tm 615 310 100.48 1.54 0.20
9 Rl-Tl 615 570 101.22 1.52 0.20

*: p ≤ 0.05.
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Factorial ANOVA with repeated measures was used to check the effect of curve
radii and length of approach tangents on the average driving speed along the curves.
The Levene’s test revealed that the homogeneity of the variances was not significantly
different across groups F (8, 469) = 1.373, p > 0.05. The Mauchly test indicated the sphericity
hypothesis was not violated for the main effect of curve radii and approach tangent. Still,
it was significant for their interaction (χ2 (9) = 18.37, p < 0.05). Therefore, the degrees
of freedom were corrected by Geisser–Greenhouse spherical estimates (ε = 0.58). The
test also revealed a significant main effect of curves radii F (2, 469) = 145.55, p < 0.001,
Partial Eta Squared = 0.383, and observed power = 1.000, and a non-significant one for
approach tangents F (2, 469) = 0.617, p = 0.540, Partial Eta Squared = 0.003, and observed
power = 0.153. The ANOVA showed the interaction effect between radii and approach
tangent was not significant F (3.466, 173.28) = 2.894, p = 0.055, Partial Eta Squared = 0.055,
and observed power = 0.729.

The Bonferroni correction was performed for multiple comparisons. Regarding the
main effect of curve radii, a pairwise comparison based on post-hoc tests indicated the
average speeds recorded for each level were significantly different. As expected, the lowest
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speeds were recorded on curves with smaller radii (80.29 km/h), followed by medium
curves with a 95.37 km/h average speed. This was significantly higher than that of the first
group (average difference = 15.07 km/h, p < 0.001) and lower in comparison with those of
larger radii and 100.91 km/h average speed (average difference = 5.54 km/h, p < 0.001).
Calvi [3] reported the average speed increases on curves with a wider radius, which is
aligned with our results.

The operation of speed difference along subsequent highway sections is another
parameter widely used in safety evaluations [5,10,12]. The maximum and minimum speeds
reached by the drivers in each curve were extracted from the experiment data to calculate
maximum speed reduction. If a driver reached the minimum speed on the curve before
reaching the maximum, the speed difference assumed a positive value. On the other
hand, i.e., if they got their maximum speed before the minimum one, the speed difference
was negative.

The calculated speed differences were grouped into three categories, namely sub-
stantial speed decrease (SSD), for speed difference values lower than −10 km/h, steady
speed (SS), for an absolute value of speed difference lower than or equal to 10 km/h, and
substantial speed increase (SSI), for speed differences larger than 10 km/h. Wang and
Wang established such a speed change behavior. Table 3 shows the incidence of this speed
change classification for the curves. According to the results, SSD was the most common
behavior, with a higher proportion for curves with small and medium radii. Those with
large radii displayed a more evenly distributed speed change behavior.

Table 3. Speed change behavior per curve configuration.

Curve
Configuration

Speed Change Behavior

SSD SS SSI

Rs-Ts 32 (61.54%) 16 (30.77%) 4 (7.69%)
Rs-Tm 44 (83.02%) 4 (7.55%) 5 (9.43%)
Rs-Tl 48 (94.12%) 2 (3.92%) 1 (1.96%)

Rm-Ts 22 (44.90%) 13 (26.53%) 14 (28.57%)
Rm-Tm 29 (63.04%) 9 (19.57%) 8 (17.39%)
Rm-Tl 40 (80.00%) 8 (16.00%) 2 (4.00%)
Rl-Ts 14 (28.00%) 16 (32.00%) 20 (40.00%)

Rl-Tm 16 (31.37%) 11 (21.57%) 24 (47.06%)
Rl-Tl 31 (60.78%) 11 (21.57%) 9 (17.65%)

Total 276 (60.93%) 90 (19.87%) 87 (19.21%)

3.2. Lateral Placement

The vehicle’s lateral position (LP) was calculated as the distance from the vehicle’s
center of gravity to the central road axis, i.e., the middle of the three lanes. A vector cross
product identified the side of the vehicle position, i.e., on the right or the left of the track
axis—the lateral position assumes a positive value if the vehicle is on the right side of the
lane axis and a negative one if it is on the left side of it. A code identified the traffic lane
on which the vehicle was driving and the moments when it was crossing or drifting on
the lanes.

