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ABSTRACT

and Robert Malina®P

While there is ample evidence for the existence of positive wider economic impacts of air transportation, the associated
spatial distribution of these impacts has received less attention. This paper uses a spatial-econometric approach with
instrumental variables on European NUTS-3-level panel data to study the spatial distribution of the impacts of air
transport access on a subset of service-sector employment that is not directly affected by activity in the aviation
industry. While the spatially resolved approach confirms previous findings that regions close to an airport experience
service-sector employment increases due to improved air transport access, we also find evidence for the presence of
an agglomeration shadow, that is, negative employment effects for regions further away from an airport. The average
total impact of connectivity increases on service employment is found to be positive.
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INTRODUCTION

Airports serve as access points to a global network of air
travel and air logistics. Consequently, they are perceived
as an essential tool for regional development by helping
regions overcome geographical disadvantages and connect-
ing them with other centres of economic activity. Existing
empirical work on the impacts of air transportation on
regional development primarily builds on the seminal
work by Brueckner (2003), who studies the region-by-
region employment impacts of aviation as an enabler for
face-to-face interactions and productivity. In their review
of empirical studies on the wider economic impact of avia-
tion, Lenaerts et al. (2021) find that most studies confirm
the existence of positive economic impacts of air transport
links, with recent evidence by Sheard (2019), Fageda and
Olivieri (2019) and Campante and Yanagizawa-Drott
(2018). Against this background, regional policymakers
in Europe and elsewhere are investing in airport infrastruc-
ture and providing support to airlines for new or improved
air services (Allroggen et al., 2013).

The associated spatial distribution of the benefits has
received less attention (Cidell, 2015). This is an issue as

airports’ impact on their hinterland can be assumed to be
heterogeneous over space since airports are point infra-
structure assets and users need access to this point infra-
structure to benefit from its services. More specifically,
while improving air transport can benefit nearby firms, it
might also attract firms from regions further away from
the airport, thereby negatively impacting economic activity
in more distant regions. Therefore, both scholars and pol-
icymakers need to understand which regions benefit from
increased air connections — or in other words: how far
potential positive impacts of air services from an airport
will reach and at which point they might become negative.

One of the first articles to address the spatial reach of
airports’ economic impacts is Percoco (2010), who studies
the impacts of air transport availability on Italy’s service-
sector employment. Percoco (2010) addresses spatial mod-
elling in response to concerns over selection bias resulting
from assigning zero air traffic to regions with no airport.
The latter is significant since a single airport can have
multi-region or even multi-nation catchment areas
(Lieshout, 2012), suggesting that a single airport often
serves regions that are larger than small administrative
units (here, Italian provinces). Percoco (2010)
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subsequently proposes calculating each region’s access to
air transport through a spatial weight matrix based on
inverse-distance squared, which models a hypothesized
predetermined attenuation of economic benefits with air-
port access distance.

Scholars have also questioned whether the regional
economic benefits of transport system improvements result
from additional economic activity such as increased wages,
population and employment, trade, and industry compo-
sition, or from spatial reallocation of economic activity
between regions (Redding & Turner, 2015). Fageda and
Gonzalez-Aregall (2017) address this question while esti-
mating the regional economic impacts of different trans-
portation modes (including aviation) in 47 Spanish
provinces (NUTS-3 regions) between 1995 and 2008.
For this purpose, they use a spatial Durbin model, which
considers spatial dependencies in the dependent and inde-
pendent variables based on weight matrices constructed
using contiguity and three different distance-based cut-
off levels (150, 300 and 450 km). They do not find a sig-
nificant effect of air freight on employment for local and
neighbouring airports. Similarly, Fageda and Olivieri
(2019) quantify the impact of infrastructure for different
transportation modes on per capita gross domestic product
(GDP) growth in Spain between 1980 and 2008. Their
spatial Durbin model considers weight matrices con-
structed using either contiguity, squared distance and the
five nearest neighbours. By analysing the differential
impact of transport infrastructure in each respective region
and in neighbouring regions, the authors conclude that
only roads have contributed to economic growth in Spain.

Campante and Yanagizawa-Drott (2018) estimate the
impact of aviation on night lights at the grid-cell level' for
a sample of 819 cities worldwide. Instead of using a spatial
weights matrix, they include distance to the nearest airport
as a regressor, which allows them to assess the rate at
which the positive economic effects attenuate with dis-
tance. They also run their model for subsamples con-
structed from pixels within a rolling window of distance
to the nearest airport up to 500 miles. They find significant
positive effects close-by and smaller insignificant negative
effects further away from the airport. The authors, there-
fore, conclude that improved air market access induces
spatial inequality (i.e., regions closer to better-connected
airports grow faster) rather than pure spatial reallocation.

While these existing studies on the economic impacts
of aviation shed some light on the spatial nature of
regional economic impacts of aviation, we are not aware
of studies that systematically estimate the spatial reach of
those benefits while also considering potential shadow
effects on regions further away from an airport.
This analysis aims to address this gap by developing
spatial-econometric models combined with fine-scale
employment data for European NUTS-3 regions. The
European context is well-suited to study the spatial-econ-
omic impact of aviation because (1) distances between
European regions are low while economic activity is spread
out (geographically dispersed) but strongly interconnected
(Combes & Overman, 2004); and (2) commercial airport
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density is relatively high (Poelman, 2013). In such a set-
ting, ignoring spatial distributions can lead to estimation
bias when quantifying aviation’s economic impact. This
contrasts with the US context, where the co-location of
airports and economic activity in metropolitan areas
reduces the importance for spatially explicit analyses. In
addition, our analysis controls for potential empirical
biases resulting from parameter endogeneity by proposing
a set of instrument variables derived from the aviation net-
work through which air connectivity is generated.

We expect our findings to inform policymaking con-
cerning regional airport development. This is because an
uneven distribution of airports implies that transport
improvements can create winner and loser regions, either
relatively or absolutely. Our results can contribute to pro-
viding insight into the question whether regions without a
local airport might suffer a competitive disadvantage.
Additionally, our research can identify the spatial scope
of airports’ economic impact, which can provide guidance
on the allocation of state funds from the national to the
local level.

The remainder of the paper is structured as follows.
The next section provides insights into the mechanisms
that drive the geographical dependencies between regions
and the impact of transportation on economic systems.
The third section introduces the spatial models to estimate
the strength and spatial extent of economic geography
effects for lagged air connectivity. The fourth section dis-
cusses the data. The fifth section discusses the results of
the various spatial econometric approaches. The final sec-
tion concludes.

