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Summary

We focus on regression models that consist of (1) a model for the conditional mean of the
outcome and (2) a distributional assumption about the distribution of the outcome, both
conditional on the regressors. Generalised linear models (GLM) form a well known example.
The choice of the outcome distribution is often motivated by prior or background knowledge
of the researcher, or it is simply chosen for convenience. We propose smooth goodness
of fit tests for testing the distributional assumption in regression models. The tests arise
from embedding the regression model in a smooth family of alternatives, and constructing
appropriate score tests that correctly account for nuisance parameter estimation. The tests
are customised, focussed and comprehensive. We present several examples to illustrate the
wide applicability of our method. A small simulation study demonstrates that our tests have
power to detect important deviations from the hypothesised model.
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1. Introduction8

Consider regression models for a univariate outcome variable Y and p regressors xi9

(i = 1, . . . , p), stacked into the vector x> = (x1, . . . , xp). For notational comfort, the first10

regressor x1 = 1 if an intercept is required in the model, and, similarly, regressors xi may11

also represent interaction effects or other transformations of regressors. We will focus on12

models that are specified as13

E (Y | x) = g−1(x>β) = µ(x>β) (1)

Y | x ∼ f(·;µ(x>β),γ). (2)
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Equation (1) specifies the conditional mean of Y as a function of the linear predictor x>β14

through the link function g. We will often use the notation µ(x>β) to denote the conditional15

mean. Equation (2) states that the density function of the conditional distribution of Y given16

x is given by f , which depends on the conditional mean µ and on an additional t-dimensional17

nuisance parameter γ> = (γ1, . . . , γt). The γ-parameters may be related to the conditional18

variance of the outcome. For example, for linear regression var (Y |x) = γ. Note that the19

model also allows the conditional variance var (Y |x) to depend on the mean µ(x>β).20

Generalised linear models (GLM), which were first introduced by Nelder & Wedderburn21

(1972), form a special class. They arise if f belongs to a one-dimensional (dispersion)22

exponential family.23

Equations (1) and (2) completely specify the conditional outcome distribution, and hence24

the maximum likelihood (ML) framework can be used for inference on the target parameter25

β. The distributional component is often motivated by prior or background knowledge on26

the probabilistic mechanism that generated the data. For example, count outcomes are known27

to be often well described by a Poisson distribution (f is Poisson), and binary outcomes28

often behave like a Bernoulli distribution (f is binomial/Bernoulli). These two examples29

result in a GLM because Poisson and binomial distributions belong to the exponential30

family. In modern genomics applications, RNASeq and microbiome 16S RNA sequencing31

experiments are believed to give count outcomes that can be described by negative binomial32

(NB) distributions; see e.g., Love, Huber & Anders (2014) and McMurdie & Holmes33

(2014), which are overdispersed Poisson distributions that contain an overdispersion nuisance34

parameter. The overdispersion is explained by the biological variability on top of the technical35

variability that is described by the Poisson distribution. For single cell RNASeq experiments,36

several papers suggest that the count outcomes should be modelled with a zero-inflated37

negative binomial (ZINB) distribution; see e.g. Risso et al. (2017). Also in other biological38

applications, counts often show more zeroes than expected under a Poisson distribution and39

a zero-inflated Poisson (ZIP) distribution has been suggested to be more appropriate than40

a Poisson (Thas & Rayner 2005). The zero-inflation is often explained by a second data-41

generating mechanism that causes the zero counts. The ZIP, NB and ZINB distributions do42

not belong to the exponential family, but they are still regression models of the form (1) and43

(2), and hence they fall within the scope of this paper.44

Valid asymptotic statistical inference on β requires a correct specification of the45

conditional mean model, and hence several papers have proposed diagnostic methods for46

detecting violations to the mean model (1); see e.g. Stute & Zhu (2002); Khmaladze et al.47

(2004); Hart (2013). However, a correct specification of the variance, or the mean-variance48

relationship is also required. The Quasi-Likelihood approach (Wedderburn 1974) builds49

upon a semiparametric model with only mean and variance(-mean) specifications. When50
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the latter is misspecified, the variance of the mean model parameter estimators can be51

estimated with a robust sandwich estimator, but this shows poor small sample behaviour52

(Kauermann & Carroll 2001). For GLMs, Huang & Rathouz (2017) demonstrated that the53

mean model parameters show orthogonality to the outcome distribution, opening the door to54

first nonparametrically estimate the outcome distribution, and subsequently use this estimate55

in an empirical likelihood for the estimation of the mean model parameters. Also see Huang56

(2014). Upon using the orthogonality, the authors showed that asymptotically no efficiency is57

lost as compared to ML in the correctly specified GLM. In small samples, however, the ML58

estimator still shows better performance.59

Given the arguments and examples provided in the previous paragraphs, we conclude60

that assessing the distributional assumption, contained in (2), is also of scientific importance.61

Relatively few methods have been proposed for testing this distributional assumption; see,62

for example, Dean & Lawless (1989) and Peña & Slate (2006). In practice, formal hypothesis63

testing can be complemented with graphical inspection of the model fit. Residual plots may64

be used for assessing the mean model, but in general QQ-plots of residuals cannot be used65

for gauging the distributional assumption, unless the distribution belongs to a location-shift66

class (e.g. the normal distribution). QQ-plots and other visualisations based on residuals were67

strongly promoted by John Tukey in many of his works. We cannot agree more with him68

that this is indeed of primordial importance for all data analyses. He also developed formal69

statistical tests for assessing the normality assumption in linear models, but these methods70

are restricted to additive two-way analysis of variance (Anscombe & Tukey 1963).71

In this paper we propose smooth tests of goodness of fit for testing the distributional72

assumption contained in (2). Smooth tests are well established for testing goodness of fit in73

the one-sample problem and they can properly account for nuisance parameter estimation.74