Suh et al. [9] defined Deviation of Lateral Placement (DLP) as an index representing
a driver’s steering behavior along a given section of a highway. It can be interpreted as
a standard deviation of an individual vehicle’s lateral placement along a given highway
section that shows a vehicle’s overall lateral stability. The analysis of the standard deviation
of lateral position revealed a higher value in the circular section than in other stretches, as
seen in Figure 3a, implying that driving in curvy sections of a road is more challenging.
Furthermore, curves with small radii resulted in a significantly greater mean DLP value
(Figure 3b), consistent with the fact that the smaller the radius, the more complex the
stability maintenance during curve negotiations.
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Similar to the speed data, those on the deviation of lateral position per curve configu-
ration group were subject to the Kolmogorov–Smirnov test, which checked whether they
were normally distributed. The significant results shown with p-values (p < 0.05) in Table 4
revealed the homogeneity hypothesis had been violated.

Table 4. Deviation of lateral placement descriptive statistics and normality test.

Curve Configuration Radius (m)
Approach

Tangent (m)
DLP (m) K–S

Average SD p-Value

1 Rs-Ts 125 50 0.20 0.13 0.015 *
2 Rs-Tm 125 310 0.32 0.22 0.013 *
3 Rs-Tl 125 570 0.32 0.22 0.006 **
4 Rm-Ts 370 50 0.27 0.20 0.000 ***
5 Rm-Tm 370 310 0.34 0.31 0.000 ***
6 Rm-Tl 370 570 0.29 0.25 0.000 ***
7 Rl-Ts 615 50 0.30 0.21 0.000 ***
8 Rl-Tm 615 310 0.35 0.34 0.000 ***
9 Rl-Tl 615 570 0.33 0.25 0.000 ***

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.

As the Kolmogorov–Smirnov test indicated deviations in data normality for all curve
configurations, Friedman’s ANOVA, a non-parametric test for several related samples, was
used to examine the effect of curve radius and approach tangent length on the deviation
of lateral position (DLP). It revealed a significant difference across the treatment groups
(χ2 (8) = 35.06, p <0.001).

3.3. Driver Classification on Curve Trajectories

Several combinations of lateral position parameters (e.g., mean value, standard de-
viation, maximum and minimum values, maximum absolute value, maximum absolute
difference) maximum value of the lateral acceleration, calculated as the relation between
squared vehicle speed and curve radius, provided vehicle trajectories classifications, as
shown in Table 5. The curve path classifications and the boundary values for the parameters
were adopted from the literature [7]. It was a three-lane highway with a total separation
of flows instead of a two-lane rural highway. A lane width was 10 cm larger, resulting in
wider limit values for the classifications criteria.
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Table 5. Criteria for the classification of driving behavior.