TRANSPORTATION AND ECONOMIC
GEOGRAPHY

Quantifying the economic impact of transportation
requires an understanding of the economic mechanisms
that result from transport services improving access to
markets. Lenaerts et al. (2021) provide a theoretical over-
view of these mechanisms, leveraging the New Economic
Geography (NEG) (Fujita et al., 1999; Krugman, 1991),
the literature on inter-organizational collaboration and
innovation (Boschma, 2005; Knoben & Oerlemans,
2006) and the general economic geography of transpor-
tation (Allroggen, 2013; Lakshmanan, 2011). Based on
their review and extending the NEG framework, they
identify six economic mechanisms, which ultimately
shape the economic impact of transportation systems on
affected regions. First, with decreasing transport costs
resulting from better access to transportation, firms will
leverage internal economies of scale by agglomerating pro-
duction in nodes central to both their supply and demand
networks (demand or backward linkages). Second, transpor-
tation makes agglomerations more attractive places of resi-
dence because consumers have an incentive to settle in
cities or regions with favourable access to significant mar-
kets (cost or forward linkages). Third, as reductions in
transportation costs can result in gains for some regions
(agglomeration effect), this growth can be fuelled by
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reducing economic activity in other regions (agglomeration
shadow). The reason behind this is that more accessible
regions often outcompete less accessible regions. Fourth,
congestion, pollution and the scarcity of nontraded con-
sumption goods and services (driving up prices and
wages) create a pull force for firms and consumers away
from the congested agglomeration into less congested
but less accessible or smaller urban centres (agglomeration
spillover). The result is that hierarchal agglomeration
characterized by multiple-centre geographies can be
favoured with low transportation costs. Fifth, if transpor-
tation induces agglomeration of both firms and workers,
which in turn drives agglomeration, the cost and demand
linkages outlined above create a system of circular causa-
tion. Lastly, scale economies in transportation and multi-
plier effects of demand-side economics co-occur with
the supply-driven impacts of transportation.

Over the last two decades, substantial empirical evi-
dence highlighting the importance of (new) economic
geography theories and its underlying mechanisms as out-
lined above has accumulated, specifically on (1) the rel-
evance of market access for income and production, (2)
the strength of agglomeration forces and (3) how agglom-
eration economies attenuate with distance (Combes &
Gobillon, 2015; Head & Mayer, 2004; Redding &
Rossi-Hansberg, 2017; Redding & Turner, 2015;
Rosenthal & Strange, 2004). Furthermore, a subset of
the empirical literature has focused on assessing the ‘spatial
scope’ of economic geography effects. Examples include
studies on the role of proximity in shaping agglomeration
economies in different sectors (Rosenthal & Strange,
2003; Dekle & Eaton, 1999; Duranton & Overman,
2005), innovation (Jaffe et al., 1993), labour markets
(Mion, 2004; Patacchini & Zenou, 2007; Hanson, 2005)
and population (Redding & Sturm, 2008). Most studies
find significant dependencies and agglomeration effects
that are relatively localized. A notable study of transpor-
tation effects is Hodgson (2018) who provide evidence
that regions located within 5 km to a railroad connection
have higher survival probability and expected lifetime of
US post offices, while railroad construction between 5
and 10 km of an existing post office decreases the survival
probability and expected lifetime. Yet, more empirical evi-
dence is needed that quantifies the spatial scope to dis-
tinguish agglomeration growth effects from mechanisms
that affect economic activity negatively such as reorganiz-
ation and competition between cities or regions (as
hypothesized by theory).

Two elements are needed to apply the above economic
geography theories to air transport and to estimate avia-
tion’s spatial-economic impact. First, a method for map-
ping airports to their impacted regions is needed, which
would enable the analysis of the spatial scope of airports’
economic impact and potential shadow effects. This is
particularly important in Europe’s dense airport network,
where airports can serve multiple regions and can have
impacts beyond the region they are located in. Second,
air market access needs to be calculated considering con-
necting flights generated through air networks. We

capture market access generated by aviation in the form
of ‘air connectivity’, which accounts for the quality of air
transport services as a means to overcome distances and
the quality of the destination market (Lenaerts et al.,
2021). Air connectivity can be generated through direct
(non-stop) flights and indirect (one- or multi-stop) con-
nections that require passengers to transfer to a connecting
flight at a hub airport to reach their final destination.

METHOD

We set out to develop a model to empirically test the
hypothesized impacts of airport access. For each region,
we explain a subset of service employment outcomes
(our measure of economic activity) through (1) the air ser-
vice supply of airports in the region (demand linkages); (2)
the air service supply of neighbouring airports (demand
linkages, agglomeration shadow and spillover); (3) econ-
omic activity, namely employment, in neighbouring
regions (demand linkages, agglomeration shadow and spil-
lover); and (4) other characteristics of the region. Besides
the option to analyse potential regional spillovers in
employment, we include (lagged) employment in neigh-
bouring regions to disentangle air market impacts from
the effects following access to centres of employment
and to compare the spatial patterns of both effects. This
is justified as both physical proximity to centres of service
employment and air connectivity provide access to infor-
mation and people (rather than goods).

Model specification

Spatial-econometric model

Although it is possible to include spatial lags in the depen-
dent variable, independent variables, and error terms sim-
ultaneously, such models are difficult to estimate and
interpret (Manski, 1993). We follow Elhorst (2010) and
LeSage and Pace (2009) by dropping the spatial inter-
action effects among the error terms, resulting in the
spatial Durbin model. Following Elhorst (2010) and
LeSage and Pace (2009), the spatial Durbin model offers
three advantages: (1) it produces unbiased coefficient esti-
mates even if the true data-generation process differs;? (2)
it reduces omitted variables bias (common in regional data
samples); and (3) it produces unbiased standard errors even
if the true data-generating process contains spatial depen-
dence in the error term.

Due to the availability of space-time (panel) data, we
use the time—space recursive version of the spatial Durbin
model (LeSage & Pace, 2009), where, following Redfearn
(2009), the temporal lag in employment is dropped due to
multicollinearity (see Figure A4 in Appendix A in the sup-
plemental data online). To control for aggregate missing
variables that affect both local outcomes and local charac-
teristics, we consider country-level fixed-effects (Combes
& Gobillon, 2015). Given space—time data of adjacent
spatial units, Elhorst (2014) reports that the fixed effects
model is generally more appropriate than the random-
effects model.

REGIONAL STUDIES
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We propose a simplified model focusing on airport
interaction only (equation 1, capturing (1) and (2)) and a
full model incorporating airport (connectivity) and
regional (employment) interaction (equation 2, capturing

(1-@3)).
Empl = av, + BV Conn + X 0. + X0, + X0, +u (1)

Empl =i, + ppear Whear LEmpl® + pg We LEmpl®
+ Brear Viear Conn + By, Vi, Conn 2)
+ X0, 4 X0, + X6, + u

The 7 x 1 vector Emp/ contains the dependent variable: a
subset of service employment that is not directly affected
by activity in the aviation industry (in absolute numbers).
n represents the number of observations at the regional
level and is defined as 7 = p x # where p represents the
number of NUTS-3 regions and # number of years # con-
sidered. X, represents the 7 X £ matrix of all Z (exogenous)
control variables, with associated parameters 6, contained
in a £ x 1 vector. X, represents the 7 X g matrix relating
the g x 1 vector of country-fixed effects 6, to Empl. X,
represents an 7 X ¢ matrix relating the # x 1 vector of
time-fixed effects 6; to employment in all time periods #.
We include the vector of ones t, and associated parameter
a since Empl is not assumed to have a mean value of zero
(LeSage & Pace, 2009). The m x 1 vector Conn contains
our impact variable connectivity and B is a scalar par-
ameter. 7z represents the number of observations at the air-
port level and is defined as m = % x # where £ represents
the number of airports. The 7 x m spatial weight matrix
V links every region to its neighbouring airports.
LEmplS represents the one-year time lag in employment;
Empl® differs from Empl by replacing missing values by
the population-weighted share of employment at the
NUTS-2 level.