We refer to Rayner, Thas & Best (2009) for a comprehensive overview of the general theory75

and for several examples, including the normal, Poisson, NB and ZIP distributions. Here we76

extend the smooth testing method to the regression context as described above. We formulate77

the theory for regression models of the form (1) and (2), and we show how simplifications78

arise for special cases, including the class of GLMs (Section 2). In Section 3 we give the79

Poisson, normal, and ZIP distributions as examples. Small simulation studies for Poisson and80

ZIP models are presented in Section 4, and conclusions are formulated in Section 5.81

2. Smooth tests82

The general construction of the test is given in Section 2.1, and special cases resulting83

in simplifications are provided in Section 2.2.84
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2.1. The smooth test for general regression models85

The development of the theory is very similar to the development detailed in Rayner,86

Thas & Best (2009, chapters 6 and 8). We therefore limit the exposition here to the overall87

procedure, with a focus on the details for the regression setting, and to the most important88

results. Proofs are deferred to Appendix A.1 in Supporting and Supplementary Material.89

Derivation of the smooth test90

The construction starts with nesting the density function of the regression model (the

conditional distribution of the outcome Y , given the regressor x) in a family of distributions

indexed by the parameter θ> = (θ1, . . . , θk) and then deriving the score test for testing θ = 0

against θ 6= 0. The number k refers to the order of the alternative. The order k embedding

density of Y | x is given by

fk(y;µ(x
>β),γ,θ) = C(µ(x>β),γ,θ) exp

(
k∑
i=1

θihi(y;µ(x
>β),γ)

)
f(y;µ(x>β),γ),

(3)

where C is a normalisation constant and {hi} is a set of functions that are orthonormal91

to the regression model with density function f . Since both C and {hi} differ from their92

counterparts of the one-sample smooth tests in the sense that they depend on the regressor x,93

we provide some more details, but first the log-likelihood function is given for a sample of n94

independently sampled observations (x1, y1), . . . , (xn, yn):95

l(β,γ,θ) =

n∑
j=1

log fk(yj ;µ(x
>
j β),γ,θ) (4)

=
n∑
j=1

logC(µ(x>j β),γ,θ) +
k∑
i=1

θi

n∑
j=1

hi(yj ;µ(x
>
j β),γ)

+
n∑
j=1

log f(yj ;µ(x
>
j β),γ).

Note that the last term equals the log-likelihood of the regression model.96

For all x = xj , j = 1, . . . , n, the normalisation constants C(µ(x>β), γ, θ) must 
guarantee that the area under density (3) equals one. Thus for a given set of parameter values, 
and for sample of n observations, n normalisation constants are required. For some outcome 
distributions the normalisation constant may not exist, but the type of score tests that we will 
derive still do exist (Mardia & Kent 1991; Kallenberg, Ledwina & Rafajlowicz 1997). For 
the orthonormal functions {hi}, again for a given set of parameter values, the set of functions
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must be calculated for each of the n regressors xj . In particular, the orthonormality condition

reads as∫ +∞

−∞
hu(y;µ(x

>β),γ)hv(y;µ(x
>β),γ)f(y;µ(x>β),γ)dy = δuv, (5)

with δuv = 1 if u = v and δuv = 0 otherwise.97

In what follows the notation will often be simplified by omitting the dependence of98

C, f , fk and {hi} on all parameters and regressors. For example, (5) may be written99

as E0 (hu(Y ;µ,γ)hv(Y ;µ,γ) | x) = δuv , in which E0 (· | x) denotes the conditional100

expectation under the null hypothesis θ = 0. We will also use µj as shorthand notation for101

µ(x>j β).102

The smooth test requires the score test statistic for testing θ = 0, and hence the score103

statistic for θ is required, as well as the information matrix based on the log-likelihood (4)104

with all expectations evaluated under the null hypothesis and conditional on the regressors. In105

this setting, the parameters γ and β are both considered as nuisance parameters and therefore106

we stack them into a single vector, η> = (γ>,β>). The nuisance parameter only needs to107

be estimated under the null hypothesis: its maximum likelihood estimator, which is denoted108

by η̂, arises from the hypothesised regression model. The following theorem gives the score109

statistics and the required information matrices. We will use X to denote the set of of n110

regressor vectors xj in the sample.111

Theorem 1. Score statistics and information matrices. The score statistic for θi in112

model (4) is given by Ui = Ui(η) = (∂/∂θi)l(β,γ,θ) =
∑n
j=1 hi(yj ;µj ,γ). Let g′(µ) =113

(d/dµ)g(µ). We use the notation Ek (·) and E0 (·) to refer to the expectation w.r.t density114

functions fk(·;µ,γ,θ) and f(·;µ,γ), respectively. The elements of the information matrix115

are given by:116

(Iθθ)uv = − Ek

(
∂2

∂θu∂θv
l | X

)∣∣∣∣
θ=0

= nδuv

(Iθγ)uv = − Ek

(
∂2

∂θu∂γv
l | X

)∣∣∣∣
θ=0

=
n∑
j=1

E0

(
hu(Yj ;µj)

∂

∂γv
log f(Yj ;µj) | xj

)

(Iθβ)uv = − Ek

(
∂2

∂θu∂βv
l | X

)∣∣∣∣
θ=0

=
n∑
j=1

E0

(
hu(Yj ;µj)

∂

∂µj
log f(Yj ;µj) | xj

)
xjv
g′(µj)

.

