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Abstract

A graph G has an associated multimatroid Z3(G), which is equivalent
to the isotropic system of G studied by Bouchet. In previous work it
was shown that G is a circle graph if and only if for every field F, the
rank function of Z3(G) can be extended to the rank function of an F-
representable matroid. In the present paper we strengthen this result
using a multimatroid analogue of total unimodularity. As a consequence
we obtain a characterization of matroid planarity in terms of this total-
unimodularity analogue.

1 Introduction

The outline of the theory of circle graphs and local complementation was set
forth by André Bouchet in a series of papers published over several decades.
Much of his work involved two kinds of combinatorial structures, delta-matroids
[2, 4] and isotropic systems [5]. In the late 1990s, Bouchet unified these two
structures by introducing a common generalization, called a multimatroid [6].

To state the definition of a multimatroid we need some terminology regarding
partitions. If Ω is a partition of a set U then the elements of Ω are called skew
classes. A transversal of Ω is a subset of U that contains precisely one element
of every skew class, and a subtransversal of Ω is a subset of a transversal.
The sets of subtransversals and transversals of Ω are denoted S(Ω) and T (Ω),
respectively. We use 2S to denote the power set of a set S. In this paper we
assume knowledge of some basic matroid-theoretic notions, see, e.g., [13, 14] for
an introduction.

Definition 1. A multimatroid Z (described by its rank function) is a triple
(U,Ω, r), where Ω is a partition of a finite set U and r : S(Ω)→ N is a function
such that for each S ∈ S(Ω)

• (S, r|2S ) is a matroid (described by its rank function), where r|2S denotes
the restriction of r by 2S, and
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• if x and y are distinct elements of a skew class of Ω disjoint from S, then
max{r(S ∪ {x}), r(S ∪ {y})} > r(S).

If T ∈ T (Ω), then the matroid (T, r|2T ), denoted by Z[T ], is called the
transverse matroid of Z corresponding to T . Also, if each skew class has at
least two elements, then Z−T := (U −T,Ω′, r|2U−T ) with Ω′ = {ω−T | ω ∈ Ω}
is a multimatroid.

A multimatroid in which every skew class has exactly k elements is called a
k-matroid.

Definition 2. A multimatroid Z = (U,Ω, r) is sheltered by a matroid M if M
is a matroid on U whose rank function restricts to r. If the rank of M is the
maximum value of r(S) with S ∈ S(Ω), then M is a strict sheltering matroid
for Z.

In his fourth paper on multimatroids [7], Bouchet introduced a rather com-
plicated notion of representability inspired by both his notion of representability
for delta-matroids [2] and Tutte’s notion of matroid representability using chain
groups. We do not know of any other research on multimatroids that has been
done using Bouchet’s notion of representability.

In recent work a different notion of multimatroid representability is used,
which seems more natural: a (strict) F-representation of a multimatroid Z is
an F-representation of a (strict) sheltering matroid for Z. We say that Z is
(strictly) representable over F if it has a (strict) F-representation.

We use the following notation for matrices. If X and Y are finite sets then
an X × Y matrix has rows and columns that are not ordered, but are indexed
by X and Y (respectively). Suppose G is a looped simple graph, i.e., a graph
which may have loops but has no more than one loop at any vertex, and no
more than one edge connecting any two vertices. The adjacency matrix A(G)
of G is a V (G) × V (G)-matrix over GF (2), where, for u, v ∈ V (G), the entry
of A(G) indexed by (u, v) is 1 if and only if there is an edge between u and v.
In particular, loops are represented by nonzero diagonal entries in A(G). Recall
that an X × Y matrix A represents a matroid M with ground set Y , where,
for all Y ′ ⊆ Y , the rank of Y ′ in M is equal to the rank of A restricted to the
columns of Y ′. A matroid is called binary if it is represented by a matrix over
GF (2).

Definition 3. If G is a looped simple graph, then the isotropic matroid M [IAS(G)]
of G is the binary matroid represented by the GF (2)-matrix

IAS(G) =
(
I A(G) I +A(G)

)
,

where I is the V (G)× V (G) identity matrix.

Each vertex v ∈ V (G) corresponds to a 3-element subset of the ground set
U of M [IAS(G)], called the vertex triple of v, consisting of the column indices
corresponding to the v-columns of I, A(G), and I+A(G) in IAS(G). Note that
the vertex triples partition U . It turns out that M [IAS(G)] shelters a 3-matroid
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(U,Ω, r), denoted by Z3(G), where Ω is the set of vertex triples of vertices of G.
Notice that IAS(G) provides a strict GF (2)-representation of Z3(G), so Z3(G)
is strictly representable over GF (2).

Recall that a matroid M is regular if it satisfies any of these equivalent
conditions. (See, e.g., [13].)

(a) M is representable over GF (2) and some field of characteristic 6= 2.

(b) M is representable over all fields.

(c) M is represented over R by a matrix of integers U which is totally uni-
modular, i.e., every square submatrix of U has determinant in the set
{−1, 0, 1}.

The smallest non-regular binary matroids are the Fano matroid F7 and its dual
F ∗7 , represented by the GF (2)-matrices (I3 A) and (I4 AT ) respectively, where
I3 and I4 are the identity matrices of dimensions 3 and 4 and

A =

0 1 1 1
1 0 1 1
1 1 0 1

 .

At first glance the theory of regular matroids does not seem to be relevant to
isotropic matroids. For instance, the above representation of F7 is a submatrix
of IAS(K3), and so the isotropic matroid of K3 is not regular. The next result
from [8] shows however that the multimatroids associated with circle graphs
have some special properties reminiscent of regular matroids. We recall the
definition of a circle graph in Section 4. Recall that Z3(G) is, by definition,
representable over GF (2).

Theorem 4 ([8]). These properties of a simple graph G are equivalent.

1. G is a circle graph.

2. Z3(G) has a strict representation A over R containing only integer entries
that is “transversely unimodular”. That is, for every transversal T of the
set of skew classes of Z3(G), the determinant of the square submatrix
obtained from A by retaining only the columns of T is in {−1, 0, 1}.

3. Z3(G) is representable over some field of characteristic different from 2.

4. For every transversal T of the set of skew classes of Z3(G), the 2-matroid
Z3(G)−T is representable over some field of characteristic different from
2.

Properties 3 and 4 remain equivalent to the others if the phrase “over some
field of characteristic different from 2” is replaced with “over all fields”. These
equivalences are strongly reminiscent of the equivalent descriptions (a) and (b)
of regular matroids mentioned above. On the other hand, property 2 of Theo-
rem 4 seems weaker than the analogous property (c) of regular matroids, as the
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unimodularity property of property 2 applies only to submatrices correspond-
ing to transversals, not arbitrary subtransversals. In fact, square submatrices
corresponding to subtransversals in the representation matrices considered in
[8] can have various determinants; for instance, some entries of these matrices
are equal to 2. It is important to realize that property 3 of Theorem 4 does
not require Z3(G) to have a single sheltering matroid that is representable both
over GF (2) and over some field of characteristic 6= 2; there may be different
sheltering matroids representable over different fields (see Remark 35 below).

It is also important to realize that property 4 of Theorem 4 implies that
for every transversal T , the transverse matroid Z3(G)[T ] is regular; but this
property is strictly weaker than property 4. For instance, it is easy to see that
even though the wheel graph W5 is not a circle graph, the transverse matroids
of Z3(W5) are all regular. Indeed, the smallest non-regular binary matroids F7

and F ∗7 each have 7 elements, while the transverse matroids of Z3(W5) have
only 6 elements.

The implications 2 =⇒ 3 and 3 =⇒ 4 of Theorem 4 are fairly obvious, and
4 =⇒ 1 is a fairly direct consequence of Bouchet’s well-known characterization
of circle graphs by forbidden vertex-minors. The difficult part of the proof of
Theorem 4 in [8] is a long and technical argument that verifies the implication
1 =⇒ 2 using interlacement graphs with respect to Euler systems in 4-regular
graphs.