In equation (2), the 7 x 7 matrices Wy, and Wy, link
every region to its neighbouring regions, while the 7 x m
matrices Ve, and Vi, link every region to its neighbour-
ing airports (including its own). More specifically, the
matrices Wye,r and Ve, consider links to first-order
neighbour regions and airports only, whereas Wy, and
Vi link to second-order neighbours. First-order neigh-
bours are regions close to a specific region — that is, direct
neighbours or regions within a short distance (see the third
section for parameterizations). Second-order neighbours
are close to the first-order neighbours (see the third section
for parameterizations). We note that for second-order
neighbour connectivity impacts, we consider the
first-order connectivity value of each second-order neigh-
bouring region instead of considering the connectivity
values in each airport. This approach allows us to consist-
ently assess the attenuation of benefits and potential
adverse shadow effects, that is, both first- and second-
order lagged connectivity represent the connectivity that
is accessible to a region relative to other regions. The spe-
cification of the spatial weight matrices is discussed in the
following subsection. The scalars p,.,, Prar> Bnear a0d By
represent the respective parameters.

REGIONAL STUDIES

Spatial weights matrix specification

Our spatial weight matrices capture (1) employment in
neighbouring regions, depending on proximity, and (2)
the air service supply of airports within a region (depend-
ing on contiguity) or outside a region (depending on dis-
tance). These weight matrices can be defined based on
(1) contiguity, (2) distance and (3) area (Figure 1).
These approaches are combined with the simplified and
full model (equations 1 and 2) to yield five model specifi-
cations (see Table 1 for a summary).

In model A, we aim to analyse the employment effects
of airports in their ‘home region’ only. Therefore, airport
allocation is based on all airports within a single NUTS-
3 region’s boundaries (contiguity). Percoco (2010) shows
that this approach is potentially subject to selection bias
and might misrepresent airport usage patterns (multi-
region catchment areas). In model B, airport allocation
is based on the single nearest airport (distance) to gain
insights into such bias.

In the remaining three models, we set out to assess the
spatial structure of both regional dependencies in econ-
omic activity and the economic impacts of airports.
More specifically, we disentangle the likely positive effects
of first-order neighbours and their airports from the
impacts of second-order neighbours and their airports, as
outlined in equation (2). In model C, we define first-
and second-order neighbours according to (queen-type)
contiguity. For air connectivity, airports are allocated to
regions and considered accordingly. This specification is
potentially subject to bias resulting from the arbitrary deli-
neation of region borders.

Thus, in model D, we define first- and second-order
neighbours using the distance between the centres of
each region under consideration and all other regions
using cut-off values that are varied as part of the study.
This cut-off serves as the inner limit (maximum distance)
to the first-order neighbours; equivalently, an outer limit
needs to be defined for the second-order neighbours
(e.g., to cut off the potential scope of agglomeration sha-
dow effects). The spatial weight matrices of air connec-
tivity are defined accordingly. For regions with dispersed
economic activity, this method can induce bias, as it
might misclassify significant economic activity not located
at the centre of a region.

In model E, each region’s area share that lies within
concentric circles and concentric rings centred at each
region under consideration is calculated for a range of
radii (Rosenthal & Strange, 2003). First-order neighbours
for employment are defined as the share of all regions fall-
ing within aforementioned concentric circles and second-
order neighbours as they fall within the aforesaid con-
centric rings. Next, first-order neighbours for connectivity
are defined as all airports within a certain cut-off distance
from the region under consideration. The second-order
neighbours for connectivity again constitute the share of
all regions falling within aforesaid concentric rings. It is
important to note that all specifications of first- and
second-order spatial lags avoid the ‘pitfall of multiple
weight matrices’ (LeSage, 2014; LeSage & Pace, 2011)
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Figure 1. Allocation of NUTS-3 regions and airports (summed at the regional level) to first-order (grey) and second-order (black)
neighbouring zones according to contiguity, distance (using point coordinates) and areal share.

Note: Dots represent the centre of the impact region (as an example, the DE732 region in Germany was taken). Triangles rep-
resent airports. Germany is only shown as an example, and we note that our full dataset contains all European NUTS-3 regions.
Sources: Border data from Eurostat GISCO (2019); and regional centres from Oak Ridge National Laboratory (ORNL) (2019).

since there is no interaction possible between the first- and
second-order neighbours (i.e., regions and airports can
only belong to one group at a time).

Identification strategy

Since spatial dependence can occur in all directions (con-
trary to temporal dependence), simultaneity (reverse caus-
ality) may bias estimation results. In other words, since the
economic output of regions affects each other, the spatial
lags in employment are likely endogenous. Second, higher
regional economic output can spur air transportation ser-
vices at neighbouring airports due to increased demand,
the availability of financial markets and economies of
scale (Lenaerts et al., 2021); thus, connectivity is poten-
tially endogenous as well.

Because other economic indicators (such as GDP,
average wage/per capita GDP, population (density), and
productivity) are jointly determined with employment,
they need to be considered as control variables The
decision to control for some or all of these indicators
depends on the causal pathways (see Figure A3 in Appen-
dix A in the supplemental data online). Indicators that are
both impacted by connectivity and impact employment act
as a mediator and, therefore, can be argued to be ‘bad con-
trols’ (Figure A3, panel A) (Angrist & Pischke, 2008).*
Conversely, if these indicators are correlated with demand
for air travel, not controlling will induce both omitted vari-
ables (Figure A3, panel D) and reverse causality bias
(Figure A3, panel E).

For the estimation, the instrumental variables or gen-
eralized method of moments estimator is used, which
offers three advantages over the alternative maximum like-
lihood estimator: (1) it does not rely on the assumption of
normality of the error terms; (2) it is computationally effi-
cient (Kelejian & Prucha, 1998, 1999); and (3) it is extend-
able to include endogenous explanatory variables, besides
the endogenous lagged dependent variable (Anselin &
Lozano-Gracia, 2008; Dall’erba & Le Gallo, 2008; Fin-
gleton & Le Gallo, 2008). The latter is especially impor-
tant since we suspect the spatial lag in connectivity to be
endogenous due to the reverse causality between economic

and airport activity. That is, in equation (1), we suspect
V Conn to be endogenous, and in equation (2) W, Emp/,
WouEmpl, VinConn and Vo Conn.

Models A and B, which model airport interaction only
(equation 1), are estimated through the (simple) two-
stage least squares estimator (2SLS) with VZ as instru-
ments. The (additional) instrumental variables (Z) should
explain the variable of interest (here: air connectivity) (rel-
evance) but should not be driven by the outcome (exo-
geneity). Previous studies instrumenting for air traffic
have looked at touristic destinations, hub status, other
distance-based measures and historic indicators (Brueck-
ner, 2003; Green, 2007; Percoco, 2010; Sheard, 2019).
This study considers instrumental variables that explain
both non-stop and one-stop connectivity: the yearly
share of flights going to (1) a mega-hub, (2) a major tour-
ist destination and (3) a megacity. Lenaerts et al. (2021)
provide evidence for the relevance of the first instrument
by showing that the share of flights going to a mega-hub
is a strong driver of one-stop (two-leg) connectivity. The
shares of flights to major tourist destinations and megaci-
ties are added to capture non-stop connectivity generated
through point-to-point networks. In addition, we con-
sider these instruments to be exogenous since they are
independent of airport size, the likely primary source of
endogeneity. Even if independence to airport size is not
a sufficient condition, the two-stage least squares estima-
tor only requires conditional exogeneity. In other words,
by controlling for other economic indicators (see the
fourth section), any unobserved variable that affects flight
shares should not impact regional employment differently
from the typical level for regions of its characteristics
(Brueckner, 2003). Additionally, the share of flights to
mega-hubs and megacities would not be directly corre-
lated with employment through demand as leisure and
business travellers value connectivity (either non-stop to
important cities or one-stop to hubs), not the flights
themselves. Moreover, connectivity does not drive shares
of flights to hub airport or final destinations (touristic des-
tinations and megacities), but rather the different shares
contribute to generating connectivi'fy.5

REGIONAL STUDIES
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Table 1. Overview of models considered.