The theorem does not give expressions for Iββ , Iγγ and Iγβ , because they are not117

affected by our embedding density (3), i.e. they are the information matrices under the118

hypothesised regression model.119

For the calculation of the smooth test statistic, the expectations in the expressions of120

the information matrices of Theorem 1 are evaluated; this depends on the exact form of121
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the regression model, and the nuisance parameters need to be replaced by their maximum122

likelihood estimates η̂, after which these matrices are denoted by Î .123

Several examples of regression models will follow in Section 3. The next lemma gives124

the smooth test statistic and its limiting null distribution. The proof is a straightforward125

application of maximum likelihood theory and is omitted here (see e.g. Boos & Stefanski126

(2013) for a good exposition to maximum likelihood theory).127

Lemma 1. Smooth test statistic and its asymptotic null distribution. Let V denote the128

vector (1/
√
n)(U1(η), . . . , Uk(η))

>, and let V̂ denote the same vector but with the nuisance129

parameter η replaced with its maximum likelihood estimator η̂. The smooth test statistic for130

testing θ = 0 against θ 6= 0 in model (4) is given by Ŝk = nV̂
> (
Îθθ − ÎθηÎ

−1
ηη Î

>
θη

)−
V̂131

in which (·)− denotes a generalised inverse. Let r be the rank of Îθθ − ÎθηÎ
−1
ηη Î

>
θη. Given132

that r ≥ 1, under the null hypothesis, as n→∞, Ŝk
d−→ χ2

r .133

Note that the second term in the matrix Îθθ − ÎθηÎ
−1
ηη Î

>
θη corrects the estimated134

information matrix of the parameter θ for the nuisance parameter estimation. For many135

regression models some of the elements of V̂ will be exactly zero as a consequence of the136

estimation of the model parameters; in Section 3 examples will be given. It is then convenient137

to first remove these components from V̂ , or, equivalently, remove the corresponding138

terms θihi(y;µ(x>β),γ) from model (3). In this case the estimated covariance matrix139

Îθθ − ÎθηÎ
−1
ηη Î

>
θη will be of full rank r, which is k minus the number of components removed140

from V̂ (or from the model).141

A single element from V̂ , say V̂i, corresponds the parameter θi of the density function142

(3) and to score statistic Ui (Theorem 1), and hence it can serve as the basis of a test statistic143

for testing θi = 0 against θi 6= 0. With σ̂2
i , the ith diagonal element of Îθθ − ÎθηÎ

−1
ηη Î

>
θη, the144

hypotheses can be tested upon using the asymptotic null distribution, i.e. V̂i/σ̂i
d−→ N(0, 1),145

as n→∞. The statistic V̂i/σ̂i is referred to as the ith component of Ŝk. Examples will follow146

later in this paper.147

We conclude this section with a note on the convergence of the test statistics148

to their asymptotic null distributions. Rippon (2012) performed simulation studies149

for assessing the empirical type I error rates as a function of the sample size.150

Results for the special case of the Poisson regression can be found at https:151

//ogma.newcastle.edu.au/vital/access/services/Download/uon:152

12622/ATTACHMENT02?view=true\#page=93. These results demonstrate slow153

convergence of the asymptotic approximations. Sample sizes of at least 100 are needed for154

good type I error rate control. For normal linear regression models, Peña & Slate (2006)155

concluded from their simulation study, that the convergence of test statistics similar to our156
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V̂3 and V̂4 is also very slow. The parametric bootstrap, on the other hand, works well (see157

simulation studies in Section 4).158

2.2. Special cases159

Generalised linear models (GLM)160

Generalised linear models form a special class of regression models (1) and (2) by

restricting the conditional distribution of the outcome variable to the exponential family.

Many GLMs belong to a one-parameter exponential family for which the single parameter

is related to the conditional mean and hence to the β-parameter through µ(x;β) =

E (Y | x) = g−1(x>β). Examples include logistic regression (binomial distribution) and

Poisson regression (Poisson distribution), among others. For this class of models, there is

no nuisance parameter γ, and hence some of the information matrices simplify. In particular,

(Iθβ)uv = −E0

(
∂2

∂θu∂βv
l | X

)
=

n∑
j=1

xjv
var0 (Yj | xj) g′(µj)

E0 (hu(Yj ;µj)(Yj − µj)) .

Furthermore, if the canonical link function is used, (Iθβ)uv further simplifies to

(Iθβ)uv = −E0

(
∂2

∂θu∂βv
l | X

)
=

n∑
j=1

xjvE0 (hu(Yj ;µj)(Yj − µj)) .

The use of the exponential family also allows the use of Iterative Reweighted Least Squares161

(IRLS) as a general algorithm for β-parameter estimation.162

GLMs may include a dispersion parameter. These models assume that the outcome163

distribution belongs to the exponential dispersion family. Normal and gamma regression164

models belong to this class. Although in most GLM literature the dispersion parameter is165

not estimated by maximum likelihood, but rather by the method of moments, we will further166

assume that the dispersion parameter is the γ-nuisance parameter. Note that for the normal167

distribution the maximum likelihood estimator and the method of moment estimator are168

equivalent.169

Score functions are linear combinations of the basis functions170

For many distributions the score functions of the nuisance parameters and the mean

µj can be expressed as a linear combination of the orthonormal basis functions hi(y; µ, γ),
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i = 1, . . . , k. In particular,

∂

∂γv
log f(y;µj , γ) =

k∑
i=1

aijvhi(y;µj , γ) and
∂

∂µj
log f(y;µj , γ) =

k∑
i=1

bijhi(y;µj , γ),

(6)

for some sets of constants {aijv} and {bij}. Often, many of these constants are zero. The171

normal and exponential distributions are two examples.172

Upon using the orthonormality, the elements of the information matrix now become

(Iθγ)uv =
n∑
j=1

aujv, (Iθβ)uv =
n∑
j=1

xjvbuj
g′(µj)

,

(Iγβ)uv =

n∑
j=1

xjv(
∑k
i=1 aijubij)

g′(µj)
, (Iγγ)uv =

n∑
j=1

k∑
i=1

aijuaijv,

(Iββ)uv =
n∑
j=1

xjuxjv
∑k
i=1 b

2
ij

(g′(µj))2
.