Class Approach
Tangent Curve Total

1. Ideal behavior

|LP|max ≤ 0.65
or

2.95 ≤ |LP|max
≤ 4.25

σLP ≤ 0.35

|LP|max ≤ 0.55
or

3.05 ≤ |LP|max
≤ 4.15

σLP ≤ 0.20

2. Normal behavior

|LP|max ≤ 0.9
or

2.7 ≤ |LP|max
≤ 4.5

σLP ≤ 0.40
|∆LP|max ≤

1.2

|LP|max ≤ 0.9
or

2.7 ≤ |LP|max
≤ 4.5

σLP ≤ 0.35
|∆LP|max ≤

1.2

σLP ≤ 0.50

3. Intermediate
behavior

3.1 Driving close
to the centerline

|LP|max ≤ 1.0
or

2.6 ≤ |LP|max
≤ 4.6

σLP ≤ 0.40
|∆LP|max ≤

1.1

σLP ≤ 0.30
LPmean > 0.5

3.2 Driving
outside in curve

approach

1.0 < |LP|max <
2.6
or

|LP|max > 4.6

|LP|max ≤ 1.0
or

2.6 ≤ |LP|max
≤ 4.5

σLP ≤ 0.35
LPmean ≤ 0.5

4. Cutting

4.1 Right curves

lane 1 LPmin < −3.70 LPmax > −3.2

lane 2 LPmin < −0.10 LPmax > 0.40

lane 3 LPmin < 3.50 LPmax > 4.00

4.2 Left curves

lane 1 LPmax > −3.50 LPmin < −4.00

lane 2 LPmax > 0.10 LPmin < -0.40

lane 3 LPmax > 3.70 LPmin < 3.20

5. Correcting
behavior

5.1 in approach
σLP > 0.30

alat_max > 4
m/s2

-

5.2 on the curve -
σLP > 0.30

alat_max > 4
m/s2

5.3 multiple
corrections Combination of behaviors 5.1 and 5.2

The following five major classes were defined: (1) Ideal behavior, which represents
trajectories almost perfectly parallel to any of the lanes’ axes, (2) Normal behavior, which
is similar to the previous one, but with greater values for the classification criteria, rep-
resenting a behavior with no significant errors, (3) Intermediate behavior, characterized
by a significant offset toward either the centerline, or the outside in the approach sec-
tion, (4) Cutting, which represents a conscious driving maneuver to balance centrifugal
acceleration by following a trajectory with a greater radius than the geometric one, and
(5) Correcting behavior, an unconscious track behavior displayed due to an underestima-
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tion or overestimation of road curvature. Trajectories not included in such classes were
classified as “others”. Figure 4 shows examples of the trajectory classifications extracted
from different driver’s files.
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As expected from observations found in the literature review, the curve trajectory
classification resulted in a small proportion of ideal behavior (4.37%). Cutting was the most
common behavior, observed in 40.28% of trajectories, followed by normal and intermediate
behaviors, with 29.56% and 11.71%, respectively. Correcting behavior was the least common
result and the most dangerous one, displayed in 3.97% of the instances. These results can
be seen better in Figure 5. Curve trajectories classified as “others” were also quite common
(10.12%), suggesting the classification criteria can be improved.
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Table 6 shows the proportion of the different classes of trajectory disaggregated con-
cerning approach tangents length and curve radii. Pearson chi-square test revealed a signifi-
cant association between curve radius and trajectories classification results,
χ2 (10) = 51.204 (p < 0.001); however, it accepted the null hypothesis of non-association
between approach tangent lengths and trajectories classification χ2 (10) = 9.837 (p = 0.455).
Testing the association between the trajectories behaviors with the nine curve configurations
classes resulted in lower limits of expected frequencies to rely on the Pearson chi-square test.
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Table 6. Disaggregated proportions of driving behaviors.

Behavior
Ts Tm Tl Total

Rs Rm Rl Rs Rm Rl Rs Rm Rl Rs Rm Rl

1 Ideal behavior 5.36 3.57 1.79 5.36 7.14 5.36 3.57 7.14 0.00 3.57 5.95 3.57
2 Normal behavior 41.07 28.57 25.00 30.36 21.43 30.36 28.57 21.43 39.29 31.55 27.38 29.76

3 Intermediate behavior 7.14 3.57 17.86 10.71 1.79 5.36 19.64 23.21 16.07 9.52 5.95 19.64
4 Cutting 32.14 44.64 35.71 41.07 50.00 46.43 37.50 39.29 35.71 37.50 45.83 37.50

5 Correcting behavior 7.14 14.29 10.71 0.00 1.79 1.79 0.00 0.00 0.00 10.71 1.19 0.00
6 Others 7.14 5.36 8.93 12.50 17.86 10.71 10.71 8.93 8.93 7.14 13.69 9.52

Total 100 100 100 100 100 100 100 100 100 100 100 100

The trajectories were grouped into three macro-classes to visualize better the effect
of different approach tangent lengths and curve radius on curve negotiation. The safest
curve negotiation behavior was G1 and included ideal and normal behaviors; macro-class
G2 represents the intermediate behavior, and G3 included cutting and correcting behaviors
representing the most dangerous behavior.

According to Figure 6, the safest behavior (G1) was more evident in the small approach
tangent and radius combination, explained by the higher concentration level demanded
on this type of curve. As expected, it was followed by medium and large radii combined
with a large approach tangent since the negotiation of wider curves tends to be easier.
Intermediate behavior (G2) is slightly more frequent on curves with large radii. At the
same time, the incidence of the most dangerous one (G3) significantly decreases in function
of curve radius, which is consistent with crash statistics that show a notably higher crash
rate on curves with small radii.
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The Pearson chi-square test showed a significant association between the combina-
tion of curves radii and approach tangents length with the macro classification results,
χ2 (24) = 33.235 (p < 0.05).

The results revealed trajectories as an emerging safety indicator on horizontal curves
as a significant correlation was found between the trajectories identified as dangerous and
the radii of the curves. Understanding local driver behavior and identifying driver profiles
can significantly contribute to measures that ensure and improve road safety; besides, using
a driving simulator has been highly advantageous for this type of study. The research has
demonstrated different ways to analyze driving performance, evidencing such an analysis
can be shared or replicated, or even bring up reflections towards proposals of regulatory
changes by road managers, whether private or governmental agencies.
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3.4. Eye-Movements Data Analysis

This section addresses pertinent statistical analyses for a better comprehension of
variables to be used and that suit the assumption that driver eye movements differ on curves
with distinct geometric characteristics. It also discusses the results and their agreement
with what is expected.