Model Model type

Spatial weight matrix

A First-order airport interaction only (equation 1)

B First-order airport interaction only (equation 1)

C First- and second-order regional and airport
interaction (equation 2 and specification | from
Figure 1)

D First- and second-order regional and airport
interaction (equation 2 and specification Il from
Figure 1)

E First- and second-order regional and airport

interaction (equation 2 and specification Il from
Figure 1)

Binary matrix V with V. = 1 if airport k lies within region i
Binary matrix V with Vi = 1 if d;; is minimal

Binary matrix Whear With Whea, j = 1 if regions j and j share
boundaries (queen-type) (green regions) Binary matrix Wy, with
Wey, j = 1 if region j shares boundaries with the green regions
(except i) (queen-type) (red regions) Binary matrix Vyesr With
Vhear, ik = 1 if airport k lies in a green region (including /) Binary
matrix Vs = Wesr - Vinear

Binary matrix Whear With Wyeqy, j = 1 if djj < cut-off Binary matrix
Wi, with Wy, ; = 1 if djj > cut-off and dj < outer limit Binary
matrix Vnear With Viear, ik = 1 if dix < cut-off Binary matrix

Viar = Wear - Vinear

Non-binary matrix Wyear With Wyear, j the share of region j within
a circle around region i (radius = cut-off; green zone) Non-binary
matrix Wy, with Wy, ; the share of region j within a concentric
ring around region / (bandwidth = outer limit — cut-off; red zone)
Binary matrix Vpear With Viear, ik = 1 if dix < cut-off Binary matrix
Viar = Wiy, - Viear

Lastly, our study explores the instrument suggested
by Campante and Yanagizawa-Drott (2018). Cam-
pante and Yanagizawa-Drott (2018) argue that due
to regulatory and technological constraints, a sharp
drop exists in the number of directly connected city
pairs at 6000 miles (i.e., significantly more connected
cities at a distance between 5800 and 6000 miles
than between 6000 and 6200 miles apart), which can
be used to instrument air connectivity. This study
uses yearly connectivity to construct the instrument,
whereas the original version by Campante and Yanagi-
zawa-Drott (2018) is based on eigenvector centrality in
1989. Figure A5 in Appendix A in the supplemental
data online discusses the validity of this instrument
in more detail.

Models C-E, which are based on the model incor-
porating regional (employment) and airport (connec-
tivity) interaction (equation 2), are estimated through
the spatial two-stage least squares estimator (S2SLS).
A spatial 2SLS approach involves spatial instruments
constructed using the exogenous covariates (X)® and
(additional) instrumental variables (Z) as outlined
above. The additional spatial instruments are equal to
U, WU and W?U (Kelejian et al., 2004), where
U =[X, VinZ, VouZ] represents the (combined) matrix
of exogenous variables and W represents both W;, and
W,ut. The full set of instruments, written out in full,
looks as follows:

(a) X} Winxa WoutX7 Wian, Wiutx;

(b) VinZ, WinVin27 WoutVinZ; WiznVinZa W2

out
()
VouZ, WiaVouZ, WouVouZ, Wi VouZ, W2 Vo Z.

VinZ;

REGIONAL STUDIES

Throughout, we apply White’s correction to obtain het-
eroscedasticity-consistent (or robust) standard errors.

Data

Our dataset comprises an unbalanced panel of 16,018
observations (7), spanning 12 years (2001-12) (#) and
1343 NUTS-3 regions (p) from 29 European countries
(¢), covering the 27 European Union member states
(excluding the French overseas territories Guadeloupe,
Martinique, Reunion, French Guiana and Mayotte, the
Spanish autonomous cities Ceuta and Melilla, and the
Greek Mount Athos peninsula), the UK, and North
Macedonia (EU-27+2). The temporal lag in employment
contains 15,974 observations. Airport-level data is cap-
tured by an unbalanced panel of 6868 observations cover-
ing 679 airports (%) in 42 countries over the same time
period. We note that the airport dataset includes 158 air-
ports outside the EU-27+2 to avoid border effects. Miss-
ing observations are set to zero to allow summing. See
Appendix A in the supplemental data online for more
details on data and the software used.

We regard European data as well-suited to study the
interconnectedness of airports and regions through
spatial-econometric modelling for two reasons. First, dis-
tances between European regions are low and economic
activity is relatively spread out (geographically dispersed)
(Combes & Overman, 2004); and second, commercial air-
port density is relatively high (Poelman, 2013). Therefore,
the data allows us to run empirical analyses at high spatial
resolution. US-based studies have not conducted such
detailed spatial studies and have focused predominantly
on the co-location of airports and economic activity in
metropolitan areas (Sheard, 2019). This is mainly a result
of the spatial concentration of employment and population
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in the US, where large metropolitan areas are often
‘islands’ of economic activity dispersed across space
(Gonzilez-Val, 2019; Holmes & Stevens, 2004). Such
structures are less conducive to the spatial analysis
proposed here.

This study uses service-sector employment (measured
in 1000 employed persons) as the dependent variable
since services are more susceptible to transport improve-
ments (Glaeser & Kohlhase, 2004). Since we are inter-
ested in aviation’s wider economic impact, we exclude
service-sector activities that are likely to be directly
(through input-output relationships) affected by activity
in the aviation industry.” As such, we consider employ-
ment levels in the Financial, Insurance and Real Estate
Sector and the Professional, Scientific and Technical
Activities and Administrative and Support Service Activi-
ties (levels K-N from the NACE classification system
Rev. 2) (Eurostat, 2008).

As discussed in the third section, the decision to con-
trol for economic indicators (other than employment)
depends on the causal pathways between connectivity,
demand for air travel, the indicator in question, and
employment (see Figure A3 in Appendix A in the sup-
plemental data online). On the one hand, if an indicator
is expected to impact (or be impacted by) employment
but is uncorrelated with demand for air travel, it is better
not to control for the indicator (Figure A3, panel C).
Although some previous studies (e.g., Chi, 2012; Blonigen
& Cristea, 2015) have controlled for productivity and
GDP per capita, we do not include these variables for
said reason. On the other hand, controlling for economic
indicators that are strongly correlated with air travel
demand can help to reduce omitted variable bias and
reverse causality (Figure A3, panel F). For that reason,
we include population size and land area to control for
population density. Glaeser and Kohlhase (2004) show
that service employment is located in densely populated
regions. The population variable is complemented by a
region’s land area, which yields a normalization of a
region’s size and may capture urbanization levels given
that dense urbanized NUTS-3 regions tend to have smal-
ler land areas. Controlling for population also mitigates
the risk of endogenous instruments insofar as airports’
share of flights going to mega-hubs and megacities are
influenced more by a region’s population than its employ-
ment (Brueckner, 2003).