In the present paper we strengthen the proof of the implication 1 =⇒ 2
in Theorem 4. Let us say that a representation of Z3(G) over R is totally
transversally unimodular if every square submatrix of that representation such
that the column indices form a subtransversal has determinant in {−1, 0, 1}.
We show the following (using Theorem 4 for the if direction).

Theorem 5. Let G be a simple graph. Then G is a circle graph if and only if the
3-matroid Z3(G) has a totally transversally unimodular representation. If this
is the case then there exists a totally transversally unimodular representation of
Z3(G) that is strict.

Since the requirement of total transversal unimodularity applies to all sub-
transversals, Theorem 5 provides a property analogous to property (c) of regu-
lar matroids. This completes the analogy between regular matroids and circle
graphs. The proof of Theorem 5 also provides a new insight into the situation
by highlighting a natural connection, through a new notion called the edge-
transition incidence matrix, between the cycle space of a 4-regular graph F ,
the cycle spaces of touch-graphs of circuit partitions of F , and the transverse
matroids of Z3(G) of circle graphs G associated to Euler systems of F . (We
recall the definition of a touch-graph in Section 3.)

A matroid is said to be planar if it is isomorphic to the cycle matroid of a
planar graph. Recall that the fundamental graph of a matroid M with respect
to a basis B of M is the bipartite graph where for x ∈ B and y an element of M
not in B, x is adjacent to y if x is in the fundamental circuit of y with respect to
B. In [8, Theorem 50] it is shown that a binary matroid M is planar if and only
if Z3(G), with G a fundamental graph of M , is representable over GF (2) and
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over some field of characteristic different from 2. Since this property of Z3(G) is
equivalent to Z3(G) having a totally transversally unimodular representation,
we immediately obtain the following characterization of planarity.

Corollary 6. Let M be a binary matroid. Then the following three conditions
are equivalent:

• M is planar,

• the 3-matroid Z3(G) has a strict, totally transversally unimodular repre-
sentation for some fundamental graph G of M , and

• the 3-matroid Z3(G) has a strict, totally transversally unimodular repre-
sentation for every fundamental graph G of M .

Finally, in Section 5 we efficiently obtain new proofs of some essential results
of [8] using constructions introduced in this paper.

2 Preliminaries

The main purpose of this section is to fix definitions of some well-known graph-
theoretical notions.

2.1 Walks and circuits

We consider graphs where loops and multiple edges are allowed. The notion of
a half-edge will be important in this paper and so we explicitly define graphs
using half-edges.

A graph G is a 4-tuple (V,H,E, ε), where V and H are finite sets, E is a
partition of H in (unordered) pairs, and ε : H → V is a function. The elements
of V , H, and E are called vertices, half-edges, and edges of G, respectively. We
denote V , H, and E by V (G), H(G), and E(G), respectively. The number of
connected components of G is denoted by c(G).

A directed graph is defined analogously; the only difference is that E is then
a partition of H in ordered pairs. In that case, for e = (h1, h2) ∈ E, h1 and h2

are called the tail and head of e, respectively. We also say that e is directed
from ε(h1) toward ε(h2).

A vertex v and half-edge h are called incident if ε(h) = v. A single transition
is an unordered pair {h1, h2} of half-edges incident to a common vertex. A
directed single transition is an ordered pair (h1, h2) of half-edges incident to
a common vertex; we say that h1 is directed toward the vertex, and h2 is
directed away from the vertex. For this paper it is convenient to fix a formal
definition of a walk (and related notions like circuits and cycles) using single
transitions. A closed walk W is a sequence ((h1, h2), . . . , (hn−1, hn)) of directed
single transitions, where {hn, h1} is an edge and {hi, hi+1} is an edge if i ∈
{1, . . . , n − 1} is even. We consider closed walks modulo cyclic shifts, i.e., we
assume that closed walks have no distinguished starting vertex. We say that W
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traverses e if the half-edges of e appear in some directed single transitions of
W . A nonempty closed walk W is an oriented circuit if each half-edge appears
at most once in W . Thus an oriented circuit visits each edge at most once, but
there may be vertex repetitions. We (may) conveniently represent an oriented
circuit ((h1, h2), . . . , (hn−1, hn)) as the nonempty set {(h1, h2), . . . , (hn−1, hn)}
since we assume no distinguished starting vertex. An oriented cycle is a set C
of oriented circuits such that every edge is traversed by at most one oriented
circuit from C.

The notions of a cycle and circuit capture the notions of an oriented cycle
and an oriented circuit where we additionally forget the orientation, i.e., each
directed single transition is replaced by its corresponding single transition. Note
that, just like an oriented circuit, a circuit may visit a vertex more than once.

2.2 Cycle bases

Let us recall the well-known notion of an incidence matrix.

Definition 7. The incidence matrix of a directed graph D is the V (D)×E(D)-
matrix M over Q where entry Mv,e with v ∈ V (D) and e ∈ E(D) is 1 if v is
incident to the tail but not the head of e, −1 if v is incident to the head but not
the tail of e, and 0 otherwise.

The cycle space of D is the right nullspace of its incidence matrix.
Let G be a graph and D be a directed version of G. For a closed walk W

of G, we let σ(D,W ) ∈ ZE(D) be obtained from the zero vector by tallying +1
(−1, resp.) for the entry with index e each time W traverses e along (against,
resp.) the direction of D. We call σ(D,W ) the incidence vector of W in D. For
a set S of closed walks, we write σ(D,S) = {σ(D,W ) |W ∈ S}.

The cycle space of D is equal to spanQ(σ(D,S)), where S is the set of
oriented circuits of G. Note that we can equivalently define the notion of cycle
space in terms of closed walks or oriented cycles instead of oriented circuits.
The following elementary property of cycle spaces will be useful later.

Lemma 8. Let D be a directed version of a graph G and s ∈ QE(D). There is
an oriented cycle C of G with s = σ(D,C) if and only if s is an element of the
cycle space of D and every entry of s is in {−1, 0, 1}.

Proof. If s = σ(D,C) for some oriented cycle C, then certainly s is an element
of the cycle space of D and every entry of s is in {−1, 0, 1}.

The converse is verified by induction on the number of nonzero entries of s.
For simplicity, we reverse the direction of every edge of D whose correspond-
ing entry in s is −1, and proceed with the assumption that every entry of s
is in {0, 1}. If s is the zero vector, then s = σ(D, ∅). Otherwise, let e1 be
an edge with s(e1) = 1. Let h1 be the head of e1. Since s is in the right
nullspace of the incidence matrix of D, the vertex v1 incident to h1 is also in-
cident to a half-edge h2 that is the tail of an edge e2 = (h2, h3) ∈ E(D) and
has s(e2) = 1. We observe that (h1, h2) is a directed single transition. Con-
tinuing in this fashion with the head h3 of e2, we obtain an oriented circuit
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C1 = {(h1, h2), (h3, h4), . . . , (hn−1, hn)}. Now, s−σ(D,C1) is an element of the
cycle space of D having the same entries as s for the edges not traversed by
C1, and zero entries for the edges traversed by C1. By the inductive hypoth-
esis, the assertion of this lemma applies to s − σ(D,C1), so it also applies to
s = (s− σ(D,C1)) + σ(D,C1).

A cycle basis of D is a set B of closed walks of G such that σ(D,B) is of
cardinality |B| and forms a basis of the cycle space of D.

Remark 9. We remark that the notion of cycle basis as defined here in terms
of closed walks is more general than usual in the literature. In particular, we
allow vertex and edge repetitions (i.e., a closed walk may visit a vertex or edge
more than once). We need to allow vertex repetitions when we consider oriented
circuits induced by Eulerian circuits in Section 5.

Note that if D1 and D2 are directed versions of G, then B is a cycle basis
of D1 if and only if B is a cycle basis of D2. Therefore, we (may) speak of a
cycle basis of G. Similarly, a cycle spanning set of G is a set I of closed walks
of G such that there is a subset B of I that is a cycle basis of G. Since a
maximal forest of G has |V (G)| − c(G) edges, for any cycle basis B of G, we
have |B| = |E(G)| − (|V (G)| − c(G)).