Note that for GLMs from a one-parameter exponential family, the score function of µj173

is a first order polynomial in y, proportional to y − µj .174

For several common distributions the orthonormal basis consists of orthonormal175

polynomials in y − µj . Rayner, Thas & Best (2009, Appendix C) gives explicit forms for176

many examples.177

3. Examples178

In the sections following, smooth tests for several specific regression models will be179

discussed in more detail. All tests are constructed as earlier described. Poisson regression,180

which is treated in Section 3.1 is an example of a GLM with no nuisance parameters and with181

a score function linearly related to the orthonormal polynomials (Sections 2.2 and 2.2 apply).182

Logistic regression belongs to the same type of regression models; some details are given in183

Appendix A.2 in the Supporting and Supplementary Material. The normal linear regression184

model is discussed in Section 3.2. Again Sections 2.2 and 2.2 apply, but now a nuisance185

parameter is present (the error term variance). In Section 3.3 the smooth test for zero-inflated186

Poisson (ZIP) regression models are developed. ZIP regression models do not belong to the187

class of GLMs, but still our general theory applies.188

For all these regression models, a numerical example is provided. The p-values are189

computed by means of a parametric bootstrap procedure with 2, 000 bootstrap runs. In190
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simulation studies presented in Section 4, we will demonstrate that this bootstrap procedure191

succeeds in controlling the type I error rate.192

3.1. Poisson regression193

Test statistic194

Poisson regression fits into the GLM framework with a Poisson distribution for

the outcome variable and a canonical log-link, i.e. g(µ(x;β)) = log(µ(x;β)) = x>β.

No nuisance parameters other than the β-parameters are involved. The Poisson–Charlier

polynomials are known to form an orthonormal basis w.r.t. the Poisson distribution. The

polynomials of order one and two are given by h1(y;µ) = (y − µ)/√µ and h2(y;µ) =

[(y − µ)2 − y]/(µ
√
2). Higher order polynomials can be found in Rayner, Thas & Best

(2009, Appendix C). The score function for the mean is given by (∂/∂µ) log f(y;µ) =

(y − µ)/µ = h1(y;µ)/
√
µ. From this expression, we see that the simplifications of Section

2.2 apply with b1j = 1/
√
µj and bij = 0 for i = 2, . . . , k. Hence, we find

(Iθβ)1v =

n∑
j=1

xjv
√
µj (Iββ)uv =

n∑
j=1

xjuxjvµj and (Iθβ)uv = 0, for u = 2, . . . , k.

With these expressions, we find that Îθθ − ÎθηÎ
−1
ηη Î

>
θη is a diagonal matrix with first195

element equal to ω2 (see further for its definition) and all other diagonal elements equal196

to one. The diagonal structure results in a decomposition of the order k smooth test197

statistic: Ŝk = V̂ 2
1 /ω

2 + V̂ 2
2 + · · ·+ V̂ 2

k , where V̂i =
∑n
j=1 hi(yj ;x

>
j β̂)/

√
n and where198

ω2 can be conveniently expressed using matrix notation. Let X denote the usual n× p199

design matrix and D a diagonal matrix with elements
√
µ1, . . . ,

√
µn. With In the n× n200

identity matrix and 1n a column vector with all elements set to one, we write ω2 =201

1>n

(
In −DX(X>D2X)−1X>D

)
1n/n.202

We discuss the first few components in some detail. The numerator of the first

component is given by the square of

V̂1 =
1√
n

n∑
j=1

h1(yj ;x
>
j β̂) =

1√
n

n∑
j=1

yj − µ̂j√
µ̂j

=
1√
n

n∑
j=1

yj − exp(x>j β̂)√
exp(x>j β̂)

,

in which yj − µ̂j is the residual of the jth observation. The denominator
√
µ̂j is the standard203

error of the residual if the true β would have been used instead of its MLE β̂. To correct204

for the estimation of β, the factor 1/ω2 appears in the first component. Hence, V̂ 2
1 /ω

2 can205

be interpreted as a goodness of fit statistic for the specification of the mean model, which206

includes both the specification of the linear predictor η = x>β and the link function g(·).207
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The second component can be written as the square of

V̂2 =
1√
n

n∑
j=1

h2(yj ;x
>
j β̂, σ̂

2) =
1√
n

n∑
j=1

(yj − µ̂j)2 − yj√
2µ̂j

=
1√
n

n∑
j=1

(yj − exp(x>j β̂))
2 − yj√

2 exp(x>j β̂)
.

In the numerator we interpret (yj − µ̂j)2 − yj as the residual of the jth observation w.r.t.208

the model-based specification of the variance of the outcome. In particular, the conditional209

expectation of (Yj − µ̂j)2, given xj , is, by definition, the conditional variance of the210

outcome Yj , and the conditional expectation of Yj given xj trivially is the conditional211

mean of the outcome. Hence the conditional expectation of the residual is a contrast212

between the conditional variance and mean, which, if the Poisson regression model holds213

true, should be equal. Hence, the second component can be interpreted as a statistic214

measuring the goodness of fit of the second moment of the Poisson regression model.215

The higher order components V̂ 2
3 , . . . , V̂

2
k are interpreted in a similar fashion. Finally, we216

note that V̂2 is closely related to a test statistic proposed by Dean & Lawless (1989) for217

detecting overdispersion in Poisson regression. Their test statistic is given by
∑n
j=1[(yi −218

exp(x>j β̂))
2 − yi]/

√
2n
∑n
j=1

[
exp(x>j β̂)