Serafini and Ward (2011) suggest socio-economic
indicators such as vacancies-to-unemployment ratio,
union density and government consumption as control
variables for regressing employment in a European con-
text. This study uses country-fixed (NUTS-0) effects to
capture these and other region-specific effects. Table A5
in Appendix A in the supplemental data online discusses
the invariance of all included variables for yearly and
different NUTS-level fixed effects. Other possible sources
of omitted variable bias are regional differences in non-
aviation transport infrastructure such as intermodal facili-
ties at airports or road network metrics, which might be
driven by general demand for transportation. These

transport infrastructures variables were not included as
controls in the spatial-econometric models due to a lim-
ited set of observations available and low levels of corre-
lation with connectivity, indicating limited risk of
omitted variable bias.®

The economic geography literature suggests that acces-
sibility, defined as a negative function of transfer cost and a
positive function of all destinations’ market value, is an
essential driver of agglomeration and corresponding econ-
omic impacts (Fujita et al., 1999; Lenaerts et al., 2021).
However, most economic impact studies for the aviation
sector do not directly model air services’ impact on linked
markets and transfer costs. Instead, they use traffic
measures such as passengers or seats (Sheard, 2019),
cargo volume or mass (Button & Yuan, 2013), and the
number of flights (Fageda, 2017). Lenaerts et al. (2021)
show that these traffic-based measures are poor proxies
for the accessibility and connectivity created through air
services. For example, these traffic measures do not capture
how air services to a hub airport can create onward connec-
tivity to many more destinations. Following Lenaerts et al.
(2020), we introduce a market connectivity metric: the
global connectivity index (GCI) (Allroggen et al., 2015),
which measures the quantity and quality of all available
non-stop air services and one-stop air services. The GCI
uses flight schedule data to identify all offered non-stop
passenger flight services in a year and has a connection
builder to identify feasible one-stop routings assuming a
set of connection rules (such as codeshare or alliance
requirements and minimum layover times). The quality
of indirect connections is modelled based on frequency,
detours, and layover time. The disutility associated with
detours and layover times for indirect connections is
valued by comparing total travel time of an indirect flight
with a (hypothetical) direct flight (aspatial concept) and
leveraging data on observed passenger behaviour. The
GCI considers destination quality by quantifying the
wealth-adjusted population of destination airports com-
bined with a distance—decay model. The instruments
include (1) the share of flights going to a mega-hub; (2)
the share of flights going to a major tourist destination
(defined as the top 100 destinations based on international
tourist arrivals); (3) the share of flights going to a megacity;
and (4) the instrument designed by Campante and Yana-
gizawa-Drott (2018) (see the third section). These instru-
ments are calculated using the same flight schedule data.

When setting the range of cut-off distance in models D
and E for first- and second-order neighbours, one may
hypothesize the positive economic impacts of airports to
be highly localized to the ‘home region’ of the airport
(e.g., Sheard, 2019; Lakew & Bilotkach, 2018) or within
short distances around the airport (e.g., Allroggen & Mal-
ina, 2014). However, airport catchment areas from where
passengers travel to an airport can extend beyond 50 km.
For example, Lieshout (2012), in his study on Schiphol
Airport, find that areas up to 150 km from the airport
can have more than 50% market share for Schiphol Air-
port, whereas lower market shares hold for catchment
zones between 150 and 300 km away from Schiphol

REGIONAL STUDIES
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Airport. While these airport usage patterns point towards
a possible wider spatial range of economic benefits, it is
unclear whether all regions in a catchment area are subject
to the airport’s net economic benefits. As such, we iterate
the cut-off distance, which serves as the inner limit to the
first-order neighbours in model D and E, between 10 and
200 km. The outer limit, which correspondingly serves as
the maximum distance for the second-order neighbours in
model D and E, is defined as twice the cut-off distance
(Patacchini & Zenou, 2007).” We prefer binary weights
over inverse distance weighting in our spatial weight
matrices for three reasons. First, although inverse distance
weighting is theoretically justified by Tobler’s first law of
geography, it remains an assumption that is imposed
when calculating the lagged variables. By iterating differ-
ent cut-off values using binary weights, the possible pres-
ence of attenuation is left to the data instead. Second,
there is no generally agreed-upon functional form for
inverse distance weighting. Third, binary weights improve
the comparability of the effects associated with the first-
and second-order neighbouring lags.'

RESULTS

Our model estimation results are shown in Tables 2 and 3.
Before discussing the results, we analyse the validity of our
models, specifically concerning stationarity of the time
series (to avoid possible spurious results due to time-series
properties) and instrument validity (to address endogene-
ity concerns).

Non-stationary panel regression may yield consistent
estimates of the true value for many test statistics and esti-
mators of interest (Baltagi, 2005). However, to rule out
non-stationarity as a source of bias, we perform a unit-
root test. The results lead us to accept the alternative
hypothesis that each time series is stationary (see
Table A5 in Appendix A in the supplemental data online).

We test our instruments’ relevance (i.e., to rule out
weak instruments) using the conditional F statistic (San-
derson & Windmeijer, 2016). The F-statistics are
obtained using robust standard errors for all models. The
results are well above the critical values suggested by
Andrews and Stock (2005). Besides, individual #tests in
the first stage models do not reveal any instruments to
appear consistently weak across the endogenous variables.
We test instrument exogeneity (overidentifying restric-
tions) using Sargan’s J-statistic, which does not allow us
to reject the null hypothesis that the over-identifying
restrictions are valid.

Contiguity models

Columns (1) and (2) in Table 2 summarize the results
obtained for models A and B, which focus on airport
impacts (equation 1), specifically air connectivity of a
region determined by airports within its borders (model
A) or the closest airport only (model B). Column (3) sum-
marizes the results of estimating the spatial model con-
taining first- and second-order regional and airport
interaction based on contiguity (equation 2) (model C).

REGIONAL STUDIES

All contiguity models indicate similar findings for the
area and population size. All models report a significantly
negative effect of area and a significantly positive effect of
population size on employment. The area effect captures
an inverse density effect; that is, by increasing the area,
holding all else constant, density decreases and hence,
agglomeration. The first-stage results for models A and
B (see Table A6 in Appendix A in the supplemental
data online) reveal all instrument to be significant with a
negative effect for the share of flights to touristic desti-
nations and positive effects for all other instruments.
The negative effect for touristic flights can be explained
by touristic destinations having neither a large home mar-
ket (for generating non-stop connectivity), nor a large
potential to provide onward connecting flights (for gener-
ating one-stop connectivi‘fy).11

A significant positive effect was found between con-
nectivity and employment in all baseline models. Because
model A does not consider airports located in neighbour-
ing regions when calculating air connectivity of a region, it
is at risk of suffering from selection bias — that is, from bias
due to regions with airports being more likely to have
higher employment than regions without airports. Thus,
it is not surprising to find a higher coefficient estimate
for connectivity in model A than model B, which considers
the air connectivity of a region to be driven by the single
closest airport, regardless of distance. Model B results
are generally in line with model C, which considers air
connectivity in a region to result from airports in all neigh-
bouring contiguous regions. Besides, model C accounts for
connectivity allocated to second-order neighbouring
regions. The impact of the spatial lags in connectivity is
significantly positive but declining, which points towards
the economic impacts of air connectivity to reach beyond
first-order neighbours; in other words: a region may still
benefit from a further-away airport assumed to impact
only on second-order neighbours. This result is potentially
caused by the allocation of air connectivity to regions based
on NUTS-3 borders, which are purely administrative and
have little to no impact on passenger flows.'? Therefore,
we develop a set of models (models D and E) that calculate
air connectivity using distance-based allocation with
different cut-off values. These specifications are discussed
in the following section.