We say that a cycle spanning set B of D is integral if every closed walk W of
D has σ(D,W ) ∈ spanZ(σ(D,B)). That is, a cycle spanning set B is integral if
for each closed walkW , we have that σ(D,W ) is a linear combination of elements
from σ(D,B) using integer coefficients, i.e., σ(D,W ) =

∑
W ′∈B λW ′σ(D,C ′)

where λW ′ ∈ Z for all W ′ ∈ B. An integral cycle basis is an integral cycle
spanning set that is also a cycle basis.

Note that the notion of integral cycle basis is also independent of the chosen
directed version D of G. Hence we (may) speak of an integral cycle basis (or
spanning set) of G.

3 Cycle bases of touch-graphs

Recall that a graph is called k-regular if every vertex is incident to exactly k
half-edges. Since a circle graph is uniquely determined by fixing Euler circuits
for each connected component of a 4-regular graph (see the definition of a circle
graph in Section 4 below), the theory of circle graphs is intimately connected
to the theory of 4-regular graphs.

In this section we recall the definition of the touch-graph of a circuit par-
tition of a 4-regular graph. We also introduce the notion of an edge-transition
incidence matrix, which is closely related to the notion of an incidence matrix
and is central in the proof of the main result of this paper (Theorem 5).

A circuit partition P of a 4-regular graph F is a cycle such that every
half-edge of F occurs in exactly one circuit of P . So, informally, P partitions
the edges of F into circuits. Circuit partitions can be described in terms of
transitions. If F is 4-regular then for a vertex v ∈ V (F ), a transition at v is a
partition of the set of half-edges incident to v in pairs; equivalently, it is a pair
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Figure 1: A 4-regular graph F (left) and a circuit partition P of F (right).
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Figure 2: The graph Tch(P ) with P from Figure 1.

of disjoint single transitions at v. The set of transitions of F is denoted T(F ).
A transversal of T(F ) contains exactly one transition for each vertex of F .

For a circuit partition P , denote by τ(P ) the transversal of T(F ) that in-
cludes the transitions t corresponding to P (i.e., each single transition of t is in
a circuit of P ). Conversely, each transversal T of T(F ) uniquely determines a
circuit partition P with τ(P ) = T .

Each transition t ∈ τ(P ) corresponds to an edge in a graph called the touch-
graph of P [3]. The touch-graph encodes the incidences between the circuits of
P and the single transitions of F .

Definition 10. Let P be a circuit partition of a 4-regular graph F . Then the
touch-graph of P , denoted by Tch(P ), is the graph (P, ξ(P ), τ(P ), ε), where
ξ(P ) :=

⋃
P is the set of single transitions corresponding to P and ε maps

every s ∈ ξ(P ) to the C ∈ P such that s ∈ C.

According to the definition, the edges of Tch(P ) correspond to elements of
τ(P ). As τ(P ) has one element for each vertex of F , the edges of Tch(P ) also
correspond to vertices of F . Therefore the touch-graphs of the circuit partitions
of F are all related to each other through bijections of their edges.

Example 11. Consider the 4-regular graph F on the left-hand side of Figure 1.
We use F as a running example. The right-hand side of this figure represents
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Figure 3: An Eulerian circuit C of F (left) and an orientation D of C (right).

a circuit partition P of F by depicting τ(P ) in blue. We notice that |P | = 2,
so Tch(P ) has two vertices. Moreover, the single transitions of the transition tc
at c in τ(P ) belong to a common circuit of P , so tc is a loop in Tch(P ). The
single transitions of the transitions in τ(P ) at a, b, and d belong to different
circuits of P , so these transitions are non-loop edges in Tch(P ). The graph
Tch(P ) is depicted in Figure 2, where, for notational convenience, instead of
the edge identities (i.e., transitions) the figure gives the vertices at which these
transitions reside.

It is useful to have a notation for transitions with respect to Eulerian circuits.
For an Eulerian circuit C of a connected 4-regular graph F and a vertex v of F ,
we denote by φC(v) the transition at v that is included in τ(C). Suppose that
the directed single transitions (h1, h2) and (h′1, h

′
2) both appear at v in one of the

orientations of C. Then we denote by χC(v) the transition {{h1, h
′
2}, {h′1, h2}},

and we denote by ψC(v) the transition {{h1, h
′
1}, {h2, h

′
2}}. Note that the no-

tions φC(v), χC(v), and ψC(v) are independent of the chosen orientation of C.
For a 4-regular graph F , an Euler system is a set containing, for each connected
component F ′ of F , exactly one Eulerian circuit of F ′. Given an Euler system
C of F , we define, for vertices v of F , φC(v) := φC′(v), χC(v) := χC′(v), and
ψC(v) := ψC′(v), where C ′ ∈ C is the Euler circuit of the connected component
containing v.

Example 12. Consider again the 4-regular graph F of Example 11. An Eu-
lerian circuit C of F is depicted on the left-hand side of Figure 3 and an ori-
entation of C is depicted on the right-hand side of this figure. The transversal
corresponding to circuit partition P in Figure 1 is {ψC(a), φC(b), φC(c), ψC(d)}.

Let F be a 4-regular graph. A transitional orientation o of F is a function
that assigns to each transition t ∈ T(F ) one of its two single transitions o(t) ∈ t.
We now introduce a notion that is somewhat similar to the notion of an incidence
matrix and is central to our proof of Theorem 5 (cf. Corollary 31 below).

9



Definition 13. Let F be a 4-regular graph and let D be a directed version of
F . Let o be a transitional orientation of F .

The edge-transition incidence matrix of D with respect to o, denoted by
etiD,o, is the E(F ) × T(F )-matrix over Q where, for each e ∈ E(F ) and each
t ∈ T(F ), its entry indexed by (e, t) is

1 e ∩ o(t) = {h} and h is the tail of e in D,

−1 e ∩ o(t) = {h} and h is the head of e in D,

0 otherwise.

Notice that the column of etiD,o corresponding to a transition t has two
nonzero entries unless o(t) is a loop, in which case the t-column is 0. Also, if
D1 and D2 are directed versions of F , then etiD2,o can be obtained from etiD1,o

by multiplying the e-rows where e has different orientations in D1 and D2 by
−1. In contrast, if o1 and o2 are transitional orientations, then it is not so easy
to describe the connection between etiD,o1 and etiD,o2 . For instance, they may
have different numbers of zero columns, and different numbers of zero rows.

Moreover, notice the strong similarity between the incidence matrix of D
and etiD,o. Very roughly (in particular, assuming no loops), if t is a transition
at v then the column with index t of etiD,o is obtained from the row with index
v of the incidence matrix of D by setting two of the four nonzero entries to zero.
Here o determines which two entries are set to zero.

Finally, we notice that etiD,o is the product of an E(F )×H(F )-matrix H1

and an H(F ) × T(F )-matrix H2, where (1) for e ∈ E(F ) and h ∈ H(F ), the
entry of H1 indexed by (e, h) is 1 if h is the tail of e in D, −1 if h is the head
of e in D, and 0 otherwise, and (2) for h ∈ H(F ) and t ∈ T(F ) the entry of H2

indexed by (h, t) is 1 if h ∈ o(t) and 0 otherwise.

Example 14. Consider again the 4-regular graph F and the Euler system C
from the left-hand side of Figure 3. Consider the directed version D of F induced
by the orientation of C as depicted on the right-hand side of Figure 3. Then the
transpose of the incidence matrix of D is as follows:



a b c d

e1 1 −1 0 0
e2 0 1 −1 0
e3 0 0 1 −1
e4 0 −1 0 1
e5 −1 1 0 0
e6 1 0 −1 0
e7 0 0 1 −1
e8 −1 0 0 1


.

Let o be the transitional orientation that assigns to a transition at v ∈ V (F )
the single transition that does not contain any of the heads of edges e4, e5, e6,
and e7 (for vertices b, a, c, and d, respectively). This particular o is chosen in
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Figure 4: The graph Tcho(P ) from Example 15.

view of Example 48 towards the end of the paper. Now etiD,o is as follows:



φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

e1 1 −1 0 0 0 −1 0 0 1 0 0 0
e2 0 1 −1 0 0 0 −1 0 0 1 0 0
e3 0 0 1 −1 0 0 0 −1 0 0 1 0
e4 0 0 0 1 0 0 0 0 0 0 0 1
e5 0 0 0 0 0 1 0 0 0 1 0 0
e6 0 0 0 0 1 0 0 0 1 0 0 0
e7 0 0 0 0 0 0 1 0 0 0 1 0
e8 −1 0 0 0 −1 0 0 1 0 0 0 1


.