The variables extracted from the simulation experiment by Pro 5.10® Smart Eye equip-
ment were the number of fixations, their durations, pupil size, and gaze directions regarding
the driver’s visual attention. These were assessed in two different ways, i.e., calculated
as the polygon area formed by the drivers’ gaze dispersion for each curve configuration
and adopting the relation between the standard deviations of the eye-tracking in the X and
Y axes.

3.4.1. Fixations

The number of fixations was calculated for each subject in both runs and the nine
possible curve configurations (see Table 7 for the mean results). The Kolmogorov–Smirnov
test indicated deviations in data normality for most curve configurations. According to
the boxplots, the number of fixations is directly proportional to the curve radius increase
(Figure 7a). It differs among the studied approach tangent lengths, mainly for the largest
one compared to the others. Such significant differences were confirmed by the non-
parametric test Friedman’s ANOVA, which revealed relevant effects on the average number
of fixations on the curve’s radius (χ2 (2) = 120.139, p < 0.001) and approach tangents
(χ2 (2) = 76.712, p < 0.001).

Table 7. Number of fixations descriptive statistics and normality test.

Curve
Configuration Radius (m)

Approach
Tangent (m)

Number of Fixations K–S

Average SD p-Value

1 Rs-Ts 125 50 44.34 10.87 0.077
2 Rs-Tm 125 310 41.22 9.01 0.126
3 Rs-Tl 125 570 19.26 4.99 0.002 **
4 Rm-Ts 370 50 64.39 12.04 0.000 ***
5 Rm-Tm 370 310 71.39 14.98 0.000 ***
6 Rm-Tl 370 570 57.43 11.57 0.000 ***
7 Rl-Ts 615 50 79.65 16.44 0.000 ***
8 Rl-Tm 615 310 74.34 18.44 0.000 ***
9 Rl-Tl 615 570 66.48 15.80 0.000 ***

**: p ≤ 0.01, ***: p ≤ 0.001.
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Similarly, for the mean fixation duration, the non-parametric test of Friedman’s
ANOVA compared the average duration of the fixations during driving throughout the
different curve configurations. The Kolmogorov–Smirnov test demonstrated that the homo-
geneity hypothesis had been violated, as shown in Table 8. There were no clear differences
observable through the boxplots, as shown in Figure 8. Accordingly, Friedman’s ANOVA
retained the null hypothesis the mean fixation duration did not change across the radii of
the curves (χ2 (2) = 1.246, p = 0.536) and approach tangents groups (χ2 (2) = 2.094, p = 0.351).

Table 8. Mean fixation duration descriptive statistics and normality test.

Curve
Configuration Radius (m)

Approach
Tangent (m)

Fixation Duration (s) K–S

Average SD p-Value

1 Rs-Ts 125 50 0.752 0.137 0.200
2 Rs-Tm 125 310 0.764 0.146 0.000 ***
3 Rs-Tl 125 570 0.793 0.152 0.011 *
4 Rm-Ts 370 50 0.778 0.171 0.003 **
5 Rm-Tm 370 310 0.792 0.198 0.011 *
6 Rm-Tl 370 570 0.767 0.169 0.021 *
7 Rl-Ts 615 50 0.773 0.142 0.000 ***
8 Rl-Tm 615 310 0.796 0.166 0.002 **
9 Rl-Tl 615 570 0.772 0.162 0.000 *

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.
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3.4.2. Pupil Diameter Analysis

Another eye measurement recorded during the experiment was the pupil diameter,
which is strongly associated with the driver’s cognitive abilities. The Kolmogorov–Smirnov
test indicated deviations in data normality, as shown in Table 9 and depicted in Figure 9,
pointing to Friedman’s ANOVA to examine the effect of the curve configurations on driver
pupil size. Analyzing the curve radii and the approach tangent lengths separately, both
show significant differences between the observed mean pupil diameters (χ2 (2) = 14.174,
p < 0.001) and (χ2 (2) = 29.656, p < 0.001), respectively.
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Table 9. Pupil size descriptive statistics and normality test.