Distance-based iterations

We continue our assessments with the results for the
spatial model containing first- and second-order airport
and regional interaction (equation 2) based on distance
cut-offs and distance-based area shares (models D and
E, respectively). To gain insights into the spatial scope
of economic impacts of airports and lagged employment,
we estimate models D and E for different distance cut-
off values. Table 3 contains parameter estimates of con-
nectivity and spatial lags of employment for model D
using 10, 25, 50 and 100 km distance cut-off values.
Figure 2 presents the same parameter estimates for con-
nectivity impacts of first- and second-order neighbours,
using a broader range of cut-off thresholds. These
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Table 2. Regressions results for the contiguity models A-C.

Model A Model B Model C
Own-airports model Closest-airport model Contiguity model
First-order connectivity 0.0005*** 0.0003*** 0.0003***
(0.0001) (0.0000) (0.0000)
Second-order connectivity 0.0000***
(0.0000)
First-order employment —0.0322***
(0.0052)
Second-order employment —0.0162***
(0.0029)
Area —0.0006*** —0.0006*** —0.0006***
(0.0001) (0.0001) (0.0001)
Population size 0.0928*** 0.0958*** 0.0961***
(0.0025) (0.0018) (0.0019)
Observations 16,018 16,018 16,018
NUTS-3 regions 1343 1343 1343
Airports 521 448 521
R? adjusted with FE 0.735 0.720 0.723
R? adjusted without FE 0.714 0.697 0.700
Sargan test (p-value) 1.00 0.99 1.00
Conditional F-statistic® 77 101 29

Note: Model A considers only airports within each NUTS-3 region (equation 1), model B considers only the closest airport (with a non-missing connectivity
value) (equation 1), and model C considers all airports in contiguous regions of order 1 and 2 (equation 2). Heteroscedasticity-consistent or White-cor-
rected standard errors are shown in parentheses. ***, ** and *Significance at the 1%, 5% and 10% levels, respectively.

“For multiple endogenous variables, the smallest F-statistic is shown. For first-stage results, see the supplemental data online.

observations are robust to using the area-weighted dis-
tance-based specification from model E (see Table A8
and Figures A16-A18 in Appendix A in the supplemental
data online).

Overall, we find the results of the models for the distance
cut-offs presented in Table 3 to be in line with the results
obtained from models A, B and C (Table 2). The estimates
for the area and population size are very close to those from
the contiguity models, indicating the presence of an inverse
density effect and that population size is associated with
higher employment levels, respectively. Looking at a
broader range of cut-offs (Figure 2),* we find positive
impacts of air connectivity on first-order neighbours (in
line with the contiguity models) that decline rapidly over
the first 60 km. In comparison, the shadow impacts on
second-order neighbours are most dominant over the first
30 km (i.e., for regions that are no more than 30 km away
from the airport). This suggests that airports’ positive
impacts (linked to demand linkage and agglomeration spil-
lover effects) can be found in close proximity to airports,
whereas agglomeration shadow impacts are limited to
immediate second-order neighbours. The positive effect
of employment agglomeration declines more rapidly
(more localized) due to more pronounced agglomeration
shadow effects on immediate second-order neighbours;
compared with connectivity, the second-order neighbours’
impacts become insignificant over longer distances.

As a robustness check, we drop the population and
area controls (see Figures A10 and All in Appendix

A in the supplemental data online). Similarly to Figure
2, the first-order lagged connectivity effects attenuate
to zero before turning negative while remaining signifi-
cant. The second-order effects are positive for short dis-
tances; the lagged employment effects oscillate between
positive and negative. The irregularity of these spatial
trends (cf. Figure 2) emphasizes the importance of nor-
malizing a region’s size when quantifying spatial-econ-
omic impacts, possibly due to measurement problems
associated with spatial units (Arbia, 1989). Our results
are robust to including a year 2008 dummy to control
for the 2008 financial crisis (see Figures A19 and 20
online). Next, we rerun our analysis with different sub-
sets of instruments to check the validity and robustness
of our instrumentation approach. Without instruments
(see Figures A12 and A13 online), the first-order mar-
ginal effects of lagged connectivity retain their spatial
trends but no longer attenuate to zero; the total effects
are higher by one order of magnitude (compared with
using all four instruments). These persistently higher
positive effects are consistent with the expected positive
bias of reverse causality. When used individually (see
Figures Al4 and A15 online), all four instruments
show spatial trends and effect sizes similar to Figures
2 and 4.

The attenuation impacts shown in Figure 2 suggests that
both agglomeration of employment and access to air con-
nectivity create localized positive impacts in close-by
regions, but negative (agglomeration shadow) impacts

REGIONAL STUDIES
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Table 3. Regression results for the distance-based model D for different cut-off values (km).

10 25 50 150
First-order connectivity 0.00025** 0.00026*** 0.00016*** 0.00003***
(0.00010) (0.00004) (0.00003) (0.00001)
Second-order connectivity -0.00008 0.00001 0.00000 —-0.00000***
(0.00007) (0.00000) (0.00000) (0.00000)
First-order employment 0.16837*** 0.03272*** 0.00885*** 0.00272***
(0.01739) (0.00584) (0.00309) (0.00071)
Second-order employment -0.01147 —0.01644*** —0.00442*** -0.00038
(0.00851) (0.00271) (0.00165) (0.00040)
Area —-0.00051 *** —-0.00048*** —-0.00050*** —-0.00059***
(0.00006) (0.00006) (0.00006) (0.00008)
Population size 0.09599*** 0.09383*** 0.09446*** 0.09738***
(0.00173) (0.00179) (0.00173) (0.00172)
Observations 16,018 16,018 16,018 16,018
NUTS-3 regions 1343 1343 1343 1343
Airports 679 679 679 679
R? adjusted with FE 0.758 0.747 0.741 0.727
R? adjusted without FE 0.738 0.726 0.720 0.705
Sargan test (p-value) 1 1 1 1
Conditional F-statistic? 34 42 62 95

Note: Results are from country- and time-fixed effects spatial panel regressions with annual data from 2001 until 2012. Robust standard errors are shown
in parentheses. The dependent variable is a subset of service employment (measured per 1000 employed persons). ***, ** and *Significance at the 1%,

5% and 10% levels, respectively.
?For multiple endogenous variables, the smallest F-statistic is shown.