For a finite set X, an X-vector v, and Y ⊆ X, we let v|Y denote the Y -vector
obtained from v by restricting to the entries of Y . Similarly, for a W × X-
matrix A and Y ⊆ X, we let A|Y denote the W × Y -matrix obtained from A
by restricting to the columns of Y .

A transitional orientation o is used to simultaneously fix directions of the
edges of Tch(P ) for all circuit partitions P of a 4-regular graph F . For a circuit
partition P of F , we denote by Tcho(P ) the directed version of Tch(P ) where
each edge t ∈ τ(P ) is directed from the p ∈ P containing the single transition
of t distinct from o(t) towards the p′ ∈ P containing o(t).

Example 15. Consider again F , P , D, and o from the running example; see
Figure 1 for F and P , Figure 3 for D, and Example 14 for o. Then Tcho(P )
is given in Figure 4, where the loop (s1, s2) corresponding to c is such that s1

contains the head of e6 and the tail of e7 and s2 contains the head of e2 and the
tail of e3.

For a 4-regular graph F and a circuit partition P , a closed walk W of F
determines a closed walk of Tch(P ), denoted by πP (W ), as follows (see also
[16]): a visit of W at a vertex v that traverses a single transition not in the
transition t of P at v corresponds to walking the edge t of Tch(P ) (in this way
“jumping” from one position in a circuit of P to another position in a circuit
of P , possibly within the same circuit), while traversing a single transition
of t corresponds to “staying put” in the vertex of Tch(P ) (i.e., circuit of P )
that contains this single transition. More precisely, consider the sequence W ′

obtained from W by replacing every directed single transition (h, h′) in W by
the tuple (s, s′), where s and s′ are single transitions of circuits of P such that
h ∈ s and h′ ∈ s′ (note that s and s′ are unique with this property). Now,

11



πP (W ) is obtained from W ′ by removing all tuples of the form (s, s). Note
that, for every tuple (s, s′) of πP (W ), we have {s, s′} ∈ τ(P ) = E(Tch(P ))
(since s 6= s′) and that πP (W ) is indeed a closed walk of Tch(P ).

Example 16. Consider again F and P from Figure 1. Consider the closed walk
W of F that traverses exactly once the edge e1 in the direction of b, followed
by the edge e4, and finally the edge e8. Then πP (W ) is the closed walk that
traverses the edge corresponding to b in the direction of the vertex without the
loop, followed by traversing the edge corresponding to a. Note that the visit of
W at vertex d does not correspond to any edge traversal in πP (W ).

Similarly as for σ(D,S), we write πP (S) = {πP (W ) |W ∈ S} for a set S of
closed walks. In fact, we regard here πP (S) as a multiset to ensure |πP (S)| = |S|,
which will be important when we turn to matrices in Section 4. The definition
of πP carries over in the natural way to (sets of) “unoriented” closed walks
(i.e., closed walks where we forget the orientation). By the definition of πP , one
observes that, for every closed walk W of Tch(P ), there is a closed walk W ′

such that πP (W ′) = W .

Theorem 17. Let F be a 4-regular graph and let D be a directed version of F .
Let o be a transitional orientation of F . Let P be a circuit partition of F .

We have
σ(D,W ) · etiD,o|τ(P ) = σ(Tcho(P ), πP (W ))

for all closed walks W of F . In this equality, the σ(·, ·) vectors are interpreted
as row vectors.

Proof. Let W be a closed walk of F and let tv ∈ τ(P ) be a transition at a vertex
v ∈ V (F ). If W does not visit v, then the tv-entries of σ(D,W ) · etiD,o|τ(P )

and σ(Tcho(P ), πP (W )) are both zero. Let us consider a visit of v by W .
Assume that this visit traverses the single transition s = {h1, h2} in the direction
(h1, h2), i.e., this visit arrives at v via half-edge h1 and leaves v via half-edge h2.
Let e1 and e2 be the edges of F corresponding to h1 and h2, respectively. The
decomposition of etiD,o as the product of H1 and H2 (see above Example 14)
implies (by restricting the columns of H1 and the rows of H2 to s) that the
contribution of this visit to the tv-entry of σ(D,W ) · etiD,o|τ(P ) is −1 for the
“incoming” edge e1 if h1 ∈ o(tv) and 0 otherwise, and 1 for the “outgoing” edge
e2 if h2 ∈ o(tv) and 0 otherwise. (If e1 = e2 and o(tv) = {h1, h2}, then the total
contribution of this visit is 0.)

If s ∈ tv, then the contribution of this visit is 0 — as required. Assume now
that s /∈ tv. Then exactly one of h1 and h2 is in o(tv).

If h1 ∈ o(tv), then the contribution of this visit to the tv-entry of σ(D,W ) ·
etiD,o|τ(P ) is −1, which corresponds to traversing the edge tv of Tch(P ) against
the direction of Tcho(P ). Since the direction of tv in Tcho(P ) is from the unique
single transition s′ ∈ tv\{o(tv)} to o(tv), the corresponding edge visit in πP (W )
is indeed against the direction of Tcho(P ).

Similarly, if h2 ∈ o(tv), then the contribution of this visit to the tv-entry of
σ(D,W ) ·etiD,o|τ(P ) is 1, which corresponds to traversing the edge tv of Tch(P )
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W σ(D,W )

πP (W ) σ(Tcho(P ), πP (W ))

σ(D,·)

πP etiD,o|τ(P )

σ(Tcho(P ),·)

Figure 5: Commutative diagram for closed walks W of 4-regular graphs.

e2

h3

h2

e1

h1

h4

(i)

t1

{h1, h2}{h3, h4}

(ii)

t2

{h1, h3}{h2, h4}

(iii)

t3

{h1, h4}{h2, h3}

(iv)

Figure 6: Some graphs, with edge and half-edge identities, considered in Exam-
ple 18: (i) the directed version D of F , where the directed single transitions of
W are depicted inside the vertex, and the graphs (ii) Tcho(P1), (iii) Tcho(P2),
and (iv) Tcho(P3).

along the direction of Tcho(P ). Since the direction of tv in Tcho(P ) is from s′

to o(tv), the corresponding edge visit in πP (W ) is indeed along the direction of
Tcho(P ).

Therefore etiD,o corresponds to a linear transformation sending incidence
vectors of D to incidence vectors of Tcho(P ) in a way compatible with πP ;
see Figure 5. Also note that the left-hand side of the equality of Theorem 17
depends on D, but the right-hand side of this equality does not.

To illustrate Theorem 17, we give two examples: one where F is the 4-regular
graph with only one vertex to cover the case of loops, and one where we continue
the running example.

Example 18. Suppose F is the 4-regular graph with only one vertex and two
edges e1 = {h1, h4} and e2 = {h2, h3} (both loops). Then W = ((h1, h2), (h3, h4))
is a closed walk of F . Suppose that D is the directed version of F consistent
with the orientation of W , depicted in Figure 6(i). Let o be the transitional
orientation of F with h1 ∈ o(t) for every transition t. If the transitions of F
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are t1, t2, t3 with o(ti) = {h1, hi+1}, then

etiD,o =

( t1 t2 t3

e1 −1 −1 0
e2 1 −1 0

)
.

Now σ(D,W ) =
(
1 1

)
. For i ∈ {1, 2, 3}, let Pi be the circuit partition of F

determined by the transition ti. Then Theorem 17 is satisfied because πP1
(W )

is the empty closed walk of Tcho(P1); πP2
(W ) is the closed walk that traverses

the loop edge of Tcho(P2) twice, against its direction; and πP3
(W ) is a closed

walk that traverses the non-loop edge of Tcho(P3) twice, in opposite directions.
See (ii)-(iv) of Figure 6 for depictions of these directed touch graphs.