]2
.219

Numerical example220

Spinelli, Lockhart & Stephens (2002) presented an example in which the expected221

frequency of cases of bladder cancer in male aluminium workers is analysed with a Poisson222

regression model with age and exposure to coal tar pitch volatiles as regressors. The age is223

included as a factor variable with 11 levels, referring to age groups, each spanning five years.224

The exposure is included as a continuous regressor, but it is actually an ordinal variable225

taking four values. The model also includes an offset, which is set to the logarithm of the226

total person years at risk. The dataset includes 4213 workers. One of the conclusions from227

the data analysis is that the exposure has a significant effect (p = 0.00184) on the number of228

bladder cancer cases per person year, correcting for age. The effect is estimated as a factor229

2.089 increase in the expected number of bladder cancer cases per person year, when the230

exposure level increases with one level.231

The smooth test of order k = 4 has been applied to this example. The p-values were232

computed using the parametric bootstrap with 2, 000 bootstrap samples. Table 1 shows the233

results. The overall order k = 4 test gives p = 0.632, and hence at the 5% level of significance234

there is no evidence against the Poisson assumption. Neither do any of the component tests235

suggest any deviation from the Poisson assumption.236
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Table 1. Results of the order k = 4 smooth test applied to the bladder cancer example. The two-sided
p-values are computed from 2,000 parametric bootstrap runs (denoted by pB) and from the asymptotic
distribution (pA). Results are shown for two models: “Age Factor” refers to the model with age included
as a factor variable, and “Age Ordinal” refers to the model with age as an ordinal regressor.

Age Factor Age Ordinal
Statistic value pA pB value pA pB
Ŝ4 0.631 0.960 0.653 1.306 0.860 0.798
V̂1/ω 0.123 0.902 0.951 1.025 0.305 0.020
V̂2 -0.733 0.464 0.842 -0.502 0.616 0.390
V̂3 0.280 0.779 0.958 0.013 0.999 0.694
V̂4 0.003 0.998 0.998 0.049 0.961 0.962

Table 1 also shows the results of the smooth test applied to a Poisson regression model237

in which age is not included as a factor variable, but as a continuous regressor which takes238

the values 1 up to 11, referring to the 11 age classes (age is here thus an ordinal variable). The239

first component test gives a two-sided p-value of 0.020, and hence it suggests that the mean240

model is not correctly formulated. Although the results are not presented here, we generally241

also advise looking at the conventional residual plots for assessing the correctness of the mean242

model.243

Finally, Table 1 also shows the p-values calculated from the asymptotic null244

distributions. Although the conclusions at the 5% level of significance are almost the245

same, these results illustrate the discrepancy between the bootstrap and the asymptotic246

approximation for the sample size of this example (n = 44).247

3.2. Linear regression with normal error terms248

Test statistic249

For the normal linear regression model, the link function is the identity function, and the250

residual variance, say σ2, is the only nuisance parameter in the normal distribution; thus γ =251

σ2. Hence, the conditional mean is written as µ(x>β) = x>β. The system of orthonormal252

polynomials is given by the Hermite polynomials (Rayner, Thas & Best 2009, Appendix C),253

of which the first few are given by h0(y;x>β, σ2) = 1, h1(y;x>β, σ2) = (y − x>β)/σ254

and h2(y;x>β, σ2) = [(y − x>β)2 − σ2]/(σ2
√
2).255

For the normal regression model, the score functions for β and σ2 can be written as

(u = 1, . . . , p)

∂

∂βu
log f(y;µj , σ

2) = xju(yj − x>j β)
∂

∂σ2
log f(y;µj , σ

2) =
[
(yj − x>j β)2 − σ2

]
.
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Note that the right hand sides of the equations involve the Hermite polynomials h1 and h2
and that the score functions take the form of (6) and hence the simplifications of Section

2.2 apply. Also note that the maximum likelihood estimator (MLE) of σ2 is the solution

of
∑n
j=1(∂/∂σ

2) log f(yj ;µj , σ
2) = σ2

∑n
j=1 h2(yj ;µj ;σ

2) = 0. This implies that the

second component statistic V̂2 = S2(β̂, σ̂
2)/
√
n = 0. The interpretation is that the smooth

test cannot detect a wrongly specified variance, because the variance is estimated by matching

the variance parameter σ2 to the empirical variance (up to the asymptotically negligible

factor n/(n− 1)). We therefore continue with the construction of the smooth test, with

the second orthonormal Hermite polynomial removed from model (3). Upon applying the

methods described in this paper, including the simplifications of Section 2.2, we find again,

as for Poisson regression, that Îθθ − ÎθηÎ
−1
ηη Î

>
θη is the identity matrix with the first element

replaced by ω2 = 1
n1n(In −H)1>n , in which H =X(X>X)−1X> is the hat matrix of

the linear regression model. Thanks to the diagonal structure of the matrix, the order k smooth

test statistic becomes Ŝk = V̂ 2
1 /ω

2 + V̂ 2
3 + · · ·+ V̂ 2

k , with V̂i =
∑n
j=1 hi(yj ;x

>
j β̂, σ̂

2)/
√
n

(i = 1, 3, 4, . . . , k). For i = 1, we write

V̂1 =
1√
n

n∑
j=1

h1(yj ;x
>
j β̂, σ̂

2) =
1√
n

n∑
j=1

yj − x>i β̂
σ̂

=
1

σ̂
√
n

n∑
j=1

(
yj − x>i β̂

)
= 0,

in which the equality to zero is a consequence of the residuals summing to zero when ML256

or least-squares was used for parameter estimation in a linear regression model that includes257

an intercept. Hence, for such regression models the first order Hermite polynomial is also258

removed from model (3). The final test statistic is then given by Ŝk = V̂ 2
3 + · · ·+ V̂ 2

k .259

The test statistic thus shows a natural decomposition into k − 2 components. Because260

of the polynomial nature of the orthonormal functions, the components can be roughly261

interpreted in terms moments; see Henze & Klar (1996); Henze (1997); Klar (2000); Thas262