further away. However, before accepting this interpretation,
we rule out that these trends are an artefact of our model. By
increasing the distance cut-off, the lagged variables cover an
increasing number of regions; thus, the lagged variables
increase as employment or connectivity are summed over
more regions or airports, possibly depressing the scale of
the coefficient. We analyse this potential artefact by con-
ducting a post-estimation procedure that calculates relative
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effects (or pseudo-densities) as a 10% increase in either con-
nectivity or lagged employment per lag area considered.™
These pseudo-densities are unaffected by the scale of the
lagged variables and thus only capture agglomeration
effects. As shown in Figure 3, the general result is robust
to this procedure. As such, the iterated marginal effects of
connectivity and lagged employment do show attenuation
effects in agglomeration.
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Figure 2. Marginal effects from model D for the first- and second-order lags in (left) connectivity and (right) employment.
Note: Iterated results for model D (equation 2) using the distance-based weights matrix specification (specification Il from Figure
1). Cut-offs shown represent the border between first- and second-order neighbours. Yearly and country-level (NUTS-0) fixed
effects. Controlling for the area and population size. A total of 16,018 observations for 1343 regions (number of airports varies).
Heteroscedasticity-consistent or White-corrected standard errors used for significance.
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Figure 3. Relative effects from model D at the average per area (km?) for the first- and second-order lags in (left) connectivity

and (right) employment.

Note: Iterated results for model D (equation 2) using the distance-based weights matrix specification (specification Il from Figure
1). Cut-offs shown represent the border between first- and second-order neighbours. Relative effects calculated as the (absolute)
increase in employment per NUTS-3 region following a 10% increase in density, using the formula: 0.10b,x/A, where A rep-
resents the area, that is, A = mcutoff? for the first-order neighbours and A = 7(2 x cutoff)? — arcutoff? for the second-order

neighbours; and x represents the spatial lags in employment and connectivity.

Given localized positive impacts on first-order neigh-
bours and negative impacts on second-order neighbours,
we compute the overall net effect of air connectivity and
employment agglomeration on economic development
(see Text Al in the supplemental data online). These
net effects, however, are calculated for models with differ-
ent distance cut-offs. To control for differences in the
spatial scope caused by varying the cut-off (i.e., at larger
cut-off values, more regions are impacted), we calculate
the average impact per impacted region. Figure 4 shows
that the overall impacts of lagged connectivity and
employment are positive for all model D variations with
different distance cut-off values, which is in line with
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results from Campante and Yanagizawa-Drott (2018).
This observation points towards overall positive economic
development impacts of employment agglomeration and
air connectivity, and hence not a zero-sum game. We
find the captured total impacts to increase rapidly over
the first 30 and 50 km for both air connectivity and lagged
employment, respectively. This range is consistent with
the results from estimating the marginal impact, which
shows significant positive first-order neighbours” impacts
within these ranges. With further increases in the cut-off
value, the first-order impacts (which act as a type of total
effect by incorporating the second-order effect at smaller
cut-offs) decline as more shadow impacts are considered.
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Figure 4. Average total effect per impacted region from model D from a 1 unit increase in (left) connectivity and (right) employ-

ment.

Note: Iterated results for model D (equation 2) using the distance-based weights matrix specification (specification Il from
Figure 1). Cut-offs shown represent the border between first- and second-order neighbours.
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We illustrate the implication of our results by calculat-
ing employment impacts of increasing air connectivity at
an airport by 2200 points,ls which is equivalent to 5% of
the year 2012 connectivity score of Brussels airport. As a
case study, we consider two different areas: a 20-km radius
(inner circle with 10 km radius and outer ring with 10 km
width) and a 50-km radius (inner circle with 25 km radius
and outer ring with 25 km width) (see Tables A9 and A10
in Appendix A in the supplemental data online). For the
average NUTS-3 region, an increase in air connectivity
by 2200 units considering a 20-km radius yields a summed
impact of 193 additional service-sector jobs: 279 extra jobs
due to connectivity increases in the first-order neighbours
and 86 jobs lost due to a similar increase in connectivity in
the second-order neighbours. For the average NUTS-3
region to experience the same increase in jobs (for the
same radius considered), employment in the surrounding
regions (neighbours) would need to increase by 2500 ser-
vice-sector jobs: 210 extra jobs are gained due to employ-
ment increases in the first-order neighbours and 14 jobs
are lost due to a similar increase in employment in the
second-order neighbours. Looking at a radius of 50 km,
an increase in air connectivity by 2200 units yields a
summed impact of 298 additional service-sector jobs:
291 extra jobs due to improved air access nearby (the
adverse impact from increasing connectivity far-away is
near-zero for this cut-off level). For the average NUTS-
3 region to experience the same increase in jobs, employ-
ment in the surrounding regions (neighbours) would need
to increase by 36,000 service-sector jobs: 589 jobs are
gained due to the increased access to employment nearby
but also 296 jobs are lost due to the increased employment
far-away. Since lagged connectivity and employment have
different spatial allocations (connectivity being concen-
trated in small areas encompassing airports and employ-
ment being spread out over entire NUTS-3 regions),
however, care should be taken when comparing their rela-
tive impacts.

DISCUSSION

Overall, our results imply positive employment impacts of
air transport connectivity, which are concentrated in the
vicinity of airports (below 30 km cut-off from airport).
At the same time, second-order neighbours further away
are negatively impacted by increases in connectivity (for
maximum outer distances up to 60 km), which points
towards the existence of agglomeration shadow effects at
distances further away. By increasing the cut-off distance,
the localized positive impacts of connectivity become
mixed with the adverse shadow effects, which explains
the reduction in the absolute value of both the positive
first-order and adverse second-order marginal effects. In
sum, these results provide evidence for a very localized
nature of agglomeration economics. These localized
impacts of aviation contrast with the much bigger catch-
ment areas reported by Lieshout (2012), showing that
demand patterns and economic impact patterns of airports
are not necessarily interrelated. The spatial extent observed
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for the economic impacts follows previous findings at the
commuting area (Patacchini & Zenou, 2007) and city level
(Redding & Sturm, 2008) but is less localized than those
observed by previous studies using postal codes (Duranton
& Overman, 2005; Rosenthal & Strange, 2003) and more
localized than previous studies at the provincial or county
level (Hanson, 2005; Mion, 2004).

These findings have relevant implications for policy-
makers in their quest to develop regional airports. In
recent years, many regional governments, which often
act as airport shareholders or operators in Europe, have
offered airlines incentives for route and traffic develop-
ment (Allroggen et al., 2013; Malina et al., 2012;
Nufiez-Sdnchez, 2015). One reason for granting these
incentives is the perception that better air links cause a
competitive advantage for a region, thereby creating jobs
and income. Our results provide some support for this
reasoning. Within the European Union, regional state
aid for airports is only allowed if the aid is compatible
with the internal market provisions; that is, state aid
should be aimed at regional development or accessibility
and should not distort the market or adversely affect
trade within the European Union (European Commis-
sion, 2013). In practice, aid for operating, infrastructure
investment or launching new routes must be temporary
and restricted to small airports only. Recent examples
from France regarding Béziers and Montpellier airports
(European Commission, 2019a, 2020) show the difficulty
of carefully balancing the trade-off between ensuring free
airport competition on the one hand and regional compe-
tition for air connectivity and its resulting impacts on the
other.