Example 19. Consider again F , P , C, D, and o from the running example; see
Figure 1 for F and P , Figure 3 for C and D, and Example 14 for o. Consider
again the closed walk W of F that traverses exactly once the edge e1 along the
direction of D, followed by the edge e4, and finally the edge e8. We have

σ(D,W ) =
( e1 e2 e3 e4 e5 e6 e7 e8

1 0 0 −1 0 0 0 1
)
,

and therefore σ(D,W ) · etiD,o is equal to

(φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

0 −1 0 −1 −1 −1 0 1 1 0 0 0
)
.

By Example 12 and Theorem 17,

σ(Tcho(P ), πP (W )) =
(ψC(a) φC(b) φC(c) ψC(d)

1 −1 0 0
)
.

Since F in this example has no loops, we (can) unambiguously denote the half
edge of an edge e incident to a vertex v by he,v. Then W = ((he1,b, he4,b),
(he4,d, he8,d), (he8,a, he1,a)).

Note that Tcho(P ) is obtained from Tch(P ) (depicted in Figure 2) by direct-
ing {he5,a, he8,a} to {he1,a, he6,a}, {he4,b, he5,b} to {he1,b, he2,b}, {he6,c, he7,c} to
{he2,c, he3,c}, and {he3,d, he7,d} to {he4,d, he8,d}.

We have

πP (W ) = (({he1,b, he2,b}, {he4,b, he5,b}), ({he5,a, he8,a}, {he1,a, he6,a})),

and so πP (W ) indeed traverses the edge corresponding to b against the direction
of Tcho(P ) and the edge corresponding to a along the direction of Tcho(P ).

Corollary 20. Let F be a 4-regular graph, let D be a directed version of F ,
let W be a closed walk of F , let P be a circuit partition of F , and let D′ be a
directed version of Tch(P ). If

σ(D,W ) =
∑
W ′∈S

λW ′σ(D,W ′)
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for some set S of closed walks of F and λW ′ ∈ Q for W ′ ∈ S, then

σ(D′, πP (W )) =
∑
W ′∈S

λW ′σ(D′, πP (W ′)).

Proof. Let o be a transitional orientation of F such that Tcho(P ) = D′. By
Theorem 17,

σ(Tcho(P ), πP (W )) = σ(D,W ) · etiD,o|τ(P )

=

( ∑
W ′∈S

λW ′σ(D,W ′)

)
· etiD,o|τ(P )

=
∑
W ′∈S

λW ′σ(D,W ′) · etiD,o|τ(P )

=
∑
W ′∈S

λW ′σ(Tcho(P ), πP (W ′)),

where we used Theorem 17 again in the last equality.

Lemma 21. Let F be a 4-regular graph and let P be a circuit partition of F .
If Γ ⊇ P is an (integral, resp.) cycle spanning set of F , then πP (Γ \ P ) is

an (integral, resp.) cycle spanning set of Tch(P ).

Proof. This follows from Corollary 20 and the facts that (1) πP maps elements
of P to the empty set and (2) every closed walk W ′ of Tcho(P ) is of the form
W ′ = πP (W ) for some closed walk W of F .

We now prove a stronger version of Lemma 21, cf. Theorem 23 below, in
order to later prove the strictness condition in Theorem 5. For a graph G and
E ⊆ E(G) we denote by G − E the graph obtained from G by removing the
edges of E.

Lemma 22. Let F be a 4-regular graph and let P be a circuit partition of F .
Let E ⊆ E(F ) be such that each circuit of P traverses at most one edge from
E.

If Γ is an (integral, resp.) cycle spanning set of F − E, then Γ ∪ P is an
(integral, resp.) cycle spanning set of F .

Proof. Let Γ be a cycle spanning set of F−E and letD be a directed version of F .
Let W be a closed walk of F and let E′ ⊆ E be the edges of E that are traversed
by W . We prove by induction on |E′| that σ(D,W ) ∈ spanQ(σ(D,Γ ∪ P )).

Assume first that |E′| = 0, i.e., E′ = ∅. Then W is a closed walk of F − E
and so σ(D,W ) ∈ spanQ(σ(D,Γ)), since Γ is a cycle spanning set of F − E.
Thus, σ(D,W ) ∈ spanQ(σ(D,Γ ∪ P )).

Assume now that |E′| > 0. Let e ∈ E′. Let p ∈ P be the circuit of
F traversing e. Consider the closed walk W ′ obtained from W that avoids
the traversal of e by instead taking the path obtained from p by removing e.
By the induction hypothesis, σ(D,W ′) ∈ spanQ(σ(D,Γ)). Now, σ(D,W ) =
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σ(D,W ′) + λpd · σ(D, pd), where λpd ∈ {−1, 1} and pd is some orientation of p.
So, σ(D,W ) ∈ spanQ(σ(D,Γ ∪ P )).

Since the λpd ’s are in {−1, 1}, we have that if Γ is integral, then so is Γ ∪
P .

Theorem 23. Let F be a 4-regular graph and let P be a circuit partition of F .
Let E ⊆ E(F ) be such that each circuit of P traverses at most one edge from
E.

If Γ is an (integral, resp.) cycle spanning set of F −E, then πP (Γ \P ) is an
(integral, resp.) cycle spanning set of Tch(P ).

Proof. Let Γ be an (integral, resp.) cycle spanning set of F −E. By Lemma 22,
Γ ∪ P is an (integral, resp.) cycle spanning set of F . By Lemma 21, πP ((Γ ∪
P ) \ P ) = πP (Γ \ P ) is an (integral, resp.) cycle spanning set of Tch(P ).

4 Cycle matrices

In this section we prove Theorem 5. Here the edge-transition incidence matrix
introduced in the previous section plays a central role in the construction of the
totally transversally unimodular representation of Z3(G) for a circle graph G.

The cycle matrix of a set of closed walks Γ of a directed version D of a
graph G, denoted by CM(G,Γ, D), is the Γ × E(G)-matrix over Z where the
row indexed by W ∈ Γ is σ(D,W ). Note that for directed versions D1 and D2

of G, the cycle matrix of Γ w.r.t. D1 is obtained from the cycle matrix of Γ
w.r.t. D2 by multiplying some (possibly none) columns by −1. Also note that if
Γ is a cycle spanning set, then CM(G,Γ, D) is a representation of the cographic
matroid M∗(G), that is, the dual of the cycle matroid of G.

By Theorem 17, we have the following.

Corollary 24. Let F be a 4-regular graph and let D be a directed version of F .
Let o be a transitional orientation of F and let Γ be a set of closed walks of D.
Let P be a circuit partition of F . Then

CM(Tch(P ), πP (Γ),Tcho(P )) is equal to CM(F,Γ, D) · etiD,o|τ(P )

up to relabeling of each row index πP (W ) of the former matrix by W .

By Theorem 23 and Corollary 24 we have the following.

Corollary 25. Let F be a 4-regular graph and let D be a directed version of
F . Let o be a transitional orientation of F . Let P be a circuit partition of F .
Let E ⊆ E(F ) be such that each circuit of P traverses at most one edge from
E. Let Γ be a cycle spanning set of F − E.

Then CM(F,Γ, D) · etiD,o|τ(P ) represents M∗(Tch(P )).

The Eulerian 3-matroid Q(F ) of a 4-regular graph F is the (unique) 3-
matroid (T(F ),Ω, r), where (1) Ω = {ωv | v ∈ V (F )} and, for v ∈ V (F ), ωv
is the set of transitions at v, and (2) for each transversal T ∈ T (Ω), r(T ) =
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|V (F )| − (|P | − c(F )) (in other words, the nullity of T is |P | − c(F )), where P
is the circuit partition with τ(P ) = T ; see [6].

We remark that these conditions uniquely determine Q(F ), since the rank
function r of any multimatroid where each skew class has cardinality at least
two is uniquely determined by the set of transversals T with r(T ) = |T |; see [6,
Proposition 5.5].

If P is a circuit partition then the transverse matroid Q(F )[τ(P )] is equal
to M∗(Tch(P )), see [7, Sec. 4] or [17, Sec. 5].

We thus have the following.

Theorem 26. Let F be a 4-regular graph and let D be a directed version of
F . Let o be a transitional orientation of F and let Γ be a cycle spanning set
of F − E, where E ⊆ E(F ) contains at most one edge from each connected
component of F .