Curve
Configuration Radius (m)

Approach
Tangent (m)

Pupil Diameter (cm) K–S

Average SD p-Value

1 Rs-Ts 125 50 0.418 0.023 0.200
2 Rs-Tm 125 310 0.403 0.018 0.005 **
3 Rs-Tl 125 570 0.382 0.011 0.004 **
4 Rm-Ts 370 50 0.363 0.018 0.000 ***
5 Rm-Tm 370 310 0.407 0.011 0.200
6 Rm-Tl 370 570 0.403 0.024 0.000 ***
7 Rl-Ts 615 50 0.382 0.009 0.000 ***
8 Rl-Tm 615 310 0.398 0.015 0.005 **
9 Rl-Tl 615 570 0.393 0.027 0.000 ***

**: p ≤ 0.01, ***: p ≤ 0.001.
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The Bonferroni correction was performed to adjust significance values. For the main
effect of curve radii, a pairwise comparison based on post-hoc tests indicated that the aver-
age pupil diameter recorded for the small level was significantly different from the others
(p < 0.05), while the difference between the medium and large radii was not (p = 1.000).
Similarly, for the main effect of approach tangents, the pairwise comparison also indicated
that the average pupil diameter recorded for the small level was significantly different from
the others (p < 0.001). In contrast, the difference between the medium and large approach
tangents was insignificant (p = 0.993). As expected, the larger the pupil diameter is, the
greater the attention devoted to the task is. The largest pupil diameters were recorded on
curves with smaller radii and approach tangent (0.418 cm).
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3.4.3. Gaze Analysis

Regarding driver visual attention, the gaze direction was widely explored. Figure 10 shows
a comparative search spread between the studied curve configurations for two participants.
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To evaluate the effect of curve radii and approach tangent lengths on the drivers’
visual attention, the polygon’s area shape was calculated by the extreme points of the
scatter graphs of each participant for the different curve configurations. This is to be seen
in Figure 11, the relation between the standard deviation of the gaze distribution on axis X
and Y.
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We used the Friedman’s ANOVA test to compare the area tracked while driving in the
different curve configurations. The Kolmogorov–Smirnov test revealed the data were not
normally distributed, as seen in Table 10 and the average areas tracked. The differences
were significant, as proved by the test, resulting in (χ2 (8) = 156.664, p < 0.001). In general,
the average areas tracked increased with radius and approach tangent increase, as seen in
Figure 12. A smaller spread of drivers’ field of view was related to a greater focus while
performing, indicating that the observed result is in line with the literature since shorter
curves and tangents tend to demand more attention from the drivers.

Table 10. Area tracked descriptive statistics and normality test.

Curve
Configuration Radius (m)

Approach
Tangent (m)

Area (m2) K–S

Average SD p-Value

1 Rs-Ts 125 50 0.030 0.033 0.000 ***
2 Rs-Tm 125 310 0.040 0.073 0.000 ***
3 Rs-Tl 125 570 0.056 0.241 0.000 ***
4 Rm-Ts 370 50 0.090 0.087 0.007 **
5 Rm-Tm 370 310 0.091 0.113 0.000 ***
6 Rm-Tl 370 570 0.121 0.192 0.000 ***
7 Rl-Ts 615 50 0.126 0.136 0.000 ***
8 Rl-Tm 615 310 0.167 0.316 0.000 ***
9 Rl-Tl 615 570 0.124 0.147 0.000 ***

**: p ≤ 0.01, ***: p ≤ 0.001.
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Similarly, the average results obtained by the relation of the standard deviation of the
gaze distributions from axis X and Y (StdGD Index) were not normally distributed, as seen
by the results of the Kolmogorov–Smirnov test, shown in Table 11. The Friedman’s ANOVA
test revealed that this index significantly changes between the studied curve configurations
(χ2 (8) = 22.483, p = 0.004).

Through the boxplots of Figure 13, it is observable that the index value reduced with
the increase of the approach tangent length. Meanwhile, there was no clear relation between
the index and the curve radius. Evaluating the main effects of curve radii and approach tan-
gents lengths separately for the StdGD index, the Friedman’s ANOVA results demonstrated
that the differences observed in the second group were strongly supported with a p-value
lower than 0.001, (χ2 (2) = 9.368, p = 0.009) and (χ2 (2) = 17.170, p < 0.001), respectively.
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Table 11. Deviation of gaze distributions index descriptive statistics and normality test.