(2010) for detailed discussions on this issue. For example, a large V̂ 2
3 is an indication that263

the skewness of the true outcome distribution does not agree with the skewness of the264

hypothesised normal outcome distribution. Since the latter is zero (symmetric distribution), a265

large V̂ 2
3 suggests that the true outcome distribution is skewed. Similarly, a large V̂ 2

4 suggests266

that the kurtosises of the true distribution and the hypothesised normal distribution do not267

agree. The two squared components (V̂ 2
3 and V̂ 2

4 ) are equivalent to the components Ŝ2
3 and268

Ŝ2
4 of Peña & Slate (2006).269

Numerical example270

Davison (2003, example 8.25) reports data on an experiment in which 48 animals were271

randomly allocated to 12 groups of four animals. Each group was given one of three poisons272
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Table 2. Results of the order k = 4 smooth test applied to the poison data. Smooth test results for the
normal distributional assumption are shown. The two-sided p-values are computed from the asymptotic
distribution (pA) and from 2,000 parametric bootstrap runs (denoted by pB). Results for the ANOVA
models with the survival time and with the reciprocal survival time are shown.

survival time reciprocal survival time
Statistic value pA pB value pA pB
Ŝ4 19.4546 0.001 0.008 1.1467 0.887 0.874
V̂3 3.2628 0.001 <0.001 0.9664 0.334 0.370
V̂4 2.9679 0.003 0.012 -0.4612 0.645 0.760

and one of four treatments, resulting in a balanced design. The outcome is the survival time273

in 10-hour units. An analysis based on an additive two-factor analysis of variance (ANOVA)274

model (i.e. regression model with dummies coding for the two factors) revealed that both275

poison and treatment have significant effects on the mean outcome. This dataset will be276

referred to as the poison data.277

Table 2 shows the results from the smooth test of order k = 4, and its component tests. At278

the 5% level of significance we can conclude that the normality assumption is not satisfied.279

Both the third and fourth order component tests give highly significant results, suggesting280

that perhaps within each or some poison/treatment groups the outcome shows a skewed281

distribution with too heavy or too light tails. Given the rather small samples sizes in each282

group (4 animals), our analysis gives a warning that the ANOVA p-values may not be trusted.283

Davison (2003) suggested applying a Box–Cox transformation to the outcome to resolve the284

issue.285

We have also applied the smooth tests to the same model, but with the reciprocal survival286

time as outcome. The results are also presented in Table 2. Now no significant goodness of287

fit is observed.288

Finally, Table 2 also shows the p-values calculated from the asymptotic null289

distributions. Once more the results illustrate some disagreement between the bootstrap290

and the asymptotic approximation for the sample size of this example (n = 48), but the291

differences are not as large as in the previous example.292

3.3. Zero inflated Poisson regression293

Test statistic294

The Zero Inflated Poisson (ZIP) distribution is a mixture distribution of a Poisson295

distribution and a point probability at zero. It thus allows for an excess of zeroes as compared296

to what is expected under a Poisson distribution. The probability of an excess zero is297
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quantified through an additional parameter, which is considered here as a nuisance parameter.298

The ZIP distribution does not belong to the exponential family, and hence ZIP regression299

models are not within the class of GLMs. Neither does the simplification of Section 2.2300

apply.301

The mean of the Poisson component is related to the linear predictor x>β through302

the log-link, i.e. g(µ(x;β)) = log(µ(x;β)) = x>β. The probability of an excess zero is303

denoted by the parameter γ, which acts as a nuisance parameter. The score functions for γ304

and µ are given by305

∂

∂µ
log f(y;µ, γ) =

y − (1− γ)µ
µ

− γ
(
1− δ0(y)

γ + (1− γ) exp(−µ)

)
∂

∂γ
log f(y;µ, γ) =

1

1− γ

(
δ0(y)

γ + (1− γ) exp(−µ)
− 1

)
,

where δ0(y) = 1 if y = 0 and δ0(y) = 0 otherwise. With these score functions, the MLEs of306

β and γ can be obtained (e.g. iterative estimation scheme).307

The polynomial of order one is given by h1(y;µ, γ) = [y − (1−308

γ)µ]/
√
(1− γ)µ+ γ(1− γ)µ2. Higher order orthonormal polynomials can be computed309

using the Emerson recursion relation (see e.g. Rayner, Thas & De Boeck (2008)).310

Polynomials up to order 4 are explicitly given in Appendix C of Rayner, Thas & Best (2009).311

With these polynomials the score functions cannot be written in the form of (6), and hence312

the simplification of Section 2.2 does not apply here. Therefore we need all the elements313

of the information matrix as given in Lemma 1. These elements require the following314

expectations315

E0

(
hu(Yj ;µj)

∂

∂γ
log f(Yj ;µj , γ) | xj

)
=
hu(0;µj , γ)

1− γ

E0

(
hu(Yj ;µj)

∂

∂µj
log f(Yj ;µj , γ) | xj

)
= δ1(u)

√
(1− γ)/µj + γ(1− γ) + hu(0;µj , γ)γ

E0

(
∂

∂γ
log f(Yj ;µj , γ)

∂

∂µj
log f(Yj ;µj) | xj

)
=

1

1− γ

(
γ

γ + (1− γ) exp(−µj)
− 1

)
.