Then CM(F,Γ, D) · etiD,o represents Q(F ). This representation is strict
when |E| = c(F ).

Proof. Only the last statement is left to show. The rank of CM(F,Γ, D) is equal
to the rank of CM(F − E,Γ, D), which in turn is equal to r(M∗(F − E)). We
have r(M∗(F −E)) = |E(F −E)| − (|V (F −E)| − c(F −E)) = |E(F )| − |E| −
(|V (F )| − c(F )) = 2|V (F )| − |E| − |V (F )|+ c(F ) = |V (F )| − |E|+ c(F ). Thus,
if |E| = c(F ), then the rank of CM(F,Γ, D) is |V (F )|. Consequently, the rank
of the product CM(F,Γ, D) · etiD,o is at most |V (F )|.

On the other hand, if C is an Euler system of F then every edge of Tch(C)
is a loop, so the rank of M∗(Tch(P )) is |V (F )|. The transverse matroid
Q(F )[τ(C)] is equal to M∗(Tch(C)), so |V (F )| equals the rank of the sub-
matrix of CM(F,Γ, D) · etiD,o consisting of columns corresponding to elements
of τ(C). Therefore the rank of CM(F,Γ, D) · etiD,o is at least |V (F )|.

We now recall the following well-known result (see, e.g., [15, Theorem 19.3]).

Proposition 27. An X × Y -matrix A is totally unimodular if and only if for
every Z ⊆ X, there are λz ∈ {−1, 1}, for all z ∈ Z, such that all entries of the
vector

∑
z∈Z λzAz,• are in {−1, 0, 1}, where Az,• is the row vector of A indexed

by z.

Let G be a graph and let T be a maximal forest of G. For e ∈ E(G) \E(T ),
the unique circuit for which the only edge that is traversed outside T is e, is
called the fundamental circuit of e w.r.t. T . Let B be the set of oriented circuits
obtained by fixing an arbitrary orientation to each fundamental circuit Ce of
e ∈ E(G) \ E(T ) w.r.t. T . It is well known that B is an integral cycle basis of
G (see, e.g., [12]). Let us call B a strictly fundamental cycle basis of G w.r.t.
T . The following is well known, see, e.g., [15, Chapter 19].

Lemma 28. Let D be a directed version of a graph G, let T be a maximal forest
of G, and let B be a strictly fundamental cycle basis of G w.r.t. T . Then:

• CM(G,B,D) is totally unimodular.
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• For every oriented cycle C of G, σ(D,C) is equal to
∑
C′∈B λC′,Cσ(D,C ′)

with λC′,C ∈ {−1, 0, 1} for all C ′ ∈ B.

• If C is an oriented cycle of G and Ce ∈ B denotes an oriented fundamental
circuit for e ∈ E(G) \ E(T ) with respect to T , then λCe,C 6= 0 if and only
if e is traversed by C.

The second property of Lemma 28 is somewhat similar to the notion of a
zero-one cycle basis considered in [10]. However, here we allow vertex repetitions
in oriented circuits, cf. Remark 9. Example 37 below illustrates that this is a
crucial difference.

Lemma 29. Let F be a 4-regular graph and let P be a circuit partition of F .
For each cycle C of F , there is a cycle C ′ of F that traverses the same set of
edges as C such that πP (C ′) is a cycle of Tch(P ).

Proof. Let C ′ be a cycle of F obtained from C by changing, for each vertex v
of F for which all four incident half-edges are traversed by some circuits of C,
the transition t taken by C at v such that it coincides with the transition taken
by P at v (of course, t might already coincide with the transition of P at v, in
which case we change nothing on C at v). By the construction, πP (C ′) does
not traverse any edge of Tch(P ) twice, so πP (C ′) is a cycle of Tch(P ).

Theorem 30. Let F be a 4-regular graph, let P be a circuit partition of F , and
let D be a directed version of Tch(P ). Let B be a strictly fundamental cycle
basis of F .

Then CM(Tch(P ), πP (B), D) is totally unimodular.

Proof. Let Z ⊆ πP (B). By Proposition 27, it suffices to show that there are
λz ∈ {−1, 1}, for all z ∈ Z, such that all entries of the vector

∑
z∈Z λzσ(D, z)

are in {−1, 0, 1}. Let Z ′ ⊆ B such that πP (Z ′) = Z. Since CM(F,B,D)
is totally unimodular, by Proposition 27 we (may) choose some assignment of
λ′z ∈ {−1, 1} for all z ∈ Z ′ such that all entries of

∑
z∈Z′ λ

′
zσ(D, z) are in

{−1, 0, 1}. By Lemma 8, there is an oriented cycle C of F such that σ(D,C) =∑
z∈Z′ λ

′
zσ(D, z). By Lemma 29, there is an oriented cycle C ′ of F such that C

and C ′ traverse the same edges and πP (C ′) is an oriented cycle of Tch(P ). By
Lemma 28, σ(D,C ′) =

∑
z∈Z′ λ

′′
zσ(D, z) with λ′′z ∈ {−1, 1} for all z ∈ Z ′. By

Corollary 20, σ(D,πP (C ′)) is equal to
∑
z∈Z′ λ

′′
zσ(D,πP (z)), which in turn is

equal to
∑
z∈Z λzσ(D, z) by setting λπP (z) := λ′′z for all z ∈ Z ′. Thus all entries

of
∑
z∈Z λzσ(D, z) are indeed in {−1, 0, 1}.

For an X × T(F )-matrix A, where F is a 4-regular graph, we say that A is
totally transversally unimodular if for every transversal T of T(F ), the X × T -
submatrix of A induced by the columns of T is totally unimodular.

By Corollary 24 and Theorem 30 we obtain the following.

Corollary 31. Let F be a 4-regular graph, let D be a directed version of F ,
let B be a strictly fundamental cycle basis of F , and let o be a transitional
orientation of F .

Then CM(F,B,D) · etiD,o is totally transversally unimodular.
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We now obtain the following.

Theorem 32. Let F be a 4-regular graph. Then Q(F ) has a strict, totally
transversally unimodular representation.

Proof. Let B be a strictly fundamental cycle basis of F − E, where E con-
tains exactly one edge of each connected component of F . By Theorem 26,
A := CM(F,B,D) · etiD,o is a strict representation of Q(G). Let B′ be the
strictly fundamental cycle basis of F such that B ⊆ B′. By Corollary 31,
A′ := CM(F,B′, D) · etiD,o is totally transversally unimodular. Since A is ob-
tained from A′ by removing some rows, A is totally transversally unimodular
too.

An interlacement graph G of a 4-regular graph F with respect to some Euler
system C is a simple graph without loops such that V (G) = V (F ) and there is
an edge between distinct vertices u and v if and only if u and v belong to the
same connected component of F and the Eulerian circuit C ′ of C corresponding
to that connected component visits u and v in the order u, v, u, v or v, u, v, u (i.e.,
u and v are “interlaced” in C). We recall that a circle graph is an interlacement
graph of some 4-regular graph with respect to some Euler system.

Proposition 33 ([17]). Let G be the interlacement graph of a 4-regular graph
F with respect to some Euler system C. Then Z3(G) is equal to Q(F ) up to
relabelling, for each vertex v ∈ V (F ), φC(v), χC(v), and ψC(v) to the column
indices corresponding to the v-columns of I, A(G), and I + A(G) in IAS(G),
respectively.

By Theorem 32 and Proposition 33 we obtain the main result of this paper
(cf. Theorem 5 in the introduction).

Theorem 34. Let G be a circle graph. Then Z3(G) has a strict, totally
transversally unimodular representation.