Inlight of the current legal framework in Europe, a rel-
evant question for policymakers is whether regions indeed
suffer a competitive disadvantage from having limited
access to the air transport network. The present study pro-
vides two-fold evidence in that regard. First, the positive
service sector employment effects, which would be in
addition to potential direct effects of airport activity, are
limited to a radius of approximately 60 km around the air-
port. Second, improvements in regional connectivity come
at the expense of economic growth being diverted from
other regions — with the net impact being positive, on
average. The current legal framework does not explicitly
weigh the positive and negative effects of improved air
access, but including such thinking could avoid wasteful
competition among European regions in attracting con-
nectivity through state aid.

CONCLUSIONS

This study is the first to systemically quantify the wider
economic impacts of aviation, including its spatial distri-
bution, by applying the NEG and spatial-econometric
models. We quantify the aggregate agglomeration and
spillover effects and agglomeration shadow effects from
access to air connectivity using NUTS-3 regions in
Europe for the years 2001-12. For this purpose, we

employ various spatial-econometric speciﬁcations for
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capturing proximity. Our spatial model of choice incor-
porates distance-based weight matrices, allowing us to
iterate the cut-off distance and study agglomeration at
a more refined geographical level and measure potential
spatial attenuation effects over distance.

The results show air connectivity in first-order (nearby)
neighbours to affect employment positively (agglomera-
tion impacts) and in second-order (remote) neighbours
to affect employment negatively (agglomeration shadow).
The marginal effects of connectivity attenuate quickly for
the first 60 km. The second-order air connectivity effects
diminish to near-zero within the first 30 km — that is,
for regions that are no more than 30 km away from the air-
port. As a result, the average total impact of connectivity is
positive and peaks at a radius of around 30 km but declines
quickly. Compared with airport catchment areas (Liesh-
out, 2012, p. 2), the impacts of air connectivity are more
localized. Therefore, we show that airport catchment
areas do not necessarily overlap with an airport’s economic
impact area. The spatial extent of the agglomeration
effects detected follows previous non-aviation studies on
a similar regional level (Hanson, 2005; Mion, 2004; Patac-
chini & Zenou, 2007; Redding & Sturm, 2008) but are
significantly more localized than in previous studies esti-
mating agglomeration at the postal code level (Duranton
& Overman, 2005; Rosenthal & Strange, 2003).

Our results are in line with recent evidence suggesting
that improved air services can benefit core regions at the
expense of peripheral regions with an overall positive
impact (Campante & Yanagizawa-Drott, 2018). Our
study improves upon existing work through (1) the appli-
cation of a theoretically sound air connectivity index; (2)
the use of an explicit spatial-econometric model with
different specifications and aviation network-driven
instruments; (3) the separate estimation of nearby and
remote spatial effects as hypothesized by the NEG; and
(4) the calculation of total effects for different cut-off dis-
tances, allowing a more refined overall impact estimation
of air connectivity.

Our findings have important policy implications for
regional airport development. They support the idea that
regions without a local airport might suffer a competitive
disadvantage since (1) airports only generate very localized
positive impacts (peaking around a radius of 60 km); and
(2) since access to airports is not ubiquitous, improvements
in regional connectivity can result in (relative) disadvan-
tages for other regions.

The major limitation of our study is that access to air-
ports is proxied by distance. Further research should focus
on exploring alternative measures of airport access like
road travel time. Similarly, this study does not consider
national borders, which might act as barriers to labour
mobility, for example following Brexit. In the same vein,
access to the airport might be a function of airport size
and traffic offering if larger airports enjoy larger catchment
areas. Another limitation of this study is the small set of
control variables. Furthermore, we only calculate average
spatial effects, and therefore, spatial heterogeneity (i.e.,
differential impacts between members of the European

Union) is not considered (Chi, 2012). These expansions
of our work are left for future research.
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NOTES

1. Night lights are used as a proxy for economic activity.
2. Except for simultaneous lags in the dependent vari-
able, independent variables and error terms.

3. Bold text represents matrices, italic text represents vec-
tors and plain text refers to scalars.

4. Indicators that are impacted by both connectivity and
employment acts as colliders and should not be controlled
for (see Figure A3, panel B, in Appendix A in the sup-
plemental data online).

5. From a technical point of view, even if the relationship
between flight shares and connectivity were bidirectional,
that would not cause the instrument to be endogenous.
One counter-argument to the exogeneity of megacity
shares is that abnormally high employment levels might
be linked to activities of international organizations
(such as the United Nations, including its specialized
agencies: the World Bank, the Organization for Economic
Co-operation and Development (OECD), European
Communities, etc.) and activities of diplomatic and consu-
lar missions, which are concentrated in just a few cities and
frequently interact, violating the exogeneity condition for
the share of flights to megacities. However, given that
this type of employment (level U from the NACE classi-
fication system) only makes up < 1% of the employment
levels considered here at country level (see the fourth sec-
tion) (Eurostat, 2021), the correlation between employ-
ment and megacity flight shares may not be substantial.
6. Note that X represents X, here, but it can also rep-
resent weighted covariates if included.

7. We are interested in the catalytic impact of aviation as a
driver of productivity growth and an attractor of economic
activity. Therefore, we exclude employment derived from
the construction and operation of airports and corresponding
chain of suppliers of goods and services, and the employment
generated by the spending of incomes by these employees.
8. The variables mentioned are area of intermodal trans-
port at the airport (available for 89 out of 679 airports used
in the analysis, ranging from 2003 to 2012) (Eurostat,
2022) and population accessible within 90 min by road
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and road transport performance (available for 1175 out of
1343 NUTS-3 regions used in the analysis, for 2016)
(European Commission, 2019b). All three variables yield
a correlation coefficient of less than 25% with air
connectivity.

9. This restriction reduces noise in the allocation of the
outer spatial weights matrices and results in sparse spatial
weight matrices, leading to increased computational effi-
ciency (Pace & Barry, 1997). Additionally, using distance
permits correcting for border effects in connectivity by
considering airports in European countries outside the
European Union (see Figure A2 and Table A4 in Appen-
dix A in the supplemental data online). Results are similar
when the limit is set to /2 x cut-off (so both zones have
equal area) and 4 x cut-off (see Figures A8 and A9 online).
10. The share-based weights used in model E also allow
comparing the first- and second-order neighbouring lags
as the weights are calculated similarly for both types of lags.
11. Without instrumentation, the impact of connectivity
increases for model A and decreases for models B and C
(see Table A7 in Appendix A in the supplemental data
online).

12. Similarly, we find the contiguity-based first- and
second-order impacts of employment to be negative.
This result is unexpected and may also be driven by the
artificial definition of NUTS-3 region borders. This effect
is analysed further in the fifth section.

13. Due to their relative cut-off independence, the popu-
lation and area effects and the model diagnostics (R?,
instrument validity tests) are not repeated for the broader
range of cut-offs (Figure 2).

14. These impacts can be calculated as 0.104, %/4, where
b, represents the coefficient estimates; A4 represents the
area, that is, 4 = mcutoff” for the first-order neighbours
and 4 = n(2 x cutoff)” — ncutojj@ for the second-order
neighbours; and x represents the spatial lags in employ-
ment or connectivity.

15. We assume the airport is located 10 and 25 km (pre-
cisely at the edge between the inner and outer neighbours),
respectively, from the region under study so that both sets
of neighbours experience in increase in connectivity of
1100 units.
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