With these expressions, and with the parameters replaced with their MLEs, the matrix316

Îθθ − ÎθηÎ
−1
ηη Î

>
θη can be calculated. In contrast to the two previous examples, this matrix317

is not diagonal, and thus the smooth test statistic Ŝk cannot be written as the sum of its318

components.319

Numerical example320

Kostic et al. (2015) investigated the gut microbiome of 33 infants who were genetically321

predisposed to develop type I diabetes (T1D). The infants were followed during 3 to 4322
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years in a longitudinal study. At regular visits stool samples were taken for microbiome323

analysis through 16S rRNA sequencing, resulting in abundance data for 2,239 OTUs (OTU324

= operational taxonomic unit, which is a proxy for a microorganism species identification).325

Here we consider only the data of the last visit of each of the 33 infants; we also know the326

age of the child at this last visit (in days) and whether the child was diagnosed with T1D or327

not. One of the original research questions in this study was to test for differential abundance328

of microbial species between T1D cases and the healthy infants, while correcting for age.329

This should be tested for each OTU separately. The microbiome data come as counts from330

the sequencing technology. For each biological sample, the sum of the counts of all OTUs331

is known as the library size, which varies substantially between the samples and which is332

considered to be an irrelevant technical artefact. A typical data analysis starts with assuming333

a count distribution, and modelling the log-transformed mean parameter of this distribution334

as log(lib. size) + β0 + β1T1D + β2AGE, with log(lib. size) an offset, T1D the 0/1 disease335

indicator, and AGE the age of the child. Several count distributions have been proposed for336

OTU count data: ZIP, negative binomial and zero inflated negative binomial (see e.g. Xu337

et al. (2015)). Here we test the ZIP distributional assumption in the regression model. We338

only present the results for two OTUs. The data are shown in Table 1 in Supporting and339

Supplementary Material.340

As for the Poisson regression example, we use a smooth test of order k = 4, and p-values341

were computed based on 2,000 parametric bootstrap runs. Results are shown in Table 3. The342

table also shows the results for testing the Poisson distribution with the smooth test of Section343

3.1.344

For the OTU 195929 data the Poisson model is problematic because the V3 component is345

significant at the 5% level. However for the ZIP model all components and S4 have p-values346

greater than 0.05 and we can conclude this is an acceptable model. For the OTU 1954177347

data both the Poisson and ZIP models have two components significant at the 0.05 level and348

neither model is acceptable.349

It is worth noting that while all components have the same asymptotic null distributions350

in all models, in small samples their null distributions no longer coincide. A similar comment351

applies to S4. Thus for OTU 1954177, the S4 p-values for the ZIP and the Poisson models of352

0.006 and 0.088, respectively, do not necessarily indicate that the Poisson is a more acceptable353

model than the ZIP. The log likelihood at the MLEs for the Poisson is -118.37 with three354

degrees of freedom while that for the ZIP is -99.32 with four degrees of freedom. Since the355

class of ZIP models includes the class of Poisson models the favoured ZIP model will always356

be at least as good a model as the favoured Poisson model.357

As for the two previous examples, the p-values based on the asymptotic null distributions358

are also reported in Table 3. We observe a strong deviation between the asymptotic and359
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Table 3. Results of the order k = 4 smooth test applied to two OTUs of the infant gut microbiome
example. Smooth tests for the ZIP and the Poisson distributional assumption are shown. The two-sided
p-values are computed from 2,000 parametric bootstrap runs (denoted by pB) and from the asymptotic
distribution (pA). For the ZIP, the parameter ω equals 1.

OTU 194177
Poisson ZIP

Statistic value pA pB value pA pB
Ŝ4 2782.015 <0.001 0.088 101.941 <0.001 0.006
V̂1/ω 3.924 <0.001 <0.001 2.256 0.024 0.470
V̂2 17.894 <0.001 <0.001 9.185 <0.001 <0.001
V̂3 16.748 <0.001 0.240 6.285 <0.001 0.001
V̂4 46.538 <0.001 0.212 1.333 0.183 0.118

OTU 195929
Poisson ZIP

Statistic value pA pB value pA pB
Ŝ4 63.776 <0.001 0.489 13.301 0.010 0.544
V̂1/ω -0.434 0.664 0.257 1.996 0.046 0.541
V̂2 7.583 <0.001 0.753 3.246 0.001 0.384
V̂3 -2.063 0.039 0.014 0.426 0.670 0.544
V̂4 1.348 0.178 0.311 -1.066 0.286 0.173

bootstrap p-values, which often results in opposite conclusions at the 5% level of significance.360

Recall that the asymptotic approximation for the data analysis presented in Table 2 was better.361

The results of all three data examples make us conclude that the discrepancies will362

vary with both the model and the sample size. In the next section we will empirically363

demonstrate that the bootstrap succeeds in controlling the type I error rate and is hence to364

be recommended.365

4. Simulation study366

The type I error rate and power of the order k = 4 smooth test and its component tests367

are evaluated in a simulation study. By no means do we intend to present a comprehensive368

simulation study that includes smooth tests for many different distributional assumptions.369

Instead we only show the results for Poisson and ZIP regression models for illustrative370

purposes.371

All results are based on 2,000 Monte Carlo runs, and p-values are computed from 200372

parametric bootstrap runs. All tests are performed at the 5% level of significance.373
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4.1. Poisson regression374

In each Monte Carlo simulation run, we simulated n = 15 observations from a negative375

binomial (NB) regression model with logµ(x) = 2.6 + 2x with x taking values 0, 0.5376

and 1, each for n/3 of the simulated observations. In each simulation run, a Poisson377

model with mean model logµ(x;β) = β0 + β1x is fitted to the data (i.e. no mean-model378

misspecification). The variance of a negative binomial distribution with mean µ is given by379

µ+ τµ2, with τ the overdispersion parameter. With τ = 0, the NB collapses to a Poisson380

distribution. For a range of values for τ , the results are shown in the top panel of Figure381