Remark 35. In view of Theorem 34 one may wonder whether Z3(G) has a totally
unimodular representation (i.e., is sheltered by some regular matroid) for circle
graphs G. This turns out to be false in general. Indeed, consider the circle
graph G = K4. It is easy to see that the matroid represented by (I A(K4))
is not regular (indeed, the representation of the dual Fano matroid F ∗7 of the
introduction is a submatrix of this matrix). By [9, Proposition 18], for any
simple graph G, the 2-matroid Z3(G)−Ψ, where Ψ is the set of column indices
corresponding to I + A(G) in IAS(G), is “tight” (meaning that the union of
every full rank transversal and every skew class has a circuit of a transverse
matroid as a subset). By [9, Propositions 17 and 24], for any tight 2-matroid Z
there is at most one binary matroid M that shelters Z. Therefore, no regular
matroid shelters Z3(K4)−Ψ, and so no regular matroid shelters Z3(K4).

Example 36. Consider again F , C, and D from the running example, see
Figure 1 (for F ) and Figure 3 (for C and D). Let T be the spanning tree of F
consisting of edges e1, e2, and e3. Let B be a strictly fundamental cycle basis of
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F with respect to T , where each oriented fundamental circuit Ce of e is oriented
such that e is traversed in the direction of D. The totally unimodular matrix
CM(F,B,D) is as follows:



e1 e2 e3 e4 e5 e6 e7 e8

Ce4 0 1 1 1 0 0 0 0
Ce5 1 0 0 0 1 0 0 0
Ce6 −1 −1 0 0 0 1 0 0
Ce7 0 0 −1 0 0 0 1 0
Ce8 1 1 1 0 0 0 0 1

.
The matrix CM(F,B,D) · etiD,o is equal to



φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

Ce4 0 1 0 0 0 0 −1 −1 0 1 1 1
Ce5 1 −1 0 0 0 0 0 0 1 1 0 0
Ce6 −1 0 1 0 1 1 1 0 0 −1 0 0
Ce7 0 0 −1 1 0 0 1 1 0 0 0 0
Ce8 0 0 0 −1 −1 −1 −1 0 1 1 1 1

.

By Theorem 26 (with E = ∅), this matrix represents Q(F ). In fact, taking E to
be a singleton instead of the empty set, we have by Theorem 26 that the matrix
obtained by removing any row of this matrix remains a representation of Q(F ).
By Corollary 31, the above matrix is totally transversally unimodular.

One may wonder, in view of Corollary 31, whether total unimodularity of
CM(F,B,D) directly implies total transversal unimodularity of CM(F,B,D) ·
etiD,o. The next example shows that this is not the case.

Example 37. Let F be a 4-regular graph with two vertices and four parallel
edges between the vertices and let D be a directed version of F such that each
vertex has two incoming and two outgoing edges. Let (e1, e2, e3, e4) be a closed
walk representing an Eulerian circuit C1 of D (for notational convenience we
represent closed walks in this example as sequences of edges instead of directed
single transitions). Let B be the cycle basis of F consisting of the oriented
circuits C1,B, C2,B, and C3,B corresponding to the closed walks (e1, e2), (e2, e3),
and (e3, e4), respectively. Consider the oriented circuit C2 corresponding to the
closed walk (e1, e4, ē2, ē3), where ē again means traversing the directed edge e in
the opposite direction. While C2 is an oriented cycle, one verifies that it cannot
be written as

∑
C∈B λCσ(D,C) where λC ∈ {−1, 0, 1} for all C ∈ B (note

that it can be written in such a way if B is replaced by a strictly fundamental
cycle basis, cf. Lemma 28). However, B is an integral cycle basis since (1) for
every oriented circuit C, σ(D,C) is the sum of σ(D,Ci)’s, where each Ci is an
oriented circuit without vertex repetitions, and (2) one easily verifies that, for
every oriented circuit Ci without vertex repetitions, σ(D,Ci) can be written as
the integral sum of the σ(D,C ′)’s where C ′ ∈ B.

It is interesting to observe that every oriented circuit that visits each vertex
at most once can be written as

∑
C∈B λCσ(D,C) where λC ∈ {−1, 0, 1} for all
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C ∈ B. This property of B is captured by the notion of a zero-one cycle basis
considered in [10]. Therefore, this property is crucially different from the second
property given in Lemma 28.

Let o be the transitional orientation of F such that o(t) always chooses the
single transition containing the half-edge among the half-edges incident to the
vertex corresponding to t that is traversed first by C1 starting half-way in e1 and
walking in the direction of e1. We have that

CM(F,B,D) =


e1 e2 e3 e4

C1,B 1 1 0 0
C2,B 0 1 1 0
C3,B 0 0 1 1


is totally unimodular and

etiD,o =


φC1

(v1) φC1
(v2) χC1

(v1) χC1
(v2) ψC1

(v1) ψC1
(v2)

e1 −1 0 −1 1 −1 0
e2 1 −1 0 −1 0 −1
e3 0 1 0 0 −1 0
e4 0 0 1 0 0 −1

.
The matrix A = CM(F,B,D) · etiD,o is equal to


φC1(v1) φC1(v2) χC1(v1) χC1(v2) ψC1(v1) ψC1(v2)

C1,B 0 −1 −1 0 −1 −1
C2,B 1 0 0 −1 −1 −1
C3,B 0 1 1 0 −1 −1

.
By Corollary 24, CM(Tch(P ), πP (B),Tcho(P )) = A|τ(P ) for every circuit par-
tition P of F . Consider the circuit partition P with τ(P ) = {χC1

(v1), ψC1
(v2)}.

Then A|τ(P ) is not totally unimodular. Indeed, its submatrix induced by the
rows indexed by C1,B and C3,B has determinant 2.

Alternatively, if we take the strictly fundamental cycle basis B′ of G w.r.t.
the spanning tree T consisting of edge e1 such that each oriented circuit in B′

is oriented in the direction of e1, then we get

CM(F,B′, D) =


e1 e2 e3 e4

C1,B′ 1 1 0 0
C2,B′ 1 0 −1 0
C3,B′ 1 0 0 1


and A′ = CM(F,B′, D) · etiD,o is equal to


φC1

(v1) φC1
(v2) χC1

(v1) χC1
(v2) ψC1

(v1) ψC1
(v2)

C1,B′ 0 −1 −1 0 −1 −1
C2,B′ −1 −1 −1 1 0 0
C3,B′ −1 0 0 1 −1 −1

.
By Corollary 31, A′ is transversally totally unimodular.
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5 Circuits induced by an Eulerian circuit

In this section we discuss how the totally transversally unimodular representa-
tions of Z3(G) considered in this paper relate to the representations considered
in [8]. In this way we obtain simpler proofs of some of the results of [8].

First we recall the following result from [11]. For convenience we also give a
proof. Recall that a square matrix of integers is unimodular if its determinant
is ±1.

Proposition 38 ([11]). Let G be a graph, B be an integral cycle basis of G,
and D be some directed version of G. Let T be a set of edges of G that forms a
maximal forest of G. Then the matrix obtained from CM(G,B,D) by removing
the columns of T is unimodular.

Proof. Since B is an integral cycle basis, we have σ(D,C) ∈ spanZ(σ(D,B)) for
every oriented circuit C. Let e ∈ E(D)\T . For the oriented fundamental circuit
Ce of e traversing in the direction of e in D, the restriction of σ(D,Ce) to index
set E(D) \ T is a unit vector with the entry of e equal to 1. Consequently, the
span over Z of the rows of the matrix A obtained from CM(G,B,D) by removing
the columns of T is ZE(D)\T . By [15, Theorem 4.3], A is unimodular.

For a graph G, we say that E ⊆ E(G) is based in G if E contains exactly
one edge of each connected component of G. We now provide a counterpart to
Theorem 30.

Theorem 39. Let F be a 4-regular graph, let P be a circuit partition of F , and
let D be a directed version of Tch(P ). Let Γ be an integral cycle basis of F −E,
where E ⊆ E(F ) is based in F .

Then CM(Tch(P ), πP (Γ), D) is square and has determinant −1, 0, or 1.

Proof. Let Γ be an integral cycle basis of F −E. Then CM(Tch(P ), πP (Γ), D)
has |E(Tch(P ))| = |V (F )| columns and |πP (Γ)| = |Γ| rows. Since Γ is a cycle
basis of F − E, we have |Γ| = |E(F − E)| − (|V (F − E)| − c(F − E)) =
|E(F )| − c(F ) − (|V (F )| − c(F )) = |E(F )| − |V (F )| = |V (F )|, and so the
matrix is indeed square.