Curve
Configuration Radius (m)

Approach
Tangent (m)

StdGD K–S

Average SD p-Value

1 Rs-Ts 125 50 2.07 3.60 0.000 ***

2 Rs-Tm 125 310 1.42 0.92 0.000 ***

3 Rs-Tl 125 570 1.36 1.02 0.000 ***

4 Rm-Ts 370 50 1.69 0.87 0.023 *

5 Rm-Tm 370 310 1.41 0.65 0.004 **

6 Rm-Tl 370 570 1.51 1.31 0.000 ***

7 Rl-Ts 615 50 1.56 0.81 0.009 **

8 Rl-Tm 615 310 1.39 0.75 0.045 *

9 Rl-Tl 615 570 1.13 0.59 0.000 ***
*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.
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4. Conclusions

This study investigated driver behavior at different approach tangent lengths and
radii. The analyses and driver classification were based on speed profiles, lateral position
parameters, and eye movements obtained in a driving simulator experiment with twenty-
eight drivers. The simulation was performed twice for nine curve configurations, resulting
in more than 500 curves, which enabled investigations on the effect of geometric features
of horizontal curves on driving performance. Relevant statistical analyses verified the
significance of the results. Understanding driver behavior and validating the models in
driving simulators are useful and sustainable techniques to improve road safety.

Speed and lateral position were used as measures to assess the driving performance.
Initially, a few speeds descriptive analyses and a speed change behavior classification were
presented. The lowest speeds were observed on curves with smaller radii, followed by
medium- and wider-radius curves, revealing that the average driving speed increased on
curves with a wider radius. Repeated measures ANOVA confirmed the effect of the radii of
a curve on the average driving speed (F (2, 469) = 145.55, p < 0.001), and the Bonferroni post-
hoc test indicated the average speeds were significantly different among the radii of the
curves. Speed change behaviors were assessed by the maximum speed reduction achieved
by the drivers on each curve, revealing a substantial decrease in speed is the most common
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behavior observed for the curved configurations with larger radii. However, the driver
behavior in curved configurations with smaller radii did not significantly decrease speed.

This research analyzed the drivers’ lateral car position and proposed a curve trajectory
classification for a three-lane highway utilizing these measures. The lateral position of the
vehicles, assessed by their standard deviation as an index of the driver’s lateral stability,
achieved higher values for circular sections compared to other highway stretches and
for curves with small radii compared to medium and large curves. The application of
Friedman’s ANOVA confirmed the index was significantly different among the treatments
(χ2 (8) = 35.06, p < 0.001). The curve trajectories were classified according to lateral position
parameters. The incidence of the most dangerous behavior decreased with the increase in
the curve radius, supporting the study conducted by Mauriello et al. [7] and consistent
with crash statistics, as reported elsewhere. Such first results are in line with those reported
in the literature. The most common indicators for successful horizontal curve negotiation
(i.e., speed and lateral position) showed a significant association with curve radius but
not with the tangent length approach. This signifies their importance as Papadimitriou
et al. ranked curve radius as the riskiest factor related to road alignment infrastructure [45].
Further research is necessary to extend the results (e.g., improvements in trajectory classi-
fication parameters and development of a multivariate analysis of the variables, such as
ordinal logistic regression and inclusion of socioeconomic variables).

Finally, eye measurements were discussed. Relevant analyses grounded the assump-
tion that eye movements differ in different curve configurations, as shown by the statisti-
cally significant differences in the mean number of fixations and pupil sizes for the groups.
Such movements can assess the driver’s visual attention through the gaze distribution area.
No difference was observed among the mean fixation durations; however, the study of the
number of fixations requires complementation.

Our results are promising and have confirmed the effectiveness of the driving simula-
tor for road design and driving behavior research and its flexibility for the implementation
of different scenarios, which is costly and time-consuming in real-world conditions. More-
over, it provides sufficient data for studies and poses no risk to drivers. By providing a
better comprehension of driver behavior, this study helps researchers identify local risky
behaviors and their prediction and anticipation, corroborating previous and further studies
on road safety and policies through improvements in driving laws and regulations for
future road designs and existing highways [46]. The results also showed lateral position,
assessed by driver trajectories, is an encouraging surrogate measure for the achievement of
driving performance and a road infrastructure safety indicator in horizontal curves. Fur-
thermore, a smart eye data analysis added considerable value to the survey. The correlation
between behavioral parameters and driver eye movement can provide traffic engineers
with practical suggestions to increase safety in curve sections.

As the next step, we expect to improve this research by applying the same method on
another Brazilian roadway in mountainous terrain and evaluate the driver’s behavioral
classification on curves based to provide information for the actualization of our manuals
of geometric design.
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