1. The graph shows that all bootstrap tests control the type I error rate. As expected, the382

overdispersion is best detected with the second order component test (V2), but the power of383

the order 4 smooth test (S4) is not much less.384

In a second set of simulations, n = 25 observations are simulated with a Poisson385

distribution with logµ(x) = 1 + 3x1 + ζx2 with (x1, x2) taken values in the 5× 5 grid386

pattern generated with x1 ∈ {−1,−0.5, 0.5, 1} and x2 ∈ {−1.2,−0.7,−0.2, 0.3, 0.8}, with387

n/25 observations in each point, and with ζ ∈ [0, 0.5]. The generated data, however, are388

analysed with a misspecified Poisson model with only one regressor (x1). The results are389

shown in the bottom panel of Figure 1. The bootstrap tests control the type I error rate.390

The order 4 smooth test has good power. However, despite the first moment of the model391

being misspecified, it is the second order component test (V2) that gives the largest power.392

The missing regressor in the model causes the data to appear overdispersed. Hilbe (2011)393

called this kind of situation ‘apparent overdispersion’ to distinguish it from cases where the394

distributional assumption really is violated. This suggests that one should apply goodness of395

fit tests always in combination with other diagnostic tools for assessing the correctness of the396

mean model (e.g. Pearson or deviance residual plots).397

4.2. ZIP regression398

Here we test the null hypothesis of a ZIP outcome distribution with logµ(x) = 1 + βx.399

Two simulation scenarios are considered.400

In the first case we sampled from a zero inflated negative binomial distribution with a401

probability of 0.2 for zero-inflation, and logµ(x) = 1 + x in which x is standard normally402

distributed. The conditional variance of the outcome is given by µ+ τµ2, with τ the403

overdispersion parameter of the NB. The parameter τ takes the values τ = 0.0, 0.2, . . . , 2.0.404

In the second case we simulated data from a ZIP-regression model with logµ(x) = 1 +405

x1 + ζx2 in which x1 and x2 are standard normally distributed and ζ = 0.0, 0.1, 0.2, . . . , 1.2.406

For ζ 6= 0 the hypothesised ZIP-regression model has a misspecified mean model.407
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Figure 1. Powers of the smooth test and its component tests for the Poisson regression model. All results 
are based on 2,000 Monte Carlo simulation runs and 200 parametric bootstrap runs. Top: data generated 
with negative binomial regression model with overdispersion parameter τ . Bottom: data generated with 
Poisson regression model with a misspecified mean model that includes an additional term ζx2.



J C W RAYNER, P RIPPON, T SUESSE, AND O THAS 19

From the results (Figure 2) it can be seen that V1 is not very useful for detecting the408

considered alternatives, but the other four tests detect the alternatives well. The order 4409

smooth test (S4) appears most powerful and can be generally recommended. All tests control410

the type I error rate.411

5. Conclusion412

Many regression models contain a distributional assumption for the outcome,413

conditional on the regressors, allowing for maximum likelihood estimation of the regression414

parameters. An important class of such models is formed by Generalised Linear Models415

(GLM). We have developed smooth goodness of fit tests for testing this distributional416

assumption. The construction starts from sets of polynomials that are orthonormal to417

the conditional outcome distribution, and thus for each observed regressor another set of418

orthonormal functions must be computed. The smooth test statistic is a score test statistic419

developed in a larger class of distributions that embeds the hypothesised regression model.420

Our methods correctly account for the estimation of nuisance parameters (i.e. regression421

parameters and other parameters of the conditional outcome distribution). The test statistic422

asymptotically has a chi-squared null distribution, but simulation studies have shown a slow423

convergence to the limiting distribution. Therefore it is suggested the parametric bootstrap424

should be used for p-value calculation. The test statistic is build up from components each425

of which can also be used as a test statistic. These tests can be helpful in understanding in426

what sense the data deviate from the hypothesised distribution in terms of e.g. skewness and427

kurtosis. Even when the data analyst does not want to use formal hypothesis testing for the428

assessment of the distributional assumption, these components are informative and may be429

helpful in exploring potential deviations from the hypothesised distribution.430

The first component is based on a contrast between the observed outcomes and the fitted431

mean model. From this perspective it may seem like a statistic for assessing the correct432

specification of the mean model, but when higher order moments are misspecified by the433

distributional assumption, its diagnostic property may be lost; see e.g. Klar (2000) for a434

similar issue with the one-sample smooth tests. Also, a misspecified mean model may cause435

the higher order components to give small p-values, even when the distributional assumption436

holds true. The ‘apparent overdispersion’ (Hilbe 2011) in the Poisson regression example is437

an illustration of this issue. As a consequence, we always advise not blindly applying the438

smooth tests proposed in this paper, but to always complement them with other diagnostic439

tools for assessing the correctness of the mean model (e.g. Pearson or deviance residual plots).440

When the regression model is a GLM or when the score functions of its nuisance441

parameters are linear combinations of the orthonormal basis functions, the construction of the442
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Figure 2. Powers of the smooth test and its component tests for the ZIP regression model. All results 
are based on 2000 Monte Carlo simulation runs and 200 parametric bootstrap runs. Top: data generated 
with zero inflated negative binomial regression model with overdispersion parameter τ .  Bottom: data 
generated with ZIP regression model with a misspecified mean model that includes an additional term 
ζx2.
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smooth test permits simpler expressions. We have given explicit forms of the test statistics443

for Poisson regression, normal linear regression, zero-inflated Poisson (ZIP) regression and444

logistic regression. The simulation study, which was restricted to Poisson and ZIP regression,445

demonstrates that the new tests control the type I error rate when the parametric bootstrap446

is used. In the PhD thesis of Rippon (2012) smooth tests for more regression models are447

presented and evaluated in simulation studies. All tests have power for interesting alternative448

hypotheses. In conclusion, the new tests are customised, focussed and comprehensive.449
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