If C ∈ Γ∩P , then the row of CM(Tch(P ), πP (Γ), D) indexed by C is zero, so
the statement holds. Assume now that Γ∩P = ∅. By Theorem 23, πP (Γ) is an
integral cycle spanning set of Tch(P ). If det(CM(Tch(P ), πP (Γ), D)) 6= 0, then
πP (Γ) is an integral cycle basis of Tch(P ). By Proposition 38, we obtain that
CM(Tch(P ), πP (Γ), D) is unimodular (and every edge of Tch(P ) is a loop).

The following (easy to verify) result is used in the BEST theorem [1, 18].

Lemma 40 ([1, 18]). Let F be a connected 4-regular graph and let C be an
oriented Eulerian circuit of F . Let e be an edge of F . Let T be the graph
obtained from F by removing e and removing, for every v ∈ V (F ), the incoming
edge RC,e(v) when visiting v for the second time while walking along C and
starting at the middle of e. Then T is a spanning tree of F .
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We denote the half-edge of RC,e(v) (from Lemma 40) incident to v by
HC,e(v).

The spanning tree of Lemma 40 is called the spanning tree of F induced by
C and e.

Obviously, we can apply the above lemma to each connected component of
a 4-regular graph. So, if F is a 4-regular graph, C is an oriented Euler system
of F , and E ⊆ E(F ) is based in F , then we (may) speak of the maximal forest
of F induced by C and E. Similarly, we define RC,E(v) and HC,E(v) in this
more general context.

Definition 41. Let C be an oriented Euler system of a 4-regular graph F and
let E ⊆ E(F ) be based in F . For a vertex v of F , the oriented circuit induced
by C at v based on E is the oriented circuit that traverses the segment from v
to v of an oriented Euler circuit of C, and avoids traversing edges of E.

We denote by ΓE,C the set of all oriented circuits induced by C and based
on E. Note that the orientations of the oriented circuits of ΓE,C coincide with
the oriented circuits of C. Consequently, if D is a directed version of F and
C,C ′ ∈ ΓE,C , and e is an index for which both its entry in σ(D,C) is nonzero
and its entry in σ(D,C ′) is nonzero, then these entries are equal.

Lemma 42. Let F be a 4-regular graph. Let E ⊆ E(F ) be based in F and let
C be an oriented Euler system of F .

Then ΓE,C is an integral cycle basis of F − E.

Proof. Let T be the maximal forest of F induced by C and E. Let D be a
directed version of F . For v ∈ V (F ), let Cv ∈ ΓE,C be the oriented circuit
induced by C at v based on E.

Let v1, . . . , vn be a linear ordering of the vertices of F such that if edge
RC,E(vi) is traversed before RC,E(vj) in some Eulerian circuit of C starting
from some e ∈ E in the direction coinciding with D, then i < j.

Notice that for all i ∈ {1, . . . , n}, edge RC,E(vi) is traversed by Cvi , but not
by any Cvk , k ∈ {1, . . . , i − 1}. Moreover, each edge traversed by Cvi outside
T is of the form RC,E(vk) for some k ∈ {1, . . . , i − 1}. Hence by subtracting
appropriate σ(D,Cvk)’s with k ∈ {1, . . . , i − 1} from σ(D,Cvi) we obtain an
element s of the cycle space of D for which every entry is in {−1, 0, 1}. By
Lemma 8, s is the incidence vector of some oriented cycle. Since the only
nonzero entry of s outside T is indexed by RC,E(vi), we observe that s is the
incidence vector of the oriented fundamental circuit for RC,E(vi) with respect to
T , oriented in the direction of E in C. Since the oriented fundamental circuits
for RC,E(v) form an integral cycle basis of F − E (because every edge of F
outside T and E is of the form RC,E(v)), so do the elements Cv ∈ ΓE,C .

Remark 43. A cycle basis B of G is called weakly fundamental, see, e.g., [12],
if there is a linear ordering (C1, . . . , Cn) of B such that, for all i ∈ {1, . . . , n},
Ci traverses an edge that is not traversed by any Ck with k ∈ {1, . . . , i − 1}.
Obviously, every strictly fundamental cycle basis is weakly fundamental. From
the proof of Lemma 42 we see that the cycle basis ΓE,C is weakly fundamental.
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By Lemma 21 and Lemma 42 we have the following.

Theorem 44. Let F be a 4-regular graph. Let E ⊆ E(F ) be based in F . Let P
be a circuit partition of F . Let C be an Euler system of F .

Then πP (ΓE,C) is an integral cycle spanning set of Tch(P ).

The next corollary is shown in [8] (see Remark 47). In this paper it follows
from Theorems 39 and 44.

Corollary 45 ([8]). Let F be a 4-regular graph. Let E ⊆ E(F ) be based in F .
Let P be a circuit partition of F . Let C be an Euler system of F . Let D be a
directed version of Tch(P ).

Then CM(Tch(P ), πP (ΓE,C), D) has determinant −1, 0, or 1.

Just like Corollary 31, Corollary 45 can be stated independently of the circuit
partition P as follows.

Corollary 46. Let F be a 4-regular graph. Let E ⊆ E(F ) be based in F . Let
C be an Euler system of F . Let D be a directed version of F and let o be a
transitional orientation of F .

For each transversal T of T(F ), the submatrix of CM(F,ΓE,C , D) · etiD,o
induced by the columns of T has determinant −1, 0, or 1.

Note that by Corollary 24, the matrix CM(F,ΓE,C , D)·etiD,o given in Corol-
lary 46 does not depend on D. If o is the transitional orientation that assigns to
a transition at v ∈ V (F ) the single transition that does not contain the HC,E(v)
half-edge, then we denote this matrix by IAS(F,C,E).

Remark 47. In [8], the matrix MR,ΓE,C (C,P,D) := CM(Tch(P ), πP (ΓE,C), D)
is considered and it is shown there (1) that, for any field F, the F-cycle space
of D is equal to the F-span of the rows of MR,ΓE,C (C,P,D) [8, Theorem 34],
where the F-cycle space and F-span is the “F-counterpart” of the cycle space
(i.e., over Q) and the integral span (i.e., over Z), respectively, and (2) that
det(MR,ΓE,C (C,P,D)) ∈ {−1, 0, 1} [8, Corollary 33]. Notice that (1) follows
from Theorem 44 and that (2) follows from Corollary 45. These results are
shown in [8] using a result whose proof relies on examining a large number of
different cases separately. The theory developed above allows for alternative and
shorter proofs that more deeply explain why these results hold. By the above,
one can observe that IAS(F,C,E) is equal to the matrix IASΓoE

(C) defined in
[8].

Example 48. Consider again F , D, C, and o from the running example. The
matrix CM(F,ΓE,C , D) with E = {e8} is as follows:


e1 e2 e3 e4 e5 e6 e7 e8

Ca 1 1 1 1 1 0 0 0
Cb 0 1 1 1 0 0 0 0
Cc 0 0 1 1 1 1 0 0
Cd 0 0 0 1 1 1 1 0

,
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where Cv is the oriented circuit induced by C at v based on E.
Since the columns in the above depiction of CM(F,ΓE,C , D) are given in

the order of the edges that are visited by C starting at the middle of e8, the
row indexed by a Cv consists of the block of 1’s starting from the first column
indexed by an edge having v as its tail until, and including, the second column
indexed by an edge e having v as its head (which is edge RC,e(v)). The entries
outside this block are zero.

Note that o as defined assigns to a transition at v ∈ V (F ) the single tran-
sition that does not contain the HC,E(v) half-edge. Therefore CM(F,ΓE,C , D) ·
etiD,o equals IAS(F,C,E), which in turn is equal to


φC(a)φC(b)φC(c)φC(d)χC(a)χC(b)χC(c)χC(d)ψC(a)ψC(b)ψC(c)ψC(d)

Ca 1 0 0 0 0 0 −1 −1 1 2 1 1
Cb 0 1 0 0 0 0 −1 −1 0 1 1 1
Cc 0 0 1 0 1 1 0 −1 1 1 1 1
Cd 0 0 0 1 1 1 1 0 1 1 1 1

